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 A B S T R A C T

Given the global increase in antibiotic resistance, new effective strategies must be developed to treat bacteria 
that do not respond to first or second line antibiotics. One novel method uses bacterial phage therapy to control 
bacterial populations. Phage viruses replicate and infect bacterial cells and are regarded as the most prevalent 
biological agent on earth. This paper presents a comprehensive model capturing the dynamics of wild-type 
bacteria (𝑆), antibiotic-resistant bacteria (𝑅), and virus-infected (𝐼) bacteria population, incorporating virus 
inclusion. Our model integrates biologically relevant parameters governing bacterial birth rates, death rates, 
mutation probabilities and incorporates infection dynamics via contact with a virus. We employ an optimal 
control approach to study the influence of virus inclusion on bacterial population dynamics. Through numerical 
simulations, we establish insights into the stability of various system equilibria and bacterial population 
responses to varying infection rates. By examining the equilibria, we reveal the impact of virus inclusion 
on population trajectories, describe a medical intervention for antibiotic-resistant bacterial infections through 
the lense of optimal control theory, and discuss how to implement it in a clinical setting. Our findings 
underscore the necessity of considering virus inclusion in antibiotic resistance studies, shedding light on subtle 
yet influential dynamics in bacterial ecosystems.
1. Introduction

Bacteria are microorganisms that are composed of a single cell. They 
are widely distributed in nature and cause a range of infections and also 
play an essential role in human health [1]. Beneficial bacteria can be 
found in the gastrointestinal tract, where they support the digestive sys-
tem and aid healthy development of the immune system. Bifidobacteria
and E. coli are examples of healthy bacteria found in the intestine which 
break down complex carbohydrates and also improve gut health [2]. 
Mutations in the deoxyribonucleic acid (DNA) of a bacteria may occur 
due to mistakes when bacterial cells undergo binary fission [1,3] and 
can sometimes alter the functioning of its genes, leading to changes in 
their phenotype. These mutations facilitate the emergence of diversity 
within its population, which may improve the capacity of the bacteria 
to adapt to its changing environment [4–7]. When mutations occur in 
bacteria important for human health, harmful infections could arise. 
Typical treatment for such pathogenic bacterial infection involves an-
tibiotics. However, some mutations render bacteria antibiotic-resistant, 
making it difficult to treat infections. Other mutations make bacteria 
more virulent or more easily transmissible [8–10].
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Antibiotic resistance in bacteria is a growing problem in public 
health, as it is increasingly harder to treat infections caused by mutant 
antibiotic-resistant bacteria [3,11]. The scourge of antibiotic-resistant 
genes among microbial pathogens poses a serious threat to the ef-
fectiveness of current antimicrobial treatments, particularly for severe 
bacterial infections leading to sepsis [12]. The progressive emergence 
of antimicrobial resistance (AMR) has been driven by the use of anti-
infection treatments in humans, animals, and food production [10,13]. 
This has been further compounded by the inadequacy of measures 
designed to curtail the infections [13]. According to the World Health 
Organization (WHO), antibiotic resistance has significant economic cost 
implications as a result of prolonged illnesses and longer hospital stays 
which could lead to death or disability [14]. Two central factors that 
drive antimicrobial resistance are the volume of antimicrobials used 
and the spread of resistant micro-organisms and genes encoding for re-
sistance [15]. These factors can both be controlled through preventative 
measures. A central goal of infection bacteriology is thus to identify 
aspects of bacterial ecology to mitigate infection and develop novel 
treatments.
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Mathematical models have been historically successful in capturing 
essential features of infective microbes to predict infection dynam-
ics. These models have significantly advanced our understanding of 
infectious diseases, their transmission, and the development of new 
treatments. Jenner et al. [16] and Xavier et al. [17] both highlight the 
crucial role of innovative mathematical and computational modeling 
techniques in predicting disease outbreaks and designing containment 
strategies. Mathematical models have also been used to study the 
evolution of infectious microbes, including their adaptation to host 
immune systems and the emergence of new strains [18], which has 
helped to inform the development of new vaccines and drugs. Several 
authors have considered the mathematical modeling of antimicrobial 
resistance with different objectives. For example, Ibargüen-Mondragón 
et al. [19] proposed an ordinary differential equation (ODE) model for 
the concurrent acquisition of resistance to bactericidal and bacterio-
static antibiotics, where resistance is generated by specific changes in 
bacterial DNA sequence and plasmid transmission. The model showed 
that applying appropriate therapies and stimulating the immune sys-
tem is the best way to eliminate progression to resistance for many 
bacterial infections. Alavez-Ramírez et al. [20] presented a model for 
the emergence of resistance of Mycobacterium tuberculosis bacteria to 
antibiotics to assess the efficiency of administering one or two drugs 
for controlling latent tuberculosis infection considering its dependence 
on strengths of the immune system. Regarding AMR control, a number 
of studies have established results for the optimal control strategies 
for mitigating bacterial resistance. For managing bacterial popula-
tions with persister dynamics, Leenheer and Cogan [21] applied the 
amount of antimicrobial as the control variable to predict the opti-
mal timing and duration of antibiotic treatment. Ibargüen-Mondragón 
et al. [22] formulated an optimal control problem to minimize the 
bacterial population with plasmid-mediated antibiotic resistance, con-
sidering the action of both antibiotic treatment and immune system 
to combat bacterial infections. Gutiérrez et al. [23] developed an 
approach for managing bacterial populations with persistent dynamics. 
They offer a completely automated, high-throughput approach that 
combines in-the-moment measurements with computer-controlled op-
togenetic manipulation of bacterial growth to perform precise and 
reliable compositional control of a two-strain E. coli community.

From a deterministic perspective, we can single out other research 
focused on the acquisition of antibiotic resistance: the causal factors 
underlying bacterial resistance is given in [24], analysis of bacterial be-
havior in response to various antibiotic treatments in [25–27], optimum 
antibiotic use in [28], and modeling of the acquisition of resistance 
from external sources in [29]. Both deterministic and stochastic models 
have been used to study bacterial resistance mathematically. The in-
teraction between antibiotic-sensitive and antibiotic-resistant bacteria 
was mathematically studied by Mena et al. [30]. They formulated an 
optimal control problem for an unperturbed and a perturbed system, 
where the control variable is prophylaxis. Merdan et al. [31] compared 
mathematical models of bacterial resistance under random conditions 
with a deterministic model including immune system response and 
antibiotic therapy. In [32], the authors applied a stochastic population 
model to investigate the effect of resistance, persistence, and hyper-
mutation on antibiotic treatment failure and found that the relative 
impact of these factors depends on the antibiotic concentration and the 
infection time scale.

In this paper, we will focus on the use of viruses to mitigate 
bacterial infection. Roach and Donovan [33] explored the therapeu-
tic applications of bacteriophage-derived proteins, such as endolysins 
and peptidoglycan hydrolases, in animal models of bacterial infec-
tion. The potential of targeting bacterial virulence and the use of 
bacteriophage-based approaches was highlighted in [34–36], as alter-
native strategies to combat antibiotic resistance and control bacterial 
infections. Mekalanos et al. [37] explored how bacteriophages can 
influence the dynamics of cholera outbreaks. The research showed 
that lytic bacteriophages, which specifically target and destroy virulent 
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strains of cholera-causing bacteria (Vibrio cholerae), can significantly 
reduce the severity of cholera outbreaks. Furthermore, in their study on 
bacteriophage-resistant and bacteriophage-sensitive bacteria, Han and 
Smith [38] explored the population dynamics within a chemostat. They 
found that while resistant bacteria may survive phage attacks, they are 
less efficient at competing for nutrients compared to sensitive bacteria. 
This trade-off significantly influences their population dynamics and 
persistence. 

Mathematical modeling has been instrumental in understanding the 
dynamics and control of viral infections, including the use of viruses to 
control bacterial infections [39]. Clifton et al. [40] demonstrated that 
antibiotic-induced proviruses can play a role in controlling bacterial 
populations, expanding the understanding of phage-antibiotic synergy. 
Bacteriophages, viruses that only replicate in and infect bacterial cells, 
are regarded as the most prevalent biological agent on earth and are 
found everywhere in the environment. Styles et al. [41] emphasized the 
need for realistic mathematical models to improve the understanding 
of bacteriophage, bacteria, and eukaryotic interactions, which is cru-
cial for the development of phage therapy. These studies collectively 
underscore the importance of mathematical modeling in exploring 
the use of viruses to control bacterial infections. One challenge with 
phage therapy is that phages, like other pathogens, are construed as 
‘‘outsiders’’ by the human immune system and are eliminated in due 
time [42,43]. Thus, if phage therapy is unsuccessful once, the same 
phage therapy cannot be used to treat a given infected individual. Using 
virotherapy to completely eliminate a given infection is possible but 
with a low chance of success. However, this can be circumvented by 
using phages in combination with other antibacterial agents [43,44]. 

Here, we hope to explore phage therapy with a mathematical model 
in a different capacity. Rather than completely eliminating an infection, 
we seek to understand if introducing virus-infected bacteria can help 
mitigate an infection indefinitely. We borrow from the concept in ecol-
ogy known as apparent competition, wherein the presence of multiple 
prey with a common predator prevents any single prey from being elim-
inated [45]. If we consider wild-type bacteria and antibiotic-resistant 
bacteria as prey for a bacteriophage, the theory of apparent competition 
stipulates that the antibiotic-resistant bacteria will not outgrow the 
wild-type bacteria. Thus, infection may not be completely removed, 
but it can be controlled. In this paper, we describe the dynamics of 
the interactions of antibiotic-sensitive and antibiotic-resistant bacteria 
with a user-controlled viral infection. To this end, we formulate a 
mathematical model that consists of a nonlinear system of three or-
dinary differential equations. These equations describe the interaction 
between populations of bacteria sensitive to and resistant to antibiotics, 
along with the viral infection. With the goal of minimizing the popu-
lation of antibiotic resistant bacteria, we formulate an optimal control 
problem where the control variable is a proxy for introducing virus-
infected bacteria near the region of bacterial infection. The infection 
is user-controlled as a mechanism to mitigate undesirable antibiotic 
resistant bacteria.

The study introduces a framework for understanding and optimizing 
control interventions in bacterial ecosystems. By integrating optimal 
control techniques, dynamically exploring control strategies, quanti-
tatively assessing control impact, and elucidating long-term system 
behavior, we provide a holistic approach to tackling antibiotic resis-
tance and advancing our understanding of complex ecological dynamics 
with the goal of reducing the antibiotic resistant population. Our work 
lays the foundation for progressing treatment of antibiotic-resistant 
bacterial infection.

2. Model formulation

Our model consists of three different bacterial strain populations: 
wild-type, antibiotic-resistant, and the virus-infected bacterial strains, 
it describes the interactions between them (see Fig.  1). Analyzing 
this model will provide insight into which biophysical parameters are 
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Fig. 1. Schematic of our model. (A) Wild-type cells undergo fission and with a probability 𝜇 produce antibiotic-resistant mutants. (B) If these arise, then they will eventually 
dominate the population. This is undesirable. (C) We hypothesize that adding viral infection promotes the ability for coexistence between the wild-type and antibiotic-resistant 
strains.
key to affecting model output. Let 𝑆(𝑡), 𝑅(𝑡) and 𝐼(𝑡) be the popula-
tions (𝑆,𝑅, 𝐼 > 0) of wild-type bacteria, antibiotic-resistant bacteria, 
and virus-infected bacteria respectively. We represent the interactions 
between them with the following model: 
𝑑𝑆
𝑑𝑡

= 𝜆𝑆
(

1 − 𝑆 + 𝑅 + 𝐼
𝐾

)

(1 − 𝜇) − 𝛽𝐼𝑆 − 𝛿𝑠𝑆

𝑑𝑅
𝑑𝑡

= 𝜆𝑆
(

1 − 𝑆 + 𝑅 + 𝐼
𝐾

)

𝜇 + 𝛾𝑅
(

1 − 𝑆 + 𝑅 + 𝐼
𝐾

)

− 𝛽𝐼𝑅 − 𝛿𝑚𝑅

𝑑𝐼
𝑑𝑡

= 𝛽𝐼𝑆 + 𝛽𝐼𝑅 − 𝛿𝑖𝐼 + 𝛼(𝑡),

(1)

where 𝜇 is the probability that a wild-type bacterial division results 
in an antibiotic-resistant mutation. We assume 𝜇 depends on 𝑅: As 𝑅
increases, the likelihood of horizontal gene transfer increases, yielding 
more mutants. We therefore take 𝜇 to be an increasing function of 𝑅
that saturates as 𝑅 → ∞. We represent this with a Hill function:

𝜇 = 𝜇0 + (1 − 𝜇0)
𝑅

𝑍 + 𝑅 + 𝐼
.

We assume a basal mutation probability 𝜇0, which is the inherent 
likelihood of a mutation occurring independent of the number of the 
antibiotic-resistant bacteria. The parameter 𝑍 is the half-activation 
population. The birth rate and death rate of wild-type bacteria are 𝜆
and 𝛿𝑠 respectively, and 𝐾 is the carrying capacity. We set 𝐾 = 1 for 
simplicity in the rest of the paper. This effectively normalizes 𝑆, 𝑅, and 
𝐼 so that they now represent fractions of 𝐾 that each subpopulation 
occupies. We assume a logistic growth described by 𝑆(1 − 𝑆 − 𝑅 − 𝐼). 
Note that the death rates are not explicitly required since the logistic 
term accounts for death as well. We include this term to make the 
model amenable for future modifications, such as including antibiotic 
treatment. For the antibiotic-resistant population, the birth rate and 
death rate are characterized by 𝛾 and 𝛿𝑚 respectively. Mutation of 
wild-type bacteria leading to new resistant bacteria is represented with 
𝑆(1−𝑆−𝑅−𝐼)𝜇. Our model forgoes explicit virus dynamics and models 
infection via contact with infected bacteria. The rate at which we inject 
virus-infected bacteria into the system is time-dependent and described 
by 𝛼(𝑡), and 𝛽 quantitates the infectivity of the viral infection. We 
assume infection is a stronger contributor to infective cell growth than 
division—our model thus does not include a term for virus-infected 
cell birth [46,47]. Including such a term does not qualitatively affect 
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our results. The death rate of virus-infected cells is characterized by 
𝛿𝑖. Here, we assume all the model parameters 𝜆, 𝛾, 𝛽, 𝛿𝑠, 𝛿𝑚, 𝛿𝑖 are 
positive and that all the initial conditions of model system (1) satisfy 
0 ≤ 𝑆(0), 𝑅(0), 𝐼(0) ≤ 1. Parameter values are given in Table  1. Unless 
otherwise noted, these are the values used throughout the paper. We 
use 𝛼 and 𝛼(𝑡) interchangeably throughout the remainder of the paper, 
explicitly including time dependence whenever necessary.

We note that Eq. (1) can be derived systematically from a lattice-
based microscopic spatial stochastic model of bacterial dynamics. In 
such a model, each lattice site is occupied by a wild-type, antibiotic-
resistant, or virus-infected bacterial cell or is vacant. Division and 
infection events characterize the reactions that describe the stochastic 
evolution of the microscopic configurations of the lattice. By invoking 
a mean field approximation and a macroscopic limit, one can derive 
Eq. (1) [7,48]. We will explore this stochastic lattice model in detail as 
a subject of future work.

To understand what biophysical parameters promote reaching de-
sirable stationary states, we next compute the equilibria of Eq. (1) and 
determine their stability in the absence of the control 𝛼 (𝛼(𝑡) ≡ 0). Then, 
using 𝛼 as our control variable, we will apply optimal control to the 
system to determine how to tune 𝛼 in time to minimize the antibiotic-
resistant bacterial population while maintaining the wild-type bacterial 
population.

3. Model analysis

This section explores the dynamics of bacterial populations as the 
infection rate increases. It includes simulations of the bacterial popu-
lation under two conditions: one without any control measures and no 
initial infection = and  the other with an increased infection rate and an 
initial infection present. These analyses highlight how varying infection 
rates and initial conditions affect population trajectories, providing 
insights into the effectiveness of infection control strategies.

To examine these various circumstances, we compute the equilibria 
of Eq. (1) and determine their respective stability. We begin by proving 
that solutions to Eq. (1) are non-negative.
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Table 1
Description of parameters used.
 Parameters Description Value Source  
 𝜆 Growth rate of the antibiotic-wild-type bacteria 𝑆 1.6 d−1 [49]  
 𝛾 Growth rate of antibiotic-resistant bacteria 𝑅 0.8 d−1 [50]  
 𝜇0 The rate of mutation of 𝑆 bacteria cells into 𝑅 10−8 d−1 [51]  
 𝛼(𝑡) The rate of injection of virus-infected bacteria into the system [0, 1] conc d−1 Assumed 
 𝛽 Infection rate of virus-infected bacteria 𝐼 1.96 d−1 [52]  
 𝛿𝑠 Death rate of 𝑆 0.312 d−1 [53]  
 𝛿𝑚 Death rate of 𝑅 0.312 d−1 [53]  
 𝛿𝑖 Death rate of 𝐼 2.5 d−1 Assumed 
3.1. Non-negativity of solutions

Here we establish non-negativity of solutions for Eq. (1). To do this, 
we demonstrate that the vector field,

𝐅 ≡
⟨𝑑𝑆
𝑑𝑡

, 𝑑𝑅
𝑑𝑡

, 𝑑𝐼
𝑑𝑡

⟩

,

does not point outward relative to the positive orthant along the planes 
𝑆 = 0, 𝑅 = 0, and 𝐼 = 0. We assume that 0 ≤ 𝑆(0), 𝑅(0), 𝐼(0) ≤ 1. For this 
proof, we use the fundamental fact that for any two vectors 𝐚,𝐛 ∈ R𝑛:

1. 𝐚 ⋅ 𝐛 > 0 means 𝐚,𝐛 point into the same half-space
2. 𝐚 ⋅ 𝐛 < 0 means 𝐚,𝐛 point into opposite half-spaces
3. 𝐚 ⋅ 𝐛 = 0 means 𝐚,𝐛 are orthogonal

Theorem 1.  Solutions to Eq. (1) with 𝑆(0) ∈ [0, 1], 𝑅(0) ∈ [0, 1], and 
𝐼(0) ∈ [0, 1] are non-negative.

Proof.  (a) 𝑆 = 0. Along the plane 𝑆 = 0, the outward pointing normal 
is 𝐧𝑆 = ⟨−1, 0, 0⟩. We compute

𝐅 ⋅ 𝐧𝑆 = −𝑑𝑆
𝑑𝑡

|

|

|𝑆=0
= 0.

Thus, the flow of the dynamical system governed by Eq. (1) is orthogo-
nal to the outward pointing normal. A trajectory of the system confined 
to the 𝑆 = 0 plane will thus not become negative. Indeed, the plane 
𝑆 = 0 is an invariant set of Eq. (1). 

(b) 𝐼 = 0. Along the plane 𝐼 = 0, the outward pointing normal is 
𝐧𝐼 = ⟨0, 0,−1⟩. As before, we compute

𝐅 ⋅ 𝐧𝐼 = −𝑑𝐼
𝑑𝑡

|

|

|𝐼=0
= −𝛼(𝑡) ≤ 0.

Thus, the flow of the dynamical system is into the positive orthant.
(c) 𝑅 = 0. Along the plane 𝑅 = 0, the outward pointing normal is 

𝐧𝑅 = ⟨0,−1, 0⟩. As before we compute

𝐅 ⋅ 𝐧𝑅 = −𝑑𝑅
𝑑𝑡

|

|

|𝑅=0
= −𝜆𝑆 (1 − (𝑆 + 𝐼)) ≤ 0,

for 0 ≤ 𝑆(0), 𝐼(0) ≤ 1. Hence, the flow of 𝐅 is again into the positive 
orthant. Note in particular that the only way to make 𝑑𝑅𝑑𝑡 < 0 is to have 
𝑆 + 𝐼 > 1, but if 0 ≤ 𝑆(0), 𝐼(0) ≤ 1, this will never occur since along the 
line 𝑆 + 𝐼 = 1, 𝑑𝑅𝑑𝑡 = 0 when 𝑅 = 0. □

This establishes that solutions beginning in the positive orthant of 
R3 never leave it. Thus, solutions are non-negative.

We next examine the equilibria and stability properties of Eq. (1).

3.2. Linear stability analysis

We find the equilibria of system (1) by setting the temporal deriva-
tives on the left hand side to zero and solving the resulting algebraic 
equations.

No virus case. In the absence of virus and control (𝛽 = 0, 𝛼 = 0, 𝐼(0) =
0), Eq. (1) is reduced to a planar system and two equilibria manifest. 
One equilibrium (𝑆 = 0, 𝑅 = 0) represents an extinction scenario 
where no bacteria are present. The eigenvalues of the corresponding 
linearization are
𝜃 = 𝜆(1 − 𝜇 ) − 𝛿 and 𝜃 = 𝛾 − 𝛿 .
1 0 𝑠 2 𝑚
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The instability of this state for our parameter values, indicated by 
the positive eigenvalues in the linearization (see Table  2), suggests 
that any small perturbation away from this equilibrium will cause 
the population to move away from extinction towards an alternative 
equilibrium. Consequently, the bacteria strains rapidly proliferate, but 
a significant concern arises if the antibiotic-resistant population begins 
to grow faster than the wild-type population. This scenario would result 
in the resistant strains becoming predominant, posing a significant 
challenge for treatment and control of infections.

We observed this exact occurrence manifest as the other equilibrium 
point from Eq. (1). The extermination of wild-type bacteria by the 
resistant strain (𝑆 = 0, 𝑅 = 1 − 𝛿𝑚

2𝛾 ) occurs as a stable equilibrium (see 
Table  2, Fig.  2A), with eigenvalues corresponding to the linearization,

𝜃1 =
−𝛿𝑠(𝑍 + 1)𝛾 − 𝛿𝑚

(

𝜆(𝜇0 − 1)𝑍 − 𝛿𝑠

)

(𝑍 + 1)𝛾 − 𝛿𝑚
and 𝜃2 = 𝛿𝑚 − 𝛾,

being negative for our parameter values. Thus, any small perturbation 
away from this state will return to the equilibrium, which characterizes 
the dominance of the antibiotic-resistant population. This outcome is 
undesirable because it implies that the antibiotic-resistant bacteria have 
become the predominant strain, making it difficult to control infections.

The proliferation of resistant bacteria highlights the critical need 
for the development of new antimicrobial treatments and the im-
plementation of rigorous infection control measures. Addressing this 
issue is essential to prevent the rise of untreatable bacterial infections 
and safeguard public health. These findings underscore the urgency 
of implementing optimal control measures to prevent the growth of 
resistant strains and to manage existing populations effectively.

Adding virus-infected bacteria. To ascertain if imputing a viral inter-
vention in system dynamics allows for resistant population mitigation, 
we next introduce a virus-infected population into our system and 
determine the stability of various equilibria from Eq. (1). Following a 
similar process applied to the no virus case summarized in Table  2, 
we obtain the equilibria and the eigenvalues for the model when the 
virus infected population is added. In this scenario, analytical results for 
the equilibria and eigenvalues are not obtainable. As such, we present 
numerical results for our parameter set.

Four equilibria result: extinction, antibiotic-resistant population 
dominance, non wild type coexistence, and coexistence (see Table  3):

1. Extinction: The linearization around the extinction scenario (𝑆 =
0, 𝑅 = 0, 𝐼 = 0) yields eigenvalues with positive real part. Thus, 
it is unstable. This suggests that both bacterial strains and virus-
infected population could proliferate rapidly when pushed away 
from extinction. The one caveat to this is the existence of the 
stable manifold of the extinction equilibrium corresponding to 𝜃3
(see Table  3) in the direction of the eigenvector corresponding 
to 𝜃3. Along this invariant manifold, solutions converge to ex-
tinction as 𝑡 → ∞. However, a perturbation yielding a position 
on the stable manifold is unlikely, so we do not consider it a 
generic perturbation from extinction. There are two possibilities 
that emerge from this instability: (1) The antibiotic-resistant bac-
teria again dominate or (2) the virus-infected bactera facilitate 
coexistence.
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Table 2
Equilibria and stability analysis when 𝛽 =0, 𝛼 =0 and no virus-infected bacteria present.
 Equilibrium point State variables Eigenvalues Stability  
 Extinction 𝑆 = 0, 𝑅 = 0 𝜃1 = 0.488, 𝜃2 = 1.288 Unstable 
 Antibiotic-Resistant Population Dominance 𝑆 = 0, 𝑅 = 0.610 𝜃1 = −0.488, 𝜃2 = −0.224 Stable  
Table 3
Equilibria and stability when 𝛽 > 0, 𝛼 = 0, and 𝐼 > 0. Here, 𝑗 = √

−1.
 Equilibrium point State variables Eigenvalues Stability  
 Extinction 𝑆 = 0, 𝑅 = 0, 𝐼 = 0 𝜃1 = 0.488 Unstable 
 𝜃2 = 1.288  
 𝜃3 = −2.500  
 Antibiotic-Resistant Population Dominance 𝑆 = 0, 𝑅 = 0.610, 𝐼 = 0.0 𝜃1 = −0.488 Unstable 
 𝜃2 = −0.224  
 𝜃3 = 15.800  
 Non Wild Type Coexistence 𝑆 = 0, 𝑅 = 0.083, 𝐼 = 0.014 𝜃1 = 0.111 Unstable 
 𝜃2 = −0.0333 + 1.0258𝑗  
 𝜃3 = −0.0333 − 1.0258𝑗  
 Coexistence 𝑆 = 0.042, 𝑅 = 0.041, 𝐼 = 0.025 𝜃1 = −0.0617 Stable  
 𝜃2 = −0.0639 + 1.4389𝑗  
 𝜃3 = −0.0639 − 1.4389𝑗  
Fig. 2. Simulation results of Eq. (1): (A) bacteria population in the absence of virus-infected bacteria 𝛼 = 0, 𝛽 = 0 and 𝐼(0) = 0, (B) bacteria population in the presence of 
virus-infected bacteria 𝛼 = 0, 𝛽 = 15 and 𝐼(0) > 0, and (C) a bifurcation diagram showing the impact of virus infectivity on equilibrium of the antibiotic-resistant population.
2. Antibiotic-Resistant Population Dominance: The possibility of 
strict dominance by antibiotic-resistant bacteria is nullified in 
the presence of virus-infected bacteria because the mutant dom-
inant equilibrium is unstable. This instability suggests that the 
introduction of the virus can alter the system dynamics, lead-
ing to the growth of the bacteria strains over time. Although 
there exists a 2D submanifold of phase space generated by the 
eigendirections of the negative eigenvalues 𝜃1, 𝜃2 wherein con-
traction to the dominant antibiotic-resistant bacteria equilibrium 
occurs, we do not consider this as a generic perturbation away 
from this equilibrium. This highlights the impact of the virus in 
mitigating the dominance of antibiotic resistance in the bacterial 
populations.

3. Non Wild Type Coexistence: This equilibrium represents a case 
where antibiotic-resistant bacteria coexist with virus-infected 
bacteria and the wild type bacteria have gone extinct. The eigen-
values indicate instability, suggesting that small disturbances 
will cause the populations to deviate from this delicate balance. 
The instability of this equilibrium will support the growth of 
the wild-type bacteria population. The instability implies that 
both antibiotic-resistant and virus infected bacterial populations 
could grow faster than the wild-type strains, potentially leading 
to their dominance. This outcome is undesirable, necessitating 
the implementation of effective control measures to prevent the 
5 
unchecked proliferation of antibiotic-resistant and virus-infected 
bacterial strains.

4. Coexistence: In this scenario, all bacterial strains coexist. Impor-
tantly, this equilibrium is stable as indicated by the negative 
real parts of all eigenvalues in the linearization. Furthermore, in 
this case with our parameters, the model predicts that the wild-
type strain outnumbers the mutant, which is desirable (see Fig. 
2B). This ensures a level of control and mitigation of the risks 
associated with bacterial coexistence and resistance emergence.

Thus, we have established that the presence of virus mitigates 
the antibiotic-resistant population. To further embellish this point, we 
show a bifurcation diagram in Fig.  2C depicting how the equilibrium 
of the antibiotic-resistant population decreases as a function of virus 
infectivity (𝛽). For low infectivities, the antibiotic-resistant population 
is able to maintain its dominance. However, at a critical infectivity, a 
transcritical bifurcation occurs and stabilizes the coexistence state. In 
principle, introducing a highly infective virus will completely extermi-
nate the antibiotic-resistant population. This is desirable, but a high 
infectivity will eventually eliminate all bacterial population, which is 
not desirable.

Although simply introducing virus-infected bacteria helps mitigate 
antibiotic-resistant bacterial infection, the persistence of antibiotic-
resistant population at levels similar to wild-type population is prob-
lematic. Furthermore, the stable equilibrium suggests coexistence, but 
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the vast majority of the compartment is vacant (1−𝑆∗−𝑅∗−𝐼∗ = 0.892). 
Thus we must determine if it is possible to attain a situation where the 
wild-type population outnumbers the antibiotic-resistant population 
significantly and populates much of the compartment. To that end, we 
implement optimal control theory on Eq. (1).

4. Optimal control

The integration of optimal control techniques in studying bacterial 
dynamics, particularly in the context of antibiotic resistance and virus 
inclusion, is motivated by the urgent need for effective strategies to 
combat bacterial infections. Optimal control methods offer a powerful 
framework for designing and implementing interventions that optimize 
the use of available resources, such as antibiotics and vaccines, to 
minimize the emergence and transmission of antibiotic-resistant pop-
ulation while preserving the efficacy of existing treatments. Recent 
studies have highlighted the potential of optimal control in guiding 
decision-making processes and informing policy interventions aimed 
at controlling antibiotic resistance [54–56]. By incorporating virus 
inclusion into the model, our study further extends this framework to 
elucidate the complex interplay between bacteria and viruses and to 
explore avenues for combating antibiotic resistance.

For the purposes of mitigating antibiotic-resistant bacteria, consider 
the objective function 

𝐽 (𝛼) = ∫

𝑇

0

(

𝐴𝑅(𝑡) − 𝑃𝑆(𝑡) + 𝐶𝛼(𝑡)2
)

𝑑𝑡, (2)

subject to
𝑑𝑆
𝑑𝑡

= 𝜆𝑆 (1 − (𝑆 + 𝑅 + 𝐼)) (1 − 𝜇) − 𝛽𝐼𝑆 − 𝛿𝑠𝑆

𝑑𝑅
𝑑𝑡

= 𝜆𝑆 (1 − (𝑆 + 𝑅 + 𝐼))𝜇 + 𝛾𝑅 (1 − (𝑆 + 𝑅 + 𝐼)) − 𝛽𝐼𝑅 − 𝛿𝑚𝑅

𝑑𝐼
𝑑𝑡

= 𝛽𝐼𝑆 + 𝛽𝐼𝑅 − 𝛿𝑖𝐼 + 𝛼(𝑡),

 with
𝑆(0) = 𝑆0 ∈ [0, 1],

𝑅(0) = 𝑅0 ∈ [0, 1], (3)
𝐼(0) = 𝐼0 ∈ [0, 1].

The constants 𝐴, 𝑃  and 𝐶 are weights applied on 𝑆(𝑡), 𝑅(𝑡) and 
the control variable 𝛼(𝑡) (the virus infected bacteria infusion rate), 
respectively. We employ a standard quadratic term for the control 
variable 𝛼 in Eq. (2) following [57]. Using a quadratic term facilitates 
onset of continuous control, whereas employing a linear term results in 
discontinuous bang–bang control.

The goal is to minimize the objective functional 𝐽 (𝛼) in order to 
find the optimal values of 𝛼 such that the antibiotic-susceptible bacteria 
population 𝑆 is maximized while the antibiotic-resistant bacteria pop-
ulation 𝑅 is minimized. The objective of minimizing the virus-infected 
population and the cost of control can be achieved through proper 
implementation of the control over a time interval given by [0, 𝑇 ]. 
Therefore, we seek a Lebesgue integrable optimal control 𝛼∗(𝑡) such that 

𝐽 (𝛼∗) = min
𝛼(𝑡)

{𝐽 (𝛼)}. (4)

4.1. Existence of optimal control

First, we need to characterize our admissible controls and ascertain 
the existence of an optimal control. Let 0 denote the set of Lebesgue in-
tegrable functions between [0, 𝑇 ] and [0, 1]. This is the set of admissible 
controls. That is, 𝛼(𝑡) ∈ 0. Then, the optimal control 𝛼∗ satisfies
𝐽 (𝛼∗) = min 𝐽 (𝛼).
𝛼∈0

6 
To ensure the existence of 𝛼∗, the state variables 𝑆,𝑅, 𝐼 must be 
bounded for 𝑡 ∈ [0, 𝑇 ]. Because 𝑆,𝑅, 𝐼 are confined to the tetrahedron 
 , where
 = {(𝑆,𝑅, 𝐼)|𝑆 ≥ 0 ∧ 𝑅 ≥ 0 ∧ 𝐼 ≥ 0 ∧ 𝑆 + 𝑅 + 𝐼 ≤ 1},

𝑆, 𝑅, and 𝐼 are uniformly bounded. That is, 0 ≤ 𝑆 ≤ 1, 0 ≤ 𝑅 ≤ 1, and 
0 ≤ 𝐼 ≤ 1.

Theorem 2.  There exists an optimal control 𝛼∗ ∈ 0 which minimizes 
𝐽 (𝛼) subject to Eq. (1).

Proof.  Because 𝛼(𝑡) is bounded by definition and 𝑆,𝑅, and 𝐼 are 
uniformly bounded, min [𝐽 (𝛼)] is finite. Let {𝛼𝑛(𝑡)}𝑛∈N be the mini-
mizing sequence for 𝐽 , and let {𝑆𝑛(𝑡)}, {𝑅𝑛(𝑡)}, and {𝐼𝑛(𝑡)} be the 
corresponding sequence of state variable trajectories. Since 𝑆𝑛(𝑡), 𝑅𝑛(𝑡), 
and 𝐼𝑛(𝑡) are uniformly bounded, their temporal derivatives are also 
uniformly bounded. This follows from the right-hand sides of Eq. (1) 
being rational functions. As a result, 𝑆𝑛(𝑡), 𝑅𝑛(𝑡), and 𝐼𝑛(𝑡) are Lipschitz 
continuous. Therefore, they are equicontinuous. By the Arzela–Ascoli 
theorem [58], the sequences of controls and state functions have con-
vergent subsequences {𝑆𝑛𝑘}, {𝑅𝑛𝑘}, {𝐼𝑛𝑘}, and {𝛼𝑛𝑘} with 𝑘 ∈ N
satisfying

𝑆𝑛𝑘 → 𝑆∗ 𝑅𝑛𝑘 → 𝑅∗ 𝐼𝑛𝑘 → 𝐼∗ 𝛼𝑛𝑘 → 𝛼∗

as 𝑘 → ∞.
Next we establish that 𝑆∗, 𝑅∗, and 𝐼∗ are solutions to Eq. (1). We 

show this for 𝑆, and the arguments are completely analogous for 𝑅
and 𝐼 . Assuming that initial data for all functions 𝑆𝑛𝑘 (𝑡) are identical, 
we have

𝑆𝑛𝑘 (𝑡) = 𝑆(0) + ∫

𝑡

0

[

𝜆𝑆𝑛𝑘 (1 − 𝑆𝑛𝑘 − 𝑅𝑛𝑘 − 𝐼𝑛𝑘 )(1 − 𝜇𝑛𝑘 ) − 𝛽𝑆𝑛𝑘𝐼𝑛𝑘 − 𝛿𝑆𝑆𝑛𝑘

]

𝑑𝑠,

where

𝜇𝑛𝑘 = 𝜇0 + (1 − 𝜇0)
𝑅𝑛𝑘

𝑍 + 𝑅𝑛𝑘 + 𝐼𝑛𝑘
.

Taking 𝑘 → ∞ and switching order of integration and limits yields

𝑆∗(𝑡) = 𝑆(0) + ∫

𝑡

0

[

𝜆𝑆∗(1 − 𝑆∗ − 𝑅∗ − 𝐼∗)(1 − 𝜇∗) − 𝛽𝑆∗𝐼∗ − 𝛿𝑆𝑆
∗] 𝑑𝑠,

where

𝜇∗ = lim
𝑘→∞

𝜇𝑛𝑘 = lim
𝑘→∞

(

𝜇0 + (1 − 𝜇0)
𝑅𝑛𝑘

𝑍 + 𝑅𝑛𝑘 + 𝐼𝑛𝑘

)

= 𝜇0 + (1 − 𝜇0)
𝑅∗

𝑍 + 𝑅∗ + 𝐼∗
.

The limit passes through the integral and the nonlinearity due to 
Lebesgue integrability of the functions. Thus, 𝑆∗(𝑡), 𝑅∗(𝑡), and 𝐼∗(𝑡) are 
solutions to the dynamical system.

Finally,

min
𝛼∈0

𝐽 (𝛼) = lim
𝑘→∞

𝐽 (𝛼𝑛𝑘 )

= lim
𝑘→∞∫

𝑇

0

[

𝐴𝑅𝑛𝑘 (𝑡) − 𝑃𝑆𝑛𝑘 (𝑡) + 𝐶𝛼𝑛𝑘 (𝑡)
2
]

𝑑𝑡

≥ ∫

𝑇

0

[

𝐴𝑅∗(𝑡) − 𝑃𝑆∗(𝑡) + 𝐶𝛼∗(𝑡)2
]

𝑑𝑡

= 𝐽 (𝛼∗).

Because 𝐽 (𝛼∗) cannot be strictly less than min𝛼∈0 𝐽 (𝛼), we have
min
𝛼∈0

𝐽 (𝛼) = 𝐽 (𝛼∗)

 □

Next we employ Pontryagin’s Maximum Principle [57] to determine 
𝛼∗. This principle converts Eqs. (2)–(3) into a problem of minimizing 
the associated Hamiltonian 𝐻 pointwise with respect to 𝛼.
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Fig. 3. Simulation results of Eq. (1) with optimal control obtained from solving Eq. (4). (A) the optimal profile for the control variable 𝛼, (B) the corresponding wild type bacteria 
population 𝑆, (C) the corresponding antibiotic-resistant bacteria population 𝑅, and (D) the corresponding virus infected bacteria population 𝐼 . Here, 𝐴 = 10, 𝑃 = 0.01, and 𝐶 = 1.
4.2. Determining the optimal control

We define the Hamiltonian for this problem by 

𝐻 =
(

𝐴𝑅(𝑡) − 𝑃𝑆(𝑡) + 𝐶𝛼2
)

+ 𝛬𝑆

(𝑑𝑆
𝑑𝑡

)

+ 𝛬𝑅

(𝑑𝑅
𝑑𝑡

)

+ 𝛬𝐼

(𝑑𝐼
𝑑𝑡

)

= 𝐴𝑅(𝑡) − 𝑃𝑆(𝑡) + 𝐶𝛼2 + 𝛬𝑆
(

𝜆𝑆(1 − 𝑆 − 𝑅 − 𝐼)(1 − 𝜇) − 𝛽𝐼𝑆 − 𝛿𝑠𝑆
)

+ 𝛬𝑅
(

𝜆𝑆(1 − 𝑆 − 𝑅 − 𝐼)𝜇 + 𝛾𝑅(1 − 𝑆 − 𝑅 − 𝐼) − 𝛽𝐼𝑅 − 𝛿𝑚𝑅
)

+ 𝛬𝐼

(

𝛽𝐼𝑆 + 𝛽𝐼𝑅 − 𝛿𝑖𝐼 + 𝛼
)

 where 𝛬𝑆 (𝑡), 𝛬𝑅(𝑡), and 𝛬𝐼 (𝑡) are the corresponding adjoint or co-
state variables to be determined by applying Pontryagin’s Maximum 
Principle with the following transversality conditions

𝛬𝑆 (𝑇 ) = 0,

𝛬𝑅(𝑇 ) = 0,

𝛬𝐼 (𝑇 ) = 0.

Using the optimality condition 𝜕𝐻
𝜕𝛼

= 0, we solve for the optimal 
injection rate of the virus infected bacteria 𝛼,1

𝛼∗ =
−𝛬𝐼
2𝐶

.

We solve the optimal control problem employing the forward–
backward sweep method [57].

1 Technically, we should have 𝛼∗(𝑡) = min(1,max(0,− 𝛬𝐼

2𝐶
)) because we need 

to check if the boundaries optimize our objective functional. However, in our 
model analysis, 0 < 𝛼∗(𝑡) < 1 so we are not required to do so. See [57] for 
further details.
7 
4.3. Results

We implemented the optimal control over a period of 𝑇 = 100 days 
and observed the resulting dynamics of the bacterial population state 
variables. Fig.  3A shows the optimal trajectory of the control variable 
𝛼 to obtain our desired results. It predominantly maintains a constant 
value with sharp declines near the start and end of the time interval of 
interest. The effect of this control upon the bacterial strain populations 
is shown in Figs.  3B-D. For comparison, we also present the analogous 
bacterial populations in the absence of control. Fig.  3A shows that 
the wild-type bacteria population is significantly higher with control 
present than without it. Conversely, the antibiotic-resistant bacteria 
population 𝑅 (see Fig.  3B) decreased drastically in the presence of 
control. This finding underscores the intricate relationships between 
viruses and bacteria, as well as the potential for exploiting viral therapy 
to combat antibiotic resistance. The population dynamics when optimal 
control strategies are applied and its effect on the bacteria population 
provide insights into the dynamics of wild-type and antibiotic-resistant 
bacteria populations under different control scenarios, facilitating the 
evaluation and optimization of control strategies to manage antibiotic 
resistance effectively.

A clinically plausible implementation. The following results are moti-
vated by the difficulty of clinically realizing the exact control profile in 
Fig.  3A for the rate of infusion of the virus into the system. Although 
the optimal control profile facilitated the onset of a state where wild-
type bacteria significantly dominate mutant strains, implementing such 
a tightly regulated control is not feasible clinically. However, because 
the control profile is predominantly constant, we seek to determine a 
constant injection rate 𝛼̂ such that

𝛼̂𝑇 =
𝑇
𝛼∗(𝑡) 𝑑𝑡.
∫0
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Fig. 4. Simulation results from Eq. (1) with a constant virus infusion rate 𝛼̂ as obtained from Eq. (5) (A) Wild type population in response to the constant control profile. Inset: 
the constant control profile. (B) Antibiotic-resistant bacteria population 𝑅 and (C) Virus infected bacteria population 𝐼 .
Table 4
Comparison of the objective functional of the optimal and the 
constant control profile.
 Control profile Objective functional 
 Optimal: 𝛼∗ = [0, 1] 𝐽 (𝛼∗) = 87.6903  
 Constant: 𝛼̂ = 0.5200 𝐽 (𝛼̂) = 90.3541  

That is, we determine a constant injection rate 𝛼̂ such that the to-
tal virus injected over the time interval [0, 𝑇 ] is equal to the total 
amount injected with the optimal control profile. This yields the simple 
equation for 𝛼̂: 

𝛼̂ = 1
𝑇 ∫

𝑇

0
𝛼∗(𝑡) 𝑑𝑡 (5)

This constant rate of virus injection is applied into our system to see 
the effect on the dynamics of 𝑆, 𝑅, and 𝐼 . Success in reducing antibi-
otic resistant bacteria with constant injection rate imputes stability in 
intervention measures while offering predictability.

Fig.  4A-B illustrate the changes in the populations of 𝑆 and 𝑅, 
respectively, reflecting the effect of the constant rate of viral infusion 
(Fig.  4A inset) on the population in the bacterial community. The 
resulting dynamics of the bacterial populations are similar to Fig.  3, 
indicating that system dynamics are not overtly sensitive to the control 
profile. In this clinically feasible injection protocol, desirable reduction 
in antibiotic resistant bacterial population is achieved when compared 
with the absence of control case.

How far from optimality is the constant control profile implementa-
tion? In Table  4 we compare the objective functional 𝐽 for the different 
scenarios of 𝛼 (Optimal vs Constant). The objective functional value for 
𝐽 (𝛼̂) is reasonably close to 𝐽 (𝛼∗), with approximately a 4% difference in 
value. Thus, implementing a constant viral infusion is a clinically fea-
sible protocol that is near optimality for mitigating antibiotic-resistant 
mutant bacterial infection.

5. Conclusion

This study focused on modeling the interplay between wild type 
bacteria, antibiotic-resistant bacteria, and virus-infected bacteria popu-
lations, with the specific aim of understanding how antibiotic-resistant 
bacterial infections may be treated or controlled in the presence of a vi-
ral infection. We found that the simple introduction of a virus facilitates 
the desirable outcome of wild-type bacteria outcompeting antibiotic 
resistant bacteria. However, the presence of virus vastly diminished 
the total bacterial population. This motivated the implementation of 
optimal control upon the viral infusion rate. In the presence of con-
trol, wild-type bacteria vastly overcome antibiotic resistant bacteria. 
8 
Although the optimal infusion profile is not realistically realizable in a 
clinical setting, we showed that using a constant profile approximation 
of the optimal infusion rate is sufficient to reduce antibiotic resistant 
bacteria and maximize wild type bacteria population.

Importantly, we did not seek to eliminate antibiotic-resistant bac-
teria completely. Our goal was simply to mitigate antibiotic-resistant 
bacteria population. This removed the need for unnecessarily strong 
interventions—such as the ones that facilitated onset of antibiotic-
resistant bacterial population. Rather, we modified a standard dy-
namical system of bacterial dynamics in infections and allowed the 
intrinsic dynamics to result in desirable outcome of diminished mutant 
population.

The findings of this study have significant implications for curbing 
antibiotic resistance. Our strategy not only reduces the population of 
antibiotic-resistant bacteria but also maximizes the presence of wild-
type bacteria, which are more susceptible to antibiotics. This dual 
benefit highlights the potential of using viral infections as a comple-
mentary tool in the fight against antibiotic resistance. Moreover, our 
study underscores the importance of considering the broader ecological 
and evolutionary dynamics in the design of treatment strategies. By not 
aiming to eliminate antibiotic-resistant bacteria completely, we avoid 
the selective pressures that often lead to the emergence of even more 
resistant strains. Instead, our approach seeks to balance the bacterial 
ecosystem, promoting a more sustainable and long-term solution to 
antibiotic resistance.

There are a number of issues to explore in future work. First, our 
work here demonstrates that viral infection could be a measure used to 
mitigate antibiotic-resistant bacterial infection, but it clearly overlooks 
aspects of bacterial infection. For example, our model overlooks the 
effect of including spatial dynamics. It would be interesting to use 
dispersion theory to characterize the biophysical parameters that affect 
viral infection of resistant bacteria and to inform optimal control in 
space. Another important question in spatial systems is how do we 
incorporate viral dynamics? We can simply proceed as we did in this 
manuscript and track infected bacterial cells or we could explicitly 
model viral dynamics and their infection process of bacteria, leading 
to a complex multiscale modeling paradigm. Finally, as we noted in 
the body of manuscript, Eq. (1) can be derived systematically from a 
stochastic lattice model. It would be interesting to implement stochastic 
optimal control theory and see what wrinkles including noise brings to 
the dynamics.
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Appendix

A.1. Adjoint equations

The adjoint equations for the optimal control are given by 

𝜆′𝑆 (𝑡) = − 𝜕𝐻
𝜕𝑆

= −
[

−𝑃 + 𝛬𝑆

(

(𝜆 − 2𝜆𝑆 − 𝜆𝑅 − 𝜆𝐼)
(

1−
(

𝜇0 + (1 − 𝜇0)

× 𝑅
𝑍 + 𝑅 + 𝐼

))

−𝛽𝐼 − 𝛿𝑠

)

+ 𝛬𝑅

(

(

𝜆 − 2𝜆𝑆 − 𝜆𝑅 − 𝜆𝐼
)(

𝜇0 + (1 − 𝜇0)
𝑅

𝑍 + 𝑅 + 𝐼
)

− 𝛾𝑅
)

+ 𝛬𝐼 (𝛽𝐼)
]

𝜆′𝑅(𝑡) = − 𝜕𝐻
𝜕𝑅

= −
[

𝐴 + 𝛬𝑆

(

−𝜆𝑆
(

1 −
(

𝜇0 + (1 − 𝜇0)
𝑅

𝑍 + 𝑅 + 𝐼
))

+ (𝜆𝑆 − 𝜆𝑆2 − 𝜆𝑆𝑅

− 𝜆𝑆𝐼)
(𝑍 + 𝑅 + 𝐼)(𝜇0 − 1) − (𝜇0 − 1)𝑅

(𝑍 + 𝑅 + 𝐼)2

)

+ 𝛬𝑅

(

(−𝜆𝑆)
(

𝜇0 + (1 − 𝜇0)
𝑅

𝑍 + 𝑅 + 𝐼
)

+
(

𝜆𝑆 − 𝜆𝑆2 − 𝜆𝑆𝑅 − 𝜆𝑆𝐼
) (𝑍 + 𝑅 + 𝐼)(𝜇0 − 1) − (𝜇0 − 1)𝑅

(𝑍 + 𝑅 + 𝐼)2

+ 𝛾 − 𝛾𝑆 − 2𝛾𝑅 − 𝛾𝐼

− 𝛽𝐼 − 𝛿𝑚

)

+𝛬𝐼 (𝛽𝐼)
]

𝜆′𝐼 (𝑡) = − 𝜕𝐻
𝜕𝐼

= −
[

𝛬𝑆

(

(𝜆𝑆 − 𝜆𝑆2 − 𝜆𝑆𝑅 − 𝜆𝑆𝐼)
( (1 − 𝜇0)𝑅
(𝑍 + 𝑅 + 𝐼)2

)

)

− 𝜆𝑆
(

1 − (𝜇0

+ (1 − 𝜇0)
𝑅

𝑍 + 𝑅 + 𝐼
) − 𝛽𝑆

)

+𝛬𝑅

(

−𝜆𝑆
(

𝜇0 + (1 − 𝜇0)
𝑅

𝑍 + 𝑅 + 𝐼
)

+ (𝜆𝑆 − 𝜆𝑆2 − 𝜆𝑆𝑅

− 𝜆𝑆𝐼)
(1 − 𝜇0)𝑅

(𝑍 + 𝑅 + 𝐼)2
− 𝛾𝑅 − 𝛽𝑅

)

+𝛬𝐼
(

𝛽𝑆 + 𝛽𝑅 − 𝛿𝑖
)

]

(6)

Data availability

Data will be made available on request.
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