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Abstract

Decisions are often made by heterogeneous groups of individuals, each with distinct initial biases

and access to information of different quality. We show that in large groups of independent agents

who accumulate evidence the first to decide are those with the strongest initial biases. Their deci-

sions align with their initial bias, regardless of the underlying truth. In contrast, agents who decide

last make decisions as if they were initially unbiased, and hence make better choices. We obtain

asymptotic expressions in the large population limit that quantify how agents’ initial inclinations

shape early decisions. Our analysis shows how bias, information quality, and decision order interact

in non-trivial ways to determine the reliability of decisions in a group.
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Evidence accumulation models are used widely to describe how different organisms in-

tegrate information to make choices [3]. Experimental evidence shows that these models

capture the dynamics of the decision making process of humans and other animals, includ-

ing the tradeoff between speed and accuracy [5, 25, 30, 34, 37]. Such models can also be

used to understand how decisions are made in social groups, both when individuals observe

each other’s choices [10, 19, 31, 36] and when they act independently [33].

The accumulation of evidence is often modeled using biased Brownian motion with the

quality of evidence determining the magnitude of drift and diffusion. An agent is assumed

to commit to a decision when the process crosses a threshold. Most previous evidence

accumulation models describe a single agent. However, questions remain about how the

order of choices in a group is related to their accuracy [40]. In a group of initially unbiased

individuals accumulating evidence of different quality, the fastest and most accurate decisions

are made by those accessing the highest quality information [31]. Here we ask how the initial

biases of individuals in a group impact the order and accuracy of their choices. When is a

decision driven mainly by an agent’s initial bias as opposed to accumulated evidence?

We show that in large groups of agents starting with different initial biases, early decisions

tend to be made by agents with the most extreme predispositions. The choices of these agents

agree with their initial bias, regardless of the quality of the evidence they have access to.

On the other hand, decisions of late deciders do not depend on their initial bias. Thus,

in large groups early decisions reflect only initial inclinations, regardless of which choice is

right. Late decisions reflect only accumulated evidence and are more likely to be correct.

These effects hold generically, but not in the special case of initially unbiased agents [31].

Model description. We first assume that each individual in a population of N agents

has to decide between two choices (hypotheses), H+ and H−. They do so by accumu-

lating evidence and computing the conditional probabilities, P (H±|evidence), that one

of the two hypotheses is correct. When observations are independent and each pro-

vides weak evidence, the log likelihood ratio, or belief, of agent i in the group, Xi =

log (P (H+|evidencei)/P (H−|evidencei)), evolves approximately as a biased Brownian mo-

tion [3, 7] (See Fig. 1A),

dXi = µi dt+
√
2Di dWi, (1)

where the drift, µi, and diffusion coefficient, Di, capture the strength and noisiness of the

evidence, respectively [26]. For all agents the correct choice (H ∈ H±) is given by the sign
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of the drift (sign[µi] = ±1). Eq. (1) is widely used and accurately captures the dynamics of

decisions in humans and animals, including variability in response time and the impact of

evidence quality and biases on choice [8, 23, 30].

Agents start with an initial bias, Xi(0), reflecting information or assumptions they have

about the prior probability of either hypothesis [23]. We denote by y the initial data for

a generic agent. Each agent then accumulates evidence, and its beliefs evolve according to

Eq. (1). Agent i makes a decision when its belief reaches one of two thresholds, −θ < 0 < θ,

at decision time τi := inf{t > 0 : Xi(t) /∈ (−θ, θ)}. This decision, denoted by di = H±,

is determined by the sign of the threshold reached, sign[Xi(τi)]. If decision criteria differ

between agents an appropriate rescaling of Xi(0), µi, and Di allows us to assume that all

agents use the same thresholds [3].

Agents with the most extreme initial biases decide first. We show that in large groups

agents whose initial biases are closest to one of the thresholds make the earliest decisions.

We first assume observers are identical except for their initial biases, so that µi = µ and

Di = D in Eq. (1). We denote by Ti the ith decision time so that T1 ≤ T2 ≤ · · · ≤ TN ,

where Ti = τn(i) and n(i) is the index of the ith agent to decide. Hence, the index of the first

decider is n(1).

For simplicity, we assume that each agent starts with one of finitely many initial beliefs,

{x0, x1, . . . , xI−1}, sampled with probability qi = P (Xj(0) = xi) for i = 0, ..., I − 1. The

distance of the initial belief xi to the closest threshold is Li = min{θ− xi, xi + θ}. Let i = 0

be the index of the unique most extreme initial belief held by an agent, so L0 < Li for i ̸= 0.

For a fixed number of initial beliefs, I, the first agent to decide in a large group is the

one with the largest initial bias (Fig. 1A), in the sense that

P (Xn(1)(0) = x0) → 1 as N → ∞. (2)

More precisely, in the Supplemental Material (SM) we show that

P (Xn(1)(0) = xi) ∼ ηi(lnN)(βi−1)/2N1−βi (3)

as N → ∞ for each i ̸= 0, where

βi = (Li/L0)
2 > 1,

ηi =
qi

qβi
0

exp
(√βi

2D

(
µiL0 − µ0Li

))√
βiπβi−1Γ(βi) > 0,
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FIG. 1. Initial bias determines the choice of early deciders. (A) Evolution of beliefs of N = 104

agents who each have even odds of initially being unbiased or biased (P (Xj(0) = xi) = 0.5,

xi = 0,−0.5). The first agent (red) decides according to their initial bias, and makes the wrong

decision at T1 ≈ 0.01. The last agent (blue) decides correctly at T10000 ≈ 10. (B) Probability that

the agent with the largest initial bias decides first as a function of population size, N . Solid curves

were determined by numerical quadrature (Eq. (S4)) with initial biases assigned with uniform

probability from values listed in the legend; black crosses denote results of a stochastic simulation

averaged over 106 trials. Inset: Log-log plot of the same results with dashed curves showing the

asymptotic results in Eq. (3). Throughout, agents use identical thresholds ±θ = ±1, drift µ = 1,

and diffusivity D = 1.

and µi = ±µ if xi ≷ 0. The same statement holds if n(1) is replaced by n(j) in Eq. (3), but

with a change in the prefactor, ηi (See SM). Thus, the probability that the first decision is not

made by the agent with the most extreme initial belief decreases as a negative power of the

population size N (Fig. 1B). The approximation given by Eq. (3) is in excellent agreement

with the true probabilities when N ⪆ 103 (See Fig 1B inset). Moreover, the probability

that the agents with the most extreme initial beliefs make the first decision is close to unity

already for N ≈ 100 when initial beliefs are well separated and drift is not too strong.

The choice of the fastest decider agrees with their initial bias: e.g., if θ is the threshold

closest to the most extreme initial belief, x0, then P (Xn(1)(T1) = θ) → 1 as N → ∞ (See

Fig. 2A,B). Similar results hold when initial beliefs are drawn from a continuous distribution

(See SM and next section). Thus, although all agents behave rationally, early decisions of

4



101
102 1030

1

j = 3
j = 1

0.5

102 104 106

10-2

10-1

100

A

-8 -4 0

0.6

0.8

1

4 8

-8 -4 0

10-10

0

4 8

C

B
ac

cu
ra

cy
 o

f f
irs

t d
ec

id
er

fir
st

 d
ec

is
io

n 
ag

re
es

 w
ith

 b
ia

s

fir
st

 d
ec

is
io

n 
di

sa
gr

ee
s 

w
ith

 b
ia

s

- - /2 0 /2
0

0.5

1

ac
cu

ra
cy

 o
f f

irs
t d

ec
id

er
10

D
population size,

population size,drift,

initial bias,

 th
 d

ec
id

er
 h

as
 ti

m
es

ca
le
s

j

FIG. 2. First decider accuracy is determined by its initial bias. (A) The accuracy of the first decider

as a function of population size, N, for different initial biases, y, obtained by quadrature. Curves

are ordered by the proximity of the initial bias y of the first decider to the correct threshold +θ.

The drift, and hence the correct decision, are positive. (B) Under the same assumptions a small

deviation from an unbiased initial belief strongly affects the probability of a correct first decision

when N is large. (C) Drift weakly affects the first decision in populations with biased agents

(y = θ/4 here) when N is large. See SM for decision polarity formulas. (D) In large populations

in which all agents have the same initial bias, y = θ/2, but different diffusivities, early deciders

(here first and third) have the shortest diffusive timescale. X’s represent averages of stochastic

simulations over 106 trials.

biased agents tend to be less accurate [11, 33].

In contrast, the probability that a single agent - or one chosen randomly without regard
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to decision order - decides incorrectly can be made arbitrarily small by increasing the drift

or threshold [3]. In large populations with biased agents, drift and diffusion impact the

probability of the first decision only through the prefactor in Eq. (3), ηi, and thus decrease in

importance as population size diverges. If even a small proportion of a large population holds

an initial bias, early decisions are determined by the most extreme bias (Fig. 2B) regardless

of the drift (Fig. 2C). On the other hand, if all deciders are initially unbiased (Xi(0) = 0 for

all i), the probability the first decider makes a correct choice is (1 + exp(−µθ/D))−1 [3].

Heterogeneous population and continuous distribution of initial biases. While we can

obtain the most precise asymptotic results in the homogeneous case, our conclusions extend

to populations of agents with heterogeneous distributions of initial biases, drifts, diffusivities,

and thresholds. We again assume that each agent again starts with one of finitely many

initial beliefs, Xi(0) ∈ {x0, x1, . . . , xI−1} with drift and diffusivity sampled from a finite set

of fixed size. For each agent we define the diffusive timescale,

Si =
L2
i

4Di

> 0. (4)

By assumption, the timescales Si follow a discrete distribution P(S = si) > 0 with support

on a finite set 0 < s0 ≤ s1 ≤ s2 ≤ s3 · · · ≤ sJ , and Sn(j) refers to the timescale of the jth

agent to decide (See Fig. 2D). We denote by s the diffusive timescale of a generic agent.

In large populations, early deciders are those with the shortest diffusive timescales. In

particular, we show in the SM that for every ε > 0 and fixed j ≥ 1,

N1−s1/s0−ε ≪ P(Sn(j) > s0) ≪ N1−s1/s0+ε as N → ∞, (5)

where we use the notation f ≪ g to mean limN→∞ f/g = 0. We can thus conclude that

N1−s1/s0−ε = o
(
P(Sn(j) > s0)

)
and P(Sn(j) > s0) = o

(
N1−s1/s0+ε

)
as N → ∞.

These results agree with our earlier conclusion: If all agents share the same diffusivity,

then the fastest deciders are the agents who start closest to their decision thresholds. This

is true regardless of the quality of the evidence they receive. Diffusivity can reduce the

effective distance to the threshold according to Eq. (4). Thus, the fastest deciders are either

those with the most extreme initial biases or those with the noisiest integration process,

regardless of the drift, µi. Indeed, how we model drift does not impact these conclusions,

and they hold even if we model the evolution of beliefs as an Ornstein-Uhlenbeck process,

as is frequently done in the psychophysics literature [4, 38].
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FIG. 3. Late deciders make choices as if they held no initial bias. (A) For large N , decision

accuracy monotonically increases with decision order. The accuracy of late deciders approaches

the accuracy of a single, initially unbiased agent. Here, all agents have initial bias θ/3, and on

each trial, P(H = H+) = 0.5. (B) In large groups even a large initial bias has no impact on the

decision of later agents. Here, initial biases are sampled with uniform probability from (−θ, θ).

Late deciders make decisions as if initially unbiased. We expect in large populations the

inaccuracy of early deciders to be balanced by higher accuracy of late deciders [33]. Thus,

we next determine the probability that the last agent to decide makes a correct decision. In

the SM we show that this probability has an intuitive form,

P(Xn(N)(TN) = θ) →
∫ θ

−θ

pθ(x)q(x) dx as N → ∞. (6)

Here pθ(x) is the probability that a single agent with initial bias X(0) = x makes a correct

decision, and q(x) is the quasi-steady state distribution [27] of beliefs evolving according to

Eq. (1). Thus the decision of the last decider is made as if they forget their actual initial

bias and instead sample an initial belief from the quasi-stationary distribution, q(x).

Eq. (6) is general and can be extended to arbitrary domains. When applied to the drift-

diffusion process with decision boundaries at ±θ we show in the SM that P(Xn(N)(TN) =

θ) → (1+exp(−µθ/D))−1 asN → ∞, which is the probability that a single, initially unbiased

decider makes a correct decision (See Fig. 3A) [3]. Thus, the last decider forgets their initial

bias and makes decisions based only on the accumulated evidence. The probability that an

agent with a large initial bias makes a late decision is small. But should this happen, the
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FIG. 4. Bias impacts multi-alternative and two-alternative decisions similarly in large groups.

Beliefs about three options evolve on an equilateral triangle. Here, θ is the closest distance from

the center of the triangle (burgundy ring) to the boundary. The initial bias is the distance from the

triangle center to the initial belief,Xi(0). AsN increases, the probability that the most biased agent

chooses first grows. Curves are computed by averaging 106 stochastic simulations. Inset: Sample

trajectories from a trial with biases sampled with equal probability from {θ/2, θ/4, θ/8}. The first

agent to decide (red) has the largest initial bias. The belief of the last decider (blue) explores the

space before reaching a threshold.

initial bias will have little impact on their decision (See Fig. 3B).

Extension to multiple alternatives. We can extend these results to decisions between

k alternatives. Eq. (1) again describes the evolution of beliefs, but now Xi(t), µi ∈ Rk−1

and Wi is a vector of independent Wiener processes [28]. Each belief evolves on a domain,

Ω ⊂ Rk−1, with k boundaries [21], each associated with one of the alternatives. Agent i

chooses alternative j if its belief, Xi(t), crosses the associated boundary first. The boundaries

that lead to the best decisions are difficult to find analytically [35], but their exact shape is

immaterial for our result.

In the SM we show that Eq. (3) holds for general domains in arbitrary dimensions (See

Fig. 4). We therefore reach our earlier conclusions: In large homogeneous populations, the

agents holding the most extreme initial beliefs make the first decisions, and their choices

are consistent with their initial biases. Our conclusions about the late decisions also carry
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over to agents facing multiple choices: The natural extension of Eq. (6) holds with q(x)

the quasi-stationary distribution on Ω. The last decider makes a choice as if it sampled its

initial belief from this quasi-stationary distribution.

Discussion Our decisions are often influenced by information we obtained previously and

predilections we develop. In drift-diffusion models, prior evidence and initial inclinations are

often represented by a shift in the initial state. We have shown that initial biases determine

early decisions and have a diminishing impact on later decisions.

An agent unaware of the order of their decision would believe this decision was made

according to the evidence the agent accumulated and that the accuracy of their choice is

determined only by the decision threshold [3]. Though early decisions are not always nec-

essarily less accurate [10], our work identifies a clear case in which hasty choices tend to be

the most unreliable. Our findings also suggest a means of weighting choices of biased agents

according to decision order in a large group when formulating collective decisions [20]. How-

ever, in social groups the exchange of social information between agents [1, 22] or correlations

in the evidence [33] will affect these results.

Ramping activity of individual neurons during decision making has been observed across

the brain [12, 32] (although see [14]). Such dynamics may reflect the underlying evidence

accumulation process preceding a decision and is often modeled by a drift-diffusion process.

Decisions are thought to be triggered by the elevated activity of sufficiently many choice-

related neurons [39]. Our results suggest that in large neural populations decisions reflect

the most extreme initial neural states, rather than the accumulated evidence, if the activity

is uncorrelated. Since neural activity is often correlated [6], the effect of such biases could

be tempered.

While we have interpreted our results in the context of social decision theory, they apply

more generally to independently evolving drift-diffusion processes on bounded domains [17]:

In large populations early threshold crossings reflect only the initial states, while late cross-

ings are independent of initial states and reflect the quasi-stationary distribution. Hence,

early crossings reflect initial biases providing fast reactions needed for deadlined biophysical

processes [9]. If time allows, quorum sensing processes that weight passages by order could

be used [13]. Thus, our theory shows how initial biases can be used to implement population

level tradeoffs between speed and accuracy.
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Supplemental Material

MATHEMATICAL PRELIMINARIES

Suppose {(τn, Zn)}n≥1 is an independent and identically distributed (iid) sequence of

realizations of the pair of (possibly correlated) random variables (τ, Z). We have in mind

that τ is the decision time (or first passage time (FPT)) of some decider whose stochastic

evolution of beliefs is denoted by {X(t)}t≥0 and Z is a vector containing information about

this decider, such as their random initial position, drift, diffusivity, and decision made.

Define the cumulative distribution function (CDF) of τ ,

F (t) := P(τ ≤ t).

Further, for any event E that is in the σ-algebra generated by Z, define

FE(t) := P(τ ≤ t ∩ E).

In words, E is any event for which we can know whether or not it occurred by knowing

Z. For example, we are interested in events E like E = {X(0) = θ/2}, E = {X(0) ≤ 0},

E = {X(τ) = θ}, etc.

For a given N ≥ 1, let n(j) ∈ {1, . . . , N} denote the (random) index of the jth fastest

decider out of the first N deciders to make a decision. That is, suppose we order the first

N FPTs (or first decision times),

T1,N ≤ T2,N ≤ · · · ≤ TN−1,N ≤ TN,N ,

where Tj,N denotes the jth fastest FPT,

Tj,N := min
{
{τ1, . . . , τN}\ ∪j−1

i=1 {Ti,N}
}
, j ∈ {1, . . . , N}. (7)

Then n(j) is such that

τn(j) = Tj,N . (8)

In the examples of interest, the FPTs, τ, have continuous probability distributions (i.e. F (t)

is a continuous function) so that the event τn∗ = τn′ < ∞ for n∗ ̸= n′ has probability zero

so there is no ambiguity in Eq. (8).
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Since we have the sequence {(τn, Zn)}n≥1, we denote En the event E as it pertains to

the nth element in the sequence {(τn, Zn)}n≥1. For example, if E = {X(0) = θ/2}, then

En = {Xn(0) = θ/2}. Similarly, En(j) is the event E as it pertains to Zn(j).

Throughout the Supplemental Material, we use the notation
∫
f(t) dg(t) to denote the

Riemann-Stieltjes integral of a function f with respect to a function g.

Proposition 1. For any j ∈ {1, 2, . . . , N} (denoting an agent by the order j of their deci-

sion), we have that

P(En(j)) = j

(
N

j

)∫ ∞

0

[F (t)]j−1[1− F (t)]N−j dFE(t). (9)

In the case j = 1 (i.e. the fastest decider), Proposition 1 implies

P(En(1)) = N

∫ ∞

0

[1− F (t)]N−1 dFE(t). (10)

Since 1 − F is a decreasing function, Eq. (10) implies that the short-time behavior of F

and FE determine the large N behavior of P(En(1)). More generally, Proposition 1 implies

that the short-time behavior of F and FE determine the large N behavior of P(En(j)) for

1 ≤ j ≪ N .

In the case j = N (i.e. the slowest decider), Proposition 1 implies

P(En(N)) = N

∫ ∞

0

[F (t)]N−1 dFE(t). (11)

Since F is an increasing function, Eq. (11) implies that the large-time behavior of F and FE

determine the large N behavior of P(En(N)). More generally, Proposition 1 implies that the

large-time behavior of F and FE determine the large N behavior of P(En(N−j)) for 1 ≪ N−j.

SOME INTEGRAL ASYMPTOTICS

The following proposition is useful for estimating the large N behavior of some integrals

of the form in Eq. (9) and was proved in [17] (See Proposition 2 in [17]). Throughout the

Supplemental Material, “f ∼ g” denotes f/g → 1 (e.g., as N → ∞ or as t → 0).

Proposition 2. Assume C+ > C > 0, A > 0, and p, q ∈ R. Then there exists a δ0 > 0 so

that for all δ ∈ (0, δ0], we have∫ δ

0

tq−2e−C+/t
(
1− Atpe−C/t

)N−1
dt ∼ η(lnN)pβ−qN−β as N → ∞,

12



where

β = C+/C > 1, η = Cq−1(ACp)−βΓ(β) > 0,

and Γ(β) :=
∫∞
0

zβ−1e−z dz denotes the gamma function.

The following result estimates integrals of the form in Eq. (9) for 1 ≤ j ≪ N assuming

that F (t) and F+(t) have short-time t behavior that is characteristic of diffusion.

Theorem 3. Assume F (t) and F+(t) are bounded, nondecreasing, continuous from the right,

and satisfy

F (t) ∼ Atpe−C0/t as t → 0+, (12)

F+(t) ∼ Btqe−C+/t as t → 0+, (13)

where C+ > C0 > 0, A > 0, B > 0, and p, q ∈ R. Then for any fixed integer j ≥ 1, we have

j

(
N

j

)∫ ∞

0

[F (t)]j−1[1− F (t)]N−j dF+(t) ∼ η(j)(lnN)pβ−qN1−β as N → ∞,

where

β := C+/C0 > 1, η(j) := B(C0)
q−pβA−βΓ(j)Γ(β + j) > 0, (14)

and Γ(x) :=
∫∞
0

zx−1e−z dz denotes the gamma function.

Notice that the asymptotic behavior found in Theorem 3 as N → ∞ is independent

of j ≥ 1, except for the constant prefactor η(j). Further, this prefactor is an increasing

function of j and satisfies

η(j) =
(j − 1)!Γ(β + j)

Γ(β + 1)
η(1), j ≥ 1.

The asymptotic behavior in Eq. (12)-(13) is typical for diffusion, but computing the

prefactors A and B and the powers p and q can be challenging [15]. Indeed, these constants

depend on the details of the system (e.g., drift, space dimension, geometry of the domain,

etc.). However, the constants in the exponents C0 and C+ are more universal and can be

obtained in a very general mathematical setting [16]. The following result yields estimates

on the fastest deciders when we only know these constants, which is equivalent to knowing

the short-time behavior of F+(t) and F (t) on a logarithmic scale.
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Theorem 4. Assume F (t) and F+(t) are bounded, nondecreasing, continuous from the right,

and satisfy

lim
t→0+

t lnF (t) = −C0 < 0, lim
t→0+

t lnF+(t) ≤ −C+ < 0, (15)

where C+ > C0 > 0. Then for every ε > 0,

j

(
N

j

)∫ ∞

0

[F (t)]j−1[1− F (t)]N−j dF+(t) = o(N1−β+ε) as N → ∞, (16)

where

β := C+/C0 > 1.

If, in addition, we assume that

lim
t→0+

t lnF+(t) = −C+ < 0, (17)

then for every ε > 0,

N1−β−ε = o

(
j

(
N

j

)∫ ∞

0

[F (t)]j−1[1− F (t)]N−j dF+(t)

)
as N → ∞.

The following result estimates integrals of the form in Eq. (9) for 1 ≪ N − j ≤ N

assuming that F (t) and fi(t) = F ′
i (t) have large-time t behavior that is characteristic of

diffusion in a bounded domain.

Theorem 5. Assume F (t) ∈ [0, 1) is continuous and nondecreasing and fi(t) is continuous

and bounded and

F (t) = 1− ce−λt + h.o.t. as t → ∞,

fi(t) = λcie
−λt + h.o.t. as t → ∞,

where λ > 0, c > 0, ci > 0. Then for any fixed j ≥ 0, we have that

(N − j)

(
N

N − j

)∫ ∞

0

[F (t)]N−j−1[1− F (t)]jfi(t) dt →
ci
c

as N → ∞.

PROOF OF EQ. (3) IN MAIN TEXT

We now apply Theorem 3 to obtain Eq. (3) in the main text. Suppose the belief of

each agent evolves independently according to the following stochastic differential equation

(SDE),

dX = µ dt+
√
2D dW, (18)
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where µ ∈ R is a constant drift, D > 0 is a constant diffusivity, and W = {W (t)}t≥0 is a

standard Brownian motion. Define the FPT,

τ := inf{t > 0 : X(t) /∈ (−θ, θ)},

for some threshold θ > 0. Assume that the initial distribution P(X(0) = xi) of each agent

is a sum of Dirac masses at a finite set of points {x0, x1, . . . , xI−1},

P(X(0) = x) =

qi if x = xi for some i ∈ {0, 1, . . . , I − 1},

0 if x /∈ ∪I−1
i=0xi.

,

Letting Fi(t) ≡ FX(0)=xi
(t) = P(τ ≤ t ∩X(0) = xi), we have that [17]

Fi(t) ∼ qiAit
1/2e−Ci/t as t → 0+, (19)

where

Ci =
(Li)

2

4D
,

and

Ai =


exp

(−µLi

2D

)√
4D

π(Li)2
if xi < 0

exp
(
µLi

2D

)√
4D

π(Li)2
if xi > 0[

exp
(−µLi

2D

)
+ exp

(
µLi

2D

)]√
4D

π(Li)2
if xi = 0,

where Li is the distance to the closest threshold from xi,

Li = min{θ − xi, xi + θ}.

Further, we assume 0 ∈ {0, 1, . . . , I − 1} is the index of the unique starting location closest

to a threshold

L0 = min{L0, L1, . . . , LI−1} < Li if i ̸= 0,

then

F (t) ∼ F0(t) as t → 0+.

We claim that

P(Xn(1)(0) = x0) → 1 as N → ∞, (20)
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Thus, when N is large the first decider out of many deciders is always the one with the

most extreme initial bias. Using the integral representation in Proposition 1 and applying

Theorem 3 yields

P(Xn(1)(0) = xi) ∼ ηi(1)(lnN)(βi−1)/2N1−βi as N → ∞ for each i ̸= 0,

where

βi = (Li/L0)
2 > 1,

and

ηi(1) =


qi

qβi
0

√
πβi−1

βi

Γ(βi + 1) exp
(√βi

2D

(
µiL0 − µ0Li

))
if xi ̸= 0,

qi

qβi
0

√
πβi−1

βi

Γ(βi + 1)
[
exp

(√βi

2D

(
µiL0 − µ0Li

))
+ exp

(√βi

2D

(
− µiL0 − µ0Li

))]
if xi = 0,

where µi = ±µ if xi ≷ 0.

FIRST DECISION AGREES WITH INITIAL BIAS

The analysis above shows that the first agent to decide in a large group has the most

extreme initial bias. We now show the intuitive result that this first decider’s decision agrees

with their initial bias. Without loss of generality, assume that the most extreme initial bias

is negative, x0 < 0. Letting F+(t) = P(τ ≤ t ∩X(τ) = +θ), we have

F+(t) =
∑
i

P(τ ≤ t ∩X(τ) = +θ |X(0) = xi)qi

∼ P(τ ≤ t ∩X(τ) = +θ |X(0) = xi+)qi+

∼ qi+Ai+t
p
i+e

−Ci+/t as t → 0+,

where i+ ∈ {1, . . . , I} is the index of the starting location closest to +θ. Using the integral

representation in Proposition 1 and applying Theorem 3 yields

P(Xn(1)(τ) = +θ) ∼ η
(1)

i+ (lnN)(βi+−1)/2N1−βi+ as N → ∞.

CONTINUOUS INITIAL BELIEF DISTRIBUTION

In Section , we showed that the first of many deciders have the most extreme initial beliefs

in the case that the population has a discrete initial belief distribution. We now generalize
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this calculation to the case that the deciders have a continuous initial belief distribution.

In particular, suppose that the decider’s initial belief (position) has a smooth probability

density ν(x) with support (a, b) with −θ < a < b < θ. Suppose that

ν(x) ∼ (x− a)αaνa as x → a+,

ν(x) ∼ (b− x)αbνb as x → b−,

where the coefficients are positive, νa > 0, νb > 0, and the powers ensure that ν is integrable,

αa > −1, αb > −1. In light of (19), suppose that

P(τ ≤ t |X(0) = x) ∼ A(x)tpe−C(x)/t as t → 0+, uniformly for all x ∈ [a, b],

where

C(x) = (L(x))2/(4D) > 0, L(x) = min{θ − x, θ + x},

and A(x) > 0 for all x ∈ [a, b].

It follows that

F (t) = P(τ ≤ t) =

∫ b

a

P(τ ≤ t |X(0) = x)ν(x) dx

∼ tp
∫ b

a

A(x)ν(x)e−C(x)/t dx as t → 0+.

We thus need to estimate the small time t asymptotics of the integral

I :=

∫ b

a

A(x)ν(x)e−C(x)/t dx,

which is an exercise in Laplace’s method [2]. If b > 0, then for any ε ∈ (0, b), we have∫ b

0

A(x)ν(x)e−C(x)/t dx ∼
∫ b

b−ε

A(x)ν(x)e−C(x)/t dx

∼ A(b)e−C(b)/tνbΓ(αb + 1)tαb+1 as t → 0+.

Similarly, if a < 0, then for any ε ∈ (0, |a|), we have∫ 0

a

A(x)ν(x)e−C(x)/t dx ∼
∫ a+ε

a

A(x)ν(x)e−C(x)/t dx

∼ A(a)e−C(a)/tνaΓ(αa + 1)tαa+1 as t → 0+.
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Putting this together, we have that if b > |a|, then

F (t) ∼ A(b)νbΓ(αb + 1)tp+αb+1e−C(b)/t as t → 0+,

and similarly if |a| > b or |a| = b.

With these estimates, we can apply Theorem 3 to obtain estimates that the fastest

decider(s) have extreme initial beliefs. In particular, suppose we want to estimate

P(a+ ε < Xn(1)(0) < b− ε) for some small 0 < ε ≪ 1,

which is the probability that the fastest decider does not have extreme initial beliefs. If we

define the event

E = {a+ ε < X(0) < b− ε},

then using the notation of Section , we have that

FE(t) := P(τ ≤ t ∩ E) =

∫ b−ε

a+ε

P(τ ≤ t |X(0) = x)ν(x) dx

∼ tp
∫ b−ε

a+ε

A(x)ν(x)e−C(x)/t dx as t → 0+,

which can be estimated as above using Laplace’s method [2]. In particular, if b > |a|, then

FE(t) ∼ A(b− ε)ν(b− ε)tp+1e−C(b−ε)/t as t → 0+,

assuming ν(b− ε) > 0, and similarly if |a| > b or |a| = b. With this short-time behavior of

FE(t), we can then plug this into Theorem 3 to show that the first deciders have the most

extreme initial beliefs.

HETEROGENEOUS POPULATION WITH MULTIPLE ALTERNATIVES

We next consider the generalized case where the beliefs of the agents in the population

evolve as processes with (possibly space-dependent) drift, diffusion coefficient, initial posi-

tion, and even domain (in their own arbitrary space dimension d ≥ 1). Suppose the belief

of the ith decider evolves according to the following d-dimensional SDE,

dXi = µi(Xi) dt+
√

2Di dWi, (21)
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where µi : Rd → Rd is a possibly space-dependent drift, Di > 0 is the diffusion coefficient,

and W (t) ∈ Rd is a standard Brownian motion in d-dimensional space.

Let L > 0 denote an agent’s (random) shortest distance they must travel to hit the closest

target and let D > 0 denote the agent’s diffusion coefficient. Define the random timescale

S =
L2

4D
> 0.

Suppose that S has a discrete distribution on a finite set

0 < s0 < s1 < s2 < s3 · · · < sI ,

where

P(S = si) = qi > 0,
I∑

i=0

qi = 1.

Since we have N ≥ 1 iid agents indexed from n = 1 to n = N , we let Sn denote the value

of S for the nth agent and Sn(j) the value of S for the jth fastest to decide.

We have that [16]

lim
t→0+

t lnP(τ ≤ t) = −s0 < 0, lim
t→0+

t lnP(τ ≤ t ∩ S = si) = −si < 0.

Hence, Proposition 1 and Theorem 4 imply that for any fixed j ≥ 1 and i ∈ {1, . . . , I} and

any ε > 0,

N1−si/s0−ε ≪ P(Sn(j) = si) ≪ N1−si/s
ε
0 as N → ∞, (22)

where we use the notation f ≪ g to mean lim f/g = 0. That is, in more traditional notation,

N1−si/s0−ε = o
(
P(Sn(j) = si)

)
as N → ∞,

P(Sn(j) = si) = o
(
N1−si/s0+ε

)
as N → ∞.

In the special case that the agents all move in one space dimension and the drifts are spatially

constant (but may differ between agents), we can get the constant and logarithmic prefactors

on the decay of P(Sn(j) = si) as N → ∞.

The result in Eq. (22) says that in a large population if all the agents have the same

diffusion coefficient, then the fastest deciders started closest to their decision thresholds

(targets). If we allow the diffusion coefficients to vary between agents, then (22) implies that

the fastest deciders started close to their decision thresholds and/or they had big diffusion

coefficients.
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SLOWEST DECIDERS

Suppose the beliefs of the iid agents diffuse in some d-dimensional spatial domain U ⊂ Rd

and can be absorbed at one of m ≥ 2 targets V0, . . . , Vm−1 and let κ ∈ {0, . . . ,m−1} indicate

which target the decider eventually hits. Here, we will think of the m targets as parts of

the d − 1 dimensional boundary of the domain, and assume that hitting one of the targets

triggers a decision. Following [18, 29], suppose the beliefs of the deciders evolve as stochastic

process {X(t)}t≥0 that diffuse according to the SDE

dX(t) = −∇V (X(t)) dt+
√
2D dW (t), (23)

with reflecting boundary conditions. In Eq. (23), the drift term is the gradient of a given

potential, V (x), and the noise term depends on the diffusion coefficient D > 0 and a stan-

dard d-dimensional Brownian motion (Wiener process) {W (t)}t≥0. The survival probability

conditioned on the initial position,

S(x, t) := P(τ > t |X(0) = x),

satisfies the backward Kolmogorov (also called backward Fokker-Planck) equation,

∂
∂t
S = LS, x ∈ U,

S = 0, x ∈ targets,

∂
∂n
S = 0, x ∈ reflecting boundary (if there is one),

S = 1, t = 0.

(24)

In Eq. (24), the differential operator L is the generator (i.e. the backward operator) of

Eq. (23),

L = −∇V (x) · ∇+D∆,

and ∂
∂n

is the derivative with respect to the inward unit normal n : ∂U → Rd.

Using the following weight function of Boltzmann form ,

ρ(x) :=
e−V (x)/D∫

U
e−V (y)/D dy

, (25)

one can check that the differential operator L is formally self-adjoint on the weighted space

of square integrable functions (see, for example, Ref. [29]),

L2
ρ(U) :=

{
f :

∫
U

|f(x)|2ρ(x) dx < ∞
}
,
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using the boundary conditions in (24) and the following weighted inner product,

(f, g)ρ := (f, gρ) =

∫
U

f(x)g(x)ρ(x) dx,

where (f, g) =
∫
U
f(x)g(x) dx denotes the standard L2-inner product (i.e. with no weight

function). Expanding the solution to (24) yields,

S(x, t) =
∑
n≥1

(un, 1)ρe
−λntun(x) =

∑
n≥1

(un, ρ)e
−λntun(x), (26)

where

0 < λ1 < λ2 ≤ . . . , (27)

denote the (necessarily positive) eigenvalues of −L. The corresponding with eigenfunctions

{un(x)}n≥1 satisfy the following time-independent equation,

−Lun = λnun, x ∈ U, (28)

and identical boundary conditions as S. Further, the eigenfunctions are orthogonal and are

taken to be orthonormal, which means that

(un, um)ρ = δnm ∈ {0, 1}, (29)

where δnm denotes the Kronecker delta function (i.e. δnn = 1 and δmn = 0 if n ̸= m).

If the initial distribution of an agent has probability measure µ0,

P(X(0) ∈ B) = µ0(B) =

∫
B

1 dµ0(x), B ⊂ U, (30)

then the FPT τ has survival probability given by

S(t) := P(τ > t |X(0) =d µ0) =

∫
U

S(x, t) dµ0(x),

where the condition X(0) =d µ0 in the conditional probability merely denotes that X(0)

has initial distribution given by µ0. Hence, we obtain the following representation for the

survival probability,

S(t) =
∑
n≥1

Ane
−λnt =

∑
n≥1

(un, ρ)(un, dµ0)e
−λnt, (31)
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where the coefficients are given by the following integrals,

An := (un, 1)ρ

∫
U

un(x) dµ0(x), n ≥ 1. (32)

We have that the FPT τ to one of the targets has CDF

F (t) = P(τ ≤ t) = 1− P(τ > t)

= 1−
∑
k≥1

(uk, ρ)(uk, dµ0)e
−λkt,

If

pi(x) = P(κ = i|X(0) = x),

then

Fi(t) := P(τ ≤ t ∩ κ = i) = P(κ = i)− P(τ > t ∩ κ = i)

= P(κ = i)−
∑
k≥1

(uk, piρ)(uk, dµ0)e
−λkt,

and therefore

fi(t) := F ′
i (t) =

∑
k≥1

λk(uk, piρ)(uk, dµ0)e
−λkt

Applying Proposition 1 and Theorem 5 yields

P(κn(N−j) = i) → (u1, piρ)

(u1, ρ)
=

(u1ρ, pi)

(u1, ρ)
as N → ∞.

Now, the solution to the forward Fokker-Planck equation is given by

p(x, t) = P(X(t) = dx | τ > t) =
∑
k≥1

e−λkt(uk, dµ0)ρ(x)uk(x).

Hence, u1(x)ρ(x)/(u1, ρ) is the quasi-stationary distribution (QSD), q(x), defined by

q(x) = lim
t→∞

P(X(t) = dx | τ > t) = lim
t→∞

P(X(t) = dx ∩ τ > t)

P(τ > t)

= lim
t→∞

∑
k≥1 e

−λkt(uk, dµ0)ρ(x)uk(x)∑
k≥1(uk, ρ)(uk, dµ0)e−λkt

= lim
t→∞

e−λ1t(u1, dµ0)ρ(x)u1(x)

(u1, ρ)(u1, dµ0)e−λ1t

=
ρ(x)u1(x)

(u1, ρ)
.

Summarizing, we have shown that

P(κn(N−j) = i) →
∫
U

pi(x)q(x) dx as N → ∞. (33)
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The case of drift-diffusion processes in one dimension. For the one-dimensional example

in which all the beliefs of all the agents evolve according to (18), we can compute the QSD,

and find that

q(x) =
(π2D2 + θ2µ2) cos(πx

2θ
)e

µ(θ+x)
2D

2πD2θ(e
θµ
D + 1)

.

Further, it is straightforward to show that the probability that a decider reaches +θ before

−θ conditioned on the initial belief x ∈ [−θ, θ] is

p1(x) := P(X(τ) = +θ) =
1

2

(
coth

(θµ
D

)
− 1

)
e

µ(θ−x)
D

(
e

µ(θ+x)
D − 1

)
Therefore, applying (33) and explicitly computing the integral yields

P(κn(N−j) = 1) →
∫ θ

−θ

p1(x)q(x) dx =
1

1 + e−
θµ
D

= p1(0) as N → ∞.

Hence, the slowest deciders out of N ≫ 1 deciders make a decision as if they were initially

unbiased (i.e. as if X(0) = 0).

PROOFS

Proof of Proposition 1. Since {(τn, Zn)}n≥1 are identically distributed, we have that

P(An(j)) =
∑

distinct indices
n1,...,nN∈{1,...,N}

P(max{τn1 , . . . , τnj−1
} < τnj

< min{τnj+1
, . . . , τnN

} ∩ Anj
)

= j

(
N

j

)
P(max{τ1, . . . , τj−1} < τj < min{τj+1, . . . , τN} ∩ Aj),

(34)

where the coefficient comes from noting that the number of terms in the sum is obtained

by choosing the j fastest FPTs out of N and then choosing which of those j will be the jth

fastest. Define

τ
(Aj)
j =

τj if Aj occurs,

+∞ if Aj does not occur,

so that if j < N ,

P(max{τ1, . . . , τj−1} < τj < min{τj+1, . . . , τN} ∩ Aj)

= P(max{τ1, . . . , τj−1} < τ
(Aj)
j < min{τj+1, . . . , τN})
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To handle the case j = N , we can simply replace +∞ by −∞ in the definition of τ
(Aj)
j .

Since {τn}n≥1 are iid, we have that

P(max{τ1, . . . , τj−1} < t) = P(max{τ1, . . . , τj−1} ≤ t) = [F (t)]j−1,

where we have used that F (t) is continuous. Similarly,

P(min{τj+1, . . . , τN} > t) = [1− F (t)]N−j,

Using that {τn}n≥1 are independent, we have

G(t) : = P(max{τ1, . . . , τj−1} < t < min{τj+1, . . . , τN})

= P(max{τ1, . . . , τj−1} < t)P(t < min{τj+1, . . . , τN})

= [F (t)]j−1[1− F (t)]N−j.

Combining the above finally yields

P(An(j)) = j

(
N

j

)
P(max{τ1, . . . , τj−1} < τ

(Aj)
j < min{τj+1, . . . , τN})

= j

(
N

j

)
E[G(τ

(Aj)
j )]

= j

(
N

j

)∫ ∞

0

[F (t)]j−1[1− F (t)]N−j dFE(t),

which completes the proof.

The proof of Theorem 3 is similar to the proof of Theorem 3 in [17].

Proof of Theorem 3. Define the integral from t = a to t = b,

Ia,b :=

∫ b

a

[F (t)]j−1[1− F (t)]N−j dF+(t).

Let ε ∈ (0, 1). By the assumptions in Eq. (12)-(13), there exists a δ > 0 so that

A−εt
pe−C0/t ≤ F (t) ≤ A+εt

pe−C0/t for all t ∈ (0, δ), (35)

B−εt
qe−C+/t ≤ F+(t) ≤ B+εt

qe−C+/t for all t ∈ (0, δ), (36)

24



where A±ε := A(1± ε) and B±ε := B(1± ε). Using Eq. (35) and integrating by parts yields

I0,δ ≤
∫ δ

0

(A+εt
pe−C0/t)j−1(1− A−εt

pe−C0/t)N−j dF+(t)

= (A+εδ
pe−C0/δ)j−1(1− A−εδ

pe−C0/δ)N−jF+(δ)

+ (N − j)

∫ δ

0

(A+εt
pe−C0/t)j−1(pt−1 + C0t

−2)A−εt
pe−C0/t

(
1− A−εt

pe−C0/t
)N−j−1

F+(t) dt

− (j − 1)

∫ δ

0

(A+εt
pe−C0/t)j−1(pt−1 + C0t

−2)
(
1− A−εt

pe−C0/t
)N−j

F+(t) dt

≤ (A+εδ
pe−C0/δ)j−1(1− A−εδ

pe−C0/δ)N−jF+(δ)

+ (N − j)

∫ δ

0

(A+εt
pe−C0/t)j(pt−1 + C0t

−2)
(
1− A−εt

pe−C0/t
)N−j−1

B+εt
qe−C+/t dt

− (j − 1)

∫ δ

0

(A+εt
pe−C0/t)j−1(pt−1 + C0t

−2)
(
1− A−εt

pe−C0/t
)N−j

B−εt
qe−C+/t dt,

(37)

where we have used Eq. (36) in the final inequality. The first term in the righthand side of

Eq. (37) vanishes exponentially fast as N → ∞. Using Proposition 2 to find the large N

behavior of the second two terms in the righthand side of Eq. (37) and the fact that Iδ,∞

vanishes exponentially fast as N → ∞ yields

lim sup
N→∞

j
(
N
j

)
I0,∞

ηj(lnN)pβ−qN1−β
≤ (1 + ε)

(1− ε)β
.

The analogous argument yields the lower bound

lim inf
N→∞

j
(
N
j

)
I0,∞

ηj(lnN)pβ−qN1−β
≥ (1− ε)

(1 + ε)β
.

Since ε ∈ (0, 1) is arbitrary, the proof is complete.

Proof of Theorem 4. Define the integral from t = a to t = b,

Ia,b :=

∫ b

a

[F (t)]j−1[1− F (t)]N−j dF+(t).

By Eq. (15), there exists a δ > 0 so that

e−(C0+ε)/t ≤ F (t) ≤ e−(C0−ε)/t for all t ∈ (0, δ), (38)

F+(t) ≤ e−(C+−ε)/t for all t ∈ (0, δ). (39)
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Using Eq. (38) and integrating by parts yields

I0,δ ≤
∫ δ

0

e−(j−1)(C0−ε)/t
(
1− e−(C0+ε)/t

)N−j
dF+(t)

= F+(δ)e
−(j−1)(C0−ε)/δ

(
1− e−(C0+ε)/δ

)N−j

+ (N − j)(C0 + ε)

∫ δ

0

e−(j−1)(C0−ε)/tt−2e−(C0+ε)/t
(
1− e−(C0+ε)/t

)N−j−1
F+(t) dt

−
∫ δ

0

(j − 1)(C0 − ε)t−2e−(j−1)(C0−ε)/t
(
1− e−(C0+ε)/t

)N−j
F+(t) dt.

(40)

The first term in the righthand side of Eq. (40) vanishes exponentially fast as N → ∞. To

handle the second term in the righthand side of Eq. (40), note that Eq. (39) implies that∫ δ

0

e−(j−1)(C0−ε)/tt−2e−(C0+ε)/t
(
1− e−(C0+ε)/t

)N−j−1
F+(t) dt

≤
∫ δ

0

e−(j−1)(C0−ε)/tt−2e−(C0+ε)/t
(
1− e−(C0+ε)/t

)N−j−1
e−(C+−ε)/t dt.

(41)

Since the third term in the righthand side of Eq. (40) is nonpositive, applying Proposition 2

to Eq. (41) and using Eq. (40) and the fact that Iδ,∞ vanishes exponentially fast as N → ∞

completes the proof of Eq. (16).

If Eq. (17) holds, then there exists a δ > 0 so that

e−(C0+ε)/t ≤ F (t) ≤ e−(C0−ε)/t for all t ∈ (0, δ),

e−(C++ε)/t ≤ F+(t) ≤ e−(C+−ε)/t for all t ∈ (0, δ).
(42)

Using Eq. (42) and integrating by parts yields

I0,δ ≥
∫ δ

0

e−(j−1)(C0+ε)/t
(
1− e−(C0−ε)/t

)N−j
dF+(t)

= F+(δ)e
−(j−1)(C0+ε)/δ

(
1− e−(C0−ε)/δ

)N−j

+ (N − j)(C0 − ε)

∫ δ

0

e−(j−1)(C0+ε)/tt−2e−(C0−ε)/t
(
1− e−(C0−ε)/t

)N−j−1
F+(t) dt

−
∫ δ

0

(j − 1)(C0 + ε)t−2e−(j−1)(C0+ε)/t
(
1− e−(C0−ε)/t

)N−j
F+(t) dt

≥ F+(δ)e
−(j−1)(C0+ε)/δ

(
1− e−(C0−ε)/δ

)N−j

+ (N − j)(C0 − ε)

∫ δ

0

e−(j−1)(C0+ε)/tt−2e−(C0−ε)/t
(
1− e−(C0−ε)/t

)N−j−1
e−(C++ε)/t dt

−
∫ δ

0

(j − 1)(C0 + ε)t−2e−(j−1)(C0+ε)/t
(
1− e−(C0−ε)/t

)N−j
e−(C+−ε)/t dt.

(43)
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The first term in the righthand side of Eq. (43) vanishes exponentially as N → ∞. Using

Proposition 2 to estimate the second two terms in the righthand side of Eq. (43) completes

the proof.

Lemma 6. For fixed j ∈ {0, 1, . . . }, c > 0, λ > 0, and δ > 0, we have that

(N − j)

(
N

N − j

)∫ ∞

1/δ

[
1− ce−λt]N−j−1e−(j+1)λt dt → 1

λcj+1
as N → ∞.

Proof of Lemma 6. Changing variables

u = 1− ce−λt, du = λce−λt dt

yields∫ ∞

1/ε

[
1− ce−λt]N−j−1e−(j+1)λt dt =

1

λcj+1

∫ 1

1−ce−λt

uN−j−1(1− u)j du

=
1

λcj+1

[
(N − j − 1)!j!

N !
−
∫ 1−ce−λt

0

uN−j−1(1− u)j du

]
,

(44)

where we have used that
∫ 1

0
ua−1(1 − u)b−1 du = Γ(a)Γ(b)/Γ(a + b). Since the integral in

Eq. (44) vanishes exponentially fast, the proof is complete.

Proof of Theorem 5. Let ε ∈ (0, 1). By assumption, there exists δ > 0 so that

1− (1 + ε)ce−λt ≤ F (t) ≤ 1− (1− ε)ce−λt for all t ≥ 1/δ,

λ(1− ε)cie
−λt ≤ fi(t) ≤ λ(1 + ε)cie

−λt for all t ≥ 1/δ.

Defining the integral from t = a to t = b,

Ia,b :=

∫ b

a

[F (t)]N−j−1[1− F (t)]jfi(t) dt,

we therefore have that

(1− ε)j+1λcic
j

∫ ∞

1/δ

[
1− (1 + ε)ce−λt]N−j−1e−(j+1)λt dt ≤ I1/δ,∞

≤ (1 + ε)j+1λcic
j

∫ ∞

1/δ

[
1− (1− ε)ce−λt]N−j−1e−(j+1)λt dt.

Since I0,1/δ vanishes exponentially fast as N → ∞, Lemma 6 implies that(1− ε

1 + ε

)j+1 ci
c
≤ lim inf

N→∞
(N − j)

(
N

N − j

)
I0,∞

≤ lim sup
N→∞

(N − j)

(
N

N − j

)
I0,∞ ≤

(1 + ε

1− ε

)j+1 ci
c
.

Since ε ∈ (0, 1) is arbitrary, the proof is complete.
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NUMERICAL SOLUTIONS

Numerical solutions were computed via trapezoidal quadrature on Eq. (9) in Proposi-

tion 1. In each set of dynamics, we rescaled the drift-diffusion process on [−θ, θ] to the

interval [0, ℓ]. The probability density function for hitting the left boundary in this system

is [24]

f0(t) :=
d

dt
F0(t) = exp

(
− µx0

2D
− µ2t

4D

)D
ℓ2
ϕ
(Dt

ℓ2
,
x0

ℓ

)
, (45)

where

ϕ(s, w) :=


∑∞

k=1 exp(−k2π2s)2kπ sin(kπw),

(4πs3)−1/2
∑∞

k=−∞(w + 2k)exp
(
− (w+2k)2

4s

)
.

(46)

The expressions in Eq. (46) are equivalent but have distinct utility: the top expansion

converges quickly for large s while the bottom expansion converges quickly for small s.

Hence, we utilize both expressions to more accurately compute probabilities associated with

slow and fast deciders, respectively.

Integrating Eq. (45) yields

F0(t) =

∫ t

0

f0(t
′) dt′ = exp

(
− µx0

2D

)
Φ
(Dt

ℓ2
,
x0

ℓ

)
with long- and short-time expansions of Φ(s, w) given by

Φ(s, w) =

∫ s

0

ϕ(s′, w) ds′

=


∑∞

k=1

(
1− exp[−(b+ k2π2)s]

)
2kπ

b+k2π2 sin(kπw),∑∞
k=−∞

sgn(2k+w)
2

(
e−

√
b
D
|2k+w|erfc

( |2k+w|√
4s

−
√
bs
)
+ e

√
b
D
|2k+w|erfc

( |2k+w|√
4s

+
√
bs
))

where b = (µℓ/2D)2. By symmetry one can determine the corresponding probability density

and cumulative distribution functions for hitting the right boundary. Altogether, we acquire

long- and short-time expressions for the cumulative distribution function of an agent making

a decision,

F (t) := F0(t) + F1(t).

Where numerical solutions are illustrated, we use the short-time expressions of ϕ and Φ

for 10−10 ≤ t ≤ 1 and the complementary long-time expressions for 1 < t ≤ 100, discretizing
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each time interval into 103 log-spaced points. We consider 103 terms in each series expansion.

Moreover, we take ℓ = 1 and unless otherwise stated D = 1. Finally, where more than one

but finitely many initial beliefs are considered, we scale the probability functions according

to the corresponding initial distribution as outlined in Section .

Specific details of figures with numerical solutions are as follows: In Fig 1B we illustrate

in color Eq. (10) where FE = F as defined above with Xn(1)(0) = y. The black curve, which

contains the remaining mass of the total probability, is computed as the sum of the colored

curves subtracted from one. In Fig 2A-C we illustrate the probability that the first decider

chooses the decision at X(T1) = θ conditioned on having a particular initial bias. Hence, by

definition of conditional probability, the numerical solutions are produced from quadrature

on ratios of Eq. (10) with FE = F1 in the numerator and FE = F in the denominator with

Xn(1) = y. The inset of Fig 2C is one minus the outset. In Fig 2D we illustrate Eq. (9)

where FE = F and Sn(j) = s. In Fig 3B we illustrate the probability that the last decider

chooses the decision at X(TN) = θ conditioned on having a particular initial bias. Similar

to Fig 2B, the numerical solutions are produced from quadrature on ratios of Eq. (11) with

FE = F1 in the numerator and FE = F in the denominator with Xn(N)(0) = y.

AGENT-BASED STOCHASTIC SIMULATIONS

a. One-dimensional drift diffusion equation. To test the analytical solutions, we solved

Eq. (1) in the main text using the Euler-Maruyama method, which describes the evidence

accumulation process preceding binary decisions. In this approximation scheme, the true

solution to the stochastic differential equation is approximated by a Markov chain Y con-

structed by setting Y0 = X(0) and updating Y according to the iterative scheme

Yn+1 = Yn + µ∆t+
√
2D∆W

where Yn ≡ Y (n∆t) is the value of the Markov chain after the nth update, and the random

variables ∆W are independent and identically distributed Gaussian random variables with

mean 0 and variance ∆t. The equations were integrated until the value of Yn exceeded ±θ.

The temporal discretization, ∆t, is user-defined. As N grows, the time to first decision

decays slowly. Thus, for large N , ∆t must be taken to be sufficiently small for accurate

representation of decision dynamics. For simulations here, we chose ∆t = 10−3 for 1 ≤ N ≤
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1000. For N > 1000, we chose ∆t = N−1.

b. Two-dimensional drift diffusion equation. Decisions between three choices require

a drift-diffusion model evolving on a planar domain [21]. Updating the discrete-time ap-

proximation of Eq. (21) for each observer (dropping the i subscript) using Euler-Maruyama

provides the following iterative scheme

Y 1
n+1 = Y 1

n + µ1∆t+
√
2D∆W 1,

Y 2
n+1 = Y 2

n + µ2∆t+
√
2D∆W 2,

where Y j
n = Y j(n∆t) is the value of the belief after the nth update, the random variables

∆W j are Gaussian random variables with mean 0 and variance σ2. Equations are integrated

until the vector

 Y 1
n

Y 2
n

 departs the triangular domain

{(Y 1, Y 2)|Y 2 < h & Y 2 > −2h(3Y 1 + 1) & Y 2 > 2h(3Y 1 − 1)}

where h = 1/2/
√
3. Choices of each agent are determined by whether the agent crosses the

Y 2 = h or Y 2 = −2h(3Y 1 + 1) or Y 2 = 2h(3Y 1 − 1) boundary. For simulations again we

use ∆t = 10−3 for 1 ≤ N ≤ 1000 and ∆t = N−1 for N > 1000.

For the 2D case in an equilateral triangle, the threshold θ is taken to be equal to the

length of the apothem—defined as a line from the center of a regular polygon at right angles

to any of its sides. Hence, an unbiased agent begins at the centre of the equilateral triangle.

We prescribe initial data for biased agents to be anywhere along an apothem except the

centre of the triangle.
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and Krešimir Josić. Heterogeneity improves speed and accuracy in social networks. Physical

review letters, 125(21):218302, 2020.

[11] Bhargav Karamched, Simon Stolarczyk, Zachary P Kilpatrick, and Krešimir Josić. Bayesian
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ched. Impact of correlated information on pioneering decisions. Physical Review Research,

5(3):033020, 2023.

[34] John A Swets, Wilson P Tanner Jr, and Theodore G Birdsall. Decision processes in perception.

Psychological review, 68(5):301, 1961.

[35] Satohiro Tajima, Jan Drugowitsch, Nisheet Patel, and Alexandre Pouget. Optimal policy for

multi-alternative decisions. Nature neuroscience, 22(9):1503–1511, 2019.

[36] Alan N Tump, Max Wolf, Pawel Romanczuk, and Ralf HJM Kurvers. Avoiding costly mis-

takes in groups: the evolution of error management in collective decision making. PLoS

Computational Biology, 18(8):e1010442, 2022.

[37] Naoshige Uchida and Zachary F Mainen. Speed and accuracy of olfactory discrimination in

the rat. Nature neuroscience, 6(11):1224–1229, 2003.

[38] A. Veliz-Cuba, Z. P. Kilpatrick, and K. Josić. Stochastic models of evidence accumulation in
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