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 A B S T R A C T

Many systems in biology, physics, and engineering are modeled by nonlinear dynamical systems where the 
states are usually unknown and only a subset of the state variables can be physically measured. Can we 
understand the full system from what we measure? In the mathematics literature, this question is framed 
as the observability problem. It has to do with recovering information about the state variables from the 
observed states (the measurements). In this paper, we relate the observability problem to another structural 
feature of many models relevant in the physical and biological sciences: the conserved quantity. For models 
based on systems of differential equations, conserved quantities offer desirable properties such as dimension 
reduction which simplifies model analysis. Here, we use differential embeddings to show that conserved 
quantities involving a set of special variables provide more flexibility in what can be measured to address 
the observability problem for systems of interest in biology. Specifically, we provide conditions under which 
a collection of conserved quantities make the system observable. We apply our methods to provide alternate 
measurable variables in models where conserved quantities have been used for model analysis historically in 
biological contexts.
1. Introduction

A fundamental question in nonlinear dynamics is whether the entire 
state of a system can be inferred from measurements of a subset of 
outputs of the states that comprise the system. In the mathematics 
literature, this is referred to as the observability problem [1,2]. Briefly, 
a dynamical system is called observable if one can obtain complete 
information about the internal state of the dynamical system from 
measurements of a subset of the outputs.

In this paper, we consider dynamical systems of the form 
𝑑𝐱(𝑡)
𝑑𝑡

= 𝑓 (𝐱(𝑡), 𝛬) (1)

with observable variables 𝐲 = 𝑔(𝐱̂), where 𝑓 ∶ R𝑛 × R𝑙 → R𝑛 and 
𝑔 ∶ R𝑚 → R𝑚 are differentiable functions. Here, 𝛬 ∈ R𝑙 denotes inputs 
to the system (1), and it appears implicitly in the dynamics. We assume 
that we can only measure a subset of the state variables represented by 
𝐱̂ ∈ R𝑚 and the initial state 𝐱0 ∈ 𝛺0 ⊂ R𝑛 is unknown. For the rest of 
the paper, we suppress notation and write 𝑓 (𝐱(𝑡)) = 𝑓 (𝐱(𝑡), 𝛬).

Definition 1.  The system in Eq. (1) is observable in 𝛺0 if there is 
a bijection between the initial states in 𝛺0 and the set of trajectories 
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of the observed outputs 𝐲(𝑡) for 𝑡 ≥ 0 [3]. We say that the system is
locally observable at 𝑥0 if there exists an open neighborhood 𝛺0 of 𝑥0
for which the system is observable in 𝛺0.

Ascertaining which state variables to measure to completely un-
derstand a system is of central importance in physical and biological 
applications. Nonlinear dynamical systems have been used to model 
chemical reaction networks [4–6], combustion reaction networks [7–
9], power grids [10–12], biophysical networks [13–17], epidemics [18–
20], and cancer [21–23]. Observability of such dynamical systems 
is vital to constructively inform experimentalists and engineers what 
should be measured to optimize inference of the progress of their work. 
Most often, all variables involved are unable to be measured. Determin-
ing which outputs of a system should be measured to understand the 
full system is thus useful and essential for scientific and technological 
progress across disciplines.

For example, in determining the kinetic properties of an enzymatic 
reaction, one of the biochemical species must be measured to under-
stand reaction rate. It is a challenging endeavor to simultaneously 
measure all constituents of the enzymatic reaction. Observable dy-
namical systems can inform biochemists of which species to track to 
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Fig. 1. Schematic of the components and result of our work. (A) A conserved quantity projects dynamics of a dynamical system to a lower-dimensional submanifold. (B) A 
differential embedding is a transformation of the phase space of the original system. (C) By projecting the differential embedding onto the submanifold given by the conserved 
quantity, scalar observables that are not predicted to render the full system observable do make the system observable.
understand the full system. Similarly, in an infection outbreak, observ-
able dynamical systems can inform epidemiologists of what populations 
to track to optimally understand the dynamics of an epidemic. It is 
thus vital to develop mathematical theory and methods to ascertain 
whether a dynamical system is observable, and, if so, to determine 
which observables render the dynamical system observable.

Several methods exist to determine whether a system is observ-
able. A longstanding method is to look at the Lie derivatives of the 
observables with respect to the governing nonlinear vector field and 
construct the Jacobian matrix of the Lie derivatives [2,24]. Parameter 
regimes where the Jacobian has full rank are those where the chosen 
observable renders the full system observable. A related approach 
presented in [25] considers a 𝑘-dimensional differential embedding 
𝛷 ∶ R𝑚 → R𝑘𝑚 given by 𝛷(𝐱̂) = (𝑔(𝐱̂), 𝑔̇(𝐱̂),… , 𝑔(𝑘)(𝐱̂)) (derivatives with 
respect to time). The map 𝛷 is locally invertible at 𝐱0 if the Jacobian 
has full rank. That is, the map 𝛷 is locally invertible at 𝐱0 if 

rank
(

𝜕𝛷
𝜕𝐱

|

|

|𝐱0

)

= 𝑛. (2)

The system in Eq. (1) is locally observable at 𝑥0 if and only if Eq. (2) 
holds [25].

Another approach is the graphical approach. The graphical ap-
proach [26] associates a directed graph  to the system given by Eq. (1), 
where the nodes of  are 𝑥1, … , 𝑥𝑛 and there is an edge from 𝑥𝑖
to 𝑥𝑗 if 𝑥𝑗 appears in the differential equation of 𝑥𝑖. The directed 
graph is partitioned into strongly connected components. A necessary 
and often sufficient condition for rendering Eq. (1) observable is to 
observe one node in each strongly connected component that has no 
incoming edge. The graphical approach in [26] states that a necessary 
and sufficient condition for observability of the system in Eq. (1) is 
to observe the source nodes in  and a variable in each strongly con-
nected component of . Finally there are methods based on a strongly 
positive definite condition and sensor selection based on optimization 
to ascertain observability [3,27].

In this paper, we expand on the aforementioned results by consider-
ing the effect of another property of dynamical systems that manifests 
in several biological and physical applications: the conserved quantity. 
A conserved quantity of a dynamical system is a function of the state 
variables that remains invariant in time: 

Definition 2.  For 𝑚 ≤ 𝑛, a scalar-valued function 𝐻 ∶ R𝑚 → R is a 
conserved quantity of Eq. (1) if, for all time and initial conditions, 
𝑑𝐻
𝑑𝑡

= 0. (3)
2 
Note that if 𝑚 = 𝑛, then the condition in Eq. (3) can also be stated 
as

∇𝐻 ⋅
𝑑𝐱(𝑡)
𝑑𝑡

= ∇𝐻 ⋅ 𝑓 (𝐱(𝑡)) = 0,

where ∇ = ( 𝜕
𝜕𝑥1
,… , 𝜕

𝜕𝑥𝑛
). We can represent 𝓁 conserved quantities 

𝐻1,… ,𝐻𝓁 by using a function 𝐺 ∶ R𝑛 → R𝓁 where 𝐺 = (𝐻1,… ,𝐻𝓁). 
Here, 𝐺 = constant.

A typical use of a conserved quantity is dimension reduction of the 
system under scrutiny. Because it defines a dependency between the 
state variables of system, the dynamics of the full system are projected 
to a submanifold of the phase space, thereby potentially simplifying 
analysis.

We show that conserved quantities in combination with differential 
embeddings provide a means to identify alternative observables in a 
system that render a system observable (see Fig.  1). More specifically, 
we show that if a conserved quantity exists for a particular dynamical 
system, then observing the source node(s) of the related directed graph 
is no longer necessary. The directed graph can be transformed via the 
conserved quantity, yielding a new set of variables that render the 
system observable. We demonstrate this in the following motivating 
example.

Example 3.  SIR models are popular for describing dynamics of an 
infectious disease and for unveiling key biophysical parameters that 
govern the transition of a disease from dissipating in a population 
to persisting in an endemic state [18–20]. Such models are typically 
composed of three state variables: 𝑆 representing the number of suscep-
tible individuals in a population, 𝐼 representing the number of infected 
individuals, and 𝑅 representing the number of recovered or removed 
individuals. They have been shown to apply to more general settings 
as well by incorporating spatial and stochastic dynamics in their struc-
ture [28–31]. Furthermore, they have been used to study dissemination 
of information through a social network in a number of studies [32,33]. 
Hence, SIR models form a crux of much of mathematical epidemiology 
literature.

One of the simplest SIR models describes the dynamics of an epi-
demic on a short timescale. In such instances, the impact infection 
imparts on population dynamics vastly outweighs birth and death 
events, so birth and death terms do not manifest in the SIR dynamics. 
Because of this, the total number of individuals is invariant in time. 
Such a model is applicable, for example, in describing the dynamics 
and spread of the flu virus through a population [34].

Here we investigate such a model. Consider the following SIR 
model:
𝑑𝑆 = −𝛽𝑆𝐼

𝑑𝑡
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Fig. 2. Reaction graphs corresponding to the SIR system. (A) The original model. (B) The transformed model from invoking the transformation 𝐼 = 𝑁 − 𝑆 − 𝑅.
𝑑𝐼
𝑑𝑡

= 𝛽𝑆𝐼 − 𝜆𝐼 (4)
𝑑𝑅
𝑑𝑡

= 𝜆𝐼,

where 𝑆 represents the susceptible population, 𝐼 represents the infected 
population, and 𝑅 represents the recovered population. The parameter 
𝛽 quantifies the infectivity of the infectious disease under consideration; 
thus, the 𝛽𝑆𝐼 term captures the rate at which susceptible individuals 
become infected through contact with infected individuals. The param-
eter 𝜆 quantifies the rate of recovery of an infected individual. This 
system contains a conserved quantity, namely the total population. That 
is, ∀𝑡, 𝑆 + 𝐼 + 𝑅 = 𝑁 for a prescribed 𝑁 ∈ R. The total population is 
implicit in the right-hand side of Eq. (4), but is the input to the system. 
Because of this conserved quantity, Eq. (4) can be reduced to a two-
dimensional system that has the same equilibria and stability as the 
full system. Such a reduction greatly facilitates analysis.

We depict the associated graph of this model in Fig.  2A. According 
to the graphical approach in [26], it is necessary to measure 𝑅 to make 
the system observable and that just measuring 𝐼 would not make the 
system observable. However, that conclusion would be wrong as we 
can get the information for 𝑆 and 𝑅 by measuring 𝐼 and using the 
conserved quantity 𝑁 . Indeed, 𝑆 = 1

𝛽

(

𝐼̇
𝐼
+ 𝜆

)

 and 𝑅 = 𝑁 − 𝐼 − 𝑆 =

𝑁 − 𝐼 − 1
𝛽

(

𝐼̇
𝐼
+ 𝜆

)

 expresses both 𝑅 and 𝑆 as functions of 𝐼 , 𝐼̇ = 𝑑𝐼
𝑑𝑡 , 

and the conserved quantity 𝑁 .
One could apply the graphical method to

𝑑𝑆
𝑑𝑡

= −𝛽𝑆𝐼

𝑑𝐼
𝑑𝑡

= 𝛽𝑆𝐼 − 𝜆𝐼 (5)
𝑑𝑁
𝑑𝑡

= 0

to obtain that observing either 𝐼 and 𝑁 (or 𝑆 and 𝑁) suffices to recover 
all variables, including 𝑅 = 𝑁 − 𝐼 − 𝑆, but the measurement of the 
unchanging quantity 𝑁 is practically quite different from measuring 
the varying quantity 𝐼 .

We emphasize that existing methods for determining observability 
do not consider conserved quantities or how they impact the observ-
ability of a system. Existing theory pertaining to conserved quantities 
relates them to linear first integrals [35] or to dynamic conservation 
balances  [36]. Therefore, the available methods are unable to detect 
alternative variables that render a system observable. For example, we 
show in this paper with an example that the graphical approach can 
miss alternate observables imputed by conserved quantities. We do not 
claim that the graphical approach presented in [26] is incorrect. Our 
claim is that with knowledge of a conserved quantity, the necessary 
condition in the result therein can be relaxed. Indeed, our work here 
shows that knowledge of a conserved quantity provides a workaround 
for classical observability restrictions.
3 
Our approach is of interest to experimentalists and engineers be-
cause it provides a means to identify system outputs to measure that 
could reveal the internal state of the process being studied. Current 
methods for identifying observables may fail to solve the observability 
problem because they may suggest observables that cannot be experi-
mentally measured. Our method provides flexibility in such scenarios.

Mathematically, our contribution is to append to the rich litera-
ture on observable and controllable systems. We claim that if system 
dynamics can be projected to a submanifold that is inherent to the 
system, alternative, potentially more practical, observables to what the 
original system suggested that render the full system observable can 
be ascertained. Furthermore, our main result describes conditions for 
which submanifold to project dynamics if more than one are inherent 
to the system.

2. Main result

For 𝑚 ≤ 𝑛, a subset of variables 𝐬 ∈ R𝑚 are called sufficient 
whenever observing these variables makes the system observable. Next, 
we consider a partition of the variables in Eq. (1), 𝐱 = (𝐫, 𝐬) where 
𝐫 ∈ R𝑛−𝑚 and 𝐬 ∈ R𝑚 is the set of sufficient variables.

Given a collection of conserved quantities 𝐺 ∶ R𝑛 → R𝓁 , we describe 
its Jacobian using the partition above as follows:

𝜕𝐺
𝜕𝐱

(𝐫, 𝐬) =
⎡

⎢

⎢

⎢

⎣

𝜕𝐺1
𝜕𝑟1

(𝐫, 𝐬) ⋯ 𝜕𝐺1
𝜕𝑟𝑛−𝑚

(𝐫, 𝐬) 𝜕𝐺1
𝜕𝑠1

(𝐫, 𝐬) ⋯ 𝜕𝐺1
𝜕𝑠𝑚

(𝐫, 𝐬)
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝜕𝐺𝓁
𝜕𝑟1

(𝐫, 𝐬) ⋯ 𝜕𝐺𝓁
𝜕𝑟𝑛−𝑚

(𝐫, 𝐬) 𝜕𝐺𝓁
𝜕𝑠1

(𝐫, 𝐬) ⋯ 𝜕𝐺𝓁
𝜕𝑠𝑚

(𝐫, 𝐬)

⎤

⎥

⎥

⎥

⎦

=
[

𝜕𝐺
𝜕𝐫 (𝐫, 𝐬)

𝜕𝐺
𝜕𝐬 (𝐫, 𝐬)

]

(6)

Now we state our main result.

Theorem 4.  Let 
{

𝐱̇(𝑡) = 𝑓 (𝐱(𝑡))
𝐲 = 𝑔(𝐬) (7)

be an observable system, where 𝑔 ∶ R𝑚 → R𝑚. If 𝐺 ∶ R𝑛 → R𝓁 is 
a collection of conserved quantities involving sufficient nodes 𝐬 and other 
variables 𝐫 where 𝜕𝐺𝜕𝐬 (𝐫, 𝐬) is invertible and 

𝜕𝐺
𝜕𝐫 (𝐫, 𝐬) full rank, then ∃ 𝑔̂ ∶

R𝑛−𝑚 → R𝑚 such that the system 
{

𝐱̇(𝑡) = 𝑓 (𝐱(𝑡))
𝐲 = 𝑔̂(𝐫) (8)

is observable.

Proof.  Since 𝐺 consists of conserved quantities, 𝐺 =constant. Then, by 
the implicit function theorem, there is a function 𝜓 ∶ R𝑛−𝑚 → R𝑚 such 
that 𝐬 = 𝜓(𝐫). Let 𝑔̂ = 𝑔◦𝜓 . Since the system in Eq. (7) is observable, 
the embedding 𝛷(𝐱) = (𝑔(𝐬), 𝑔′(𝐬),… , 𝑔(𝑘)(𝐬)) is injective. Let us define 
the map 𝛷̂(𝐫) = (𝑔̂(𝐫), 𝑔̂′(𝐫),… , 𝑔̂(𝑘)(𝐫)) = (𝑔◦𝜓(𝐫), 𝑔◦𝜓 ′(𝐫),… , 𝑔◦𝜓 (𝑘)(𝐫))
as illustrated in the following diagram,
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R𝑛−𝑚 R𝑚

R𝑘𝑚

𝜓

𝛷̂
𝛷

Thus, 𝛷̂ = 𝛷◦𝜓 and
𝜕𝛷̂(𝐫)
𝜕𝐫

=
𝜕(𝛷◦𝜓)(𝐫)

𝜕𝐫
=
𝜕𝛷(𝐬)
𝜕𝐬

𝜕𝛹 (𝐫)
𝜕𝐫

,  but 𝜕𝛹 (𝐫)
𝜕𝐫

= −
[ 𝜕𝐺
𝜕𝐬

(𝐫, 𝐬)
]−1 𝜕𝐺

𝜕𝐫
(𝐫, 𝐬).

Then,

𝜕(𝛷̂)(𝐫)
𝜕𝐫

= −
[ 𝜕𝐺
𝜕𝐬

(𝐫, 𝐬)
]−1 𝜕𝐺

𝜕𝐫
(𝐫, 𝐬) 𝜕𝛷(𝐬)

𝜕𝐬
.

Thus, 𝛷̂ is one-to-one which makes the system in Eq. (8) is
observable. □

3. Applications

Here we demonstrate that relatively simple systems of interest in 
biology containing conserved quantities are observable through the 
lense of Theorem  4. A very simple example can be seen in Appendix  A.

3.1. Constant population SIR model

In the following we first ascertain that Eq. (4) is observable provided 
the observed state variable is 𝑅(𝑡). Then we construct the differential 
embedding map for the system and show that implementing the con-
served quantity allows observing other state variables to render the full 
system observable.

The system given in Eq. (4) is observable. The observed variable will 
be 𝑅(𝑡). To determine whether or not Eq. (4) is observable with 𝑅(𝑡) as 
the scalar observable, we must look at the Jacobian matrix associated 
with the Lie derivatives of this system [26]. Writing Eq. (4) compactly 
as
𝑑𝐗
𝑑𝑡

= 𝑓 (𝐗)

with 𝐗 ≡ (𝑆, 𝐼, 𝑅)𝑇  and 𝑓 (𝐗) = (−𝛽𝑆𝐼, 𝛽𝑆𝐼−𝜆𝐼, 𝜆𝐼)𝑇 , the Lie derivative 
of a scalar observable 𝑦(𝑡) is given by

(𝑦) = 𝜕𝑦
𝜕𝑡

+
3
∑

𝑖=1
𝑓𝑖
𝜕𝑦
𝜕𝐗𝑖

In accordance with the usual computations necessary for ascertaining 
observability, we compute
0(𝑅) = 𝑅 1(𝑅) = 2𝜆𝐼 2(𝑅) = 4𝜆(𝛽𝑆 − 𝜆)𝐼

and construct the associated Jacobian matrix given by

 =
⎛

⎜

⎜

⎝

∇0(𝑅)
∇1(𝑅)
∇2(𝑅)

⎞

⎟

⎟

⎠

.

That is, each row of the Jacobian matrix consists of a gradient vector 
of the Lie derivatives with respect to the state variables of the system. 
When 𝑅(𝑡) is observed, the Jacobian matrix is 

 =
⎛

⎜

⎜

⎝

0 0 1
0 2𝜆 0

4𝜆𝛽𝐼 4𝜆(𝛽𝑆 − 𝜆) 0

⎞

⎟

⎟

⎠

, (9)

which has full rank provided 𝜆 ≠ 0, 𝛽 ≠ 0, and 𝐼 ≠ 0. Having full rank 
implies the system is observable.

The corresponding differential embedding is bijective. Consider the 
embedding 𝛷(𝑆, 𝐼, 𝑅) = (𝑅, 𝑅̇, 𝑅̈)𝑇 = (𝑅, 𝜆𝐼, 𝜆(𝛽𝑆𝐼 − 𝜆𝐼))𝑇 . This is 
bijective.

Proof.  To prove injectivity, let 𝛷(𝑆1, 𝐼1, 𝑅1) = 𝛷(𝑆2, 𝐼2, 𝑅2). Then
⎛

⎜

⎜

𝑅1
𝜆𝐼1

⎞

⎟

⎟

=
⎛

⎜

⎜

𝑅2
𝜆𝐼2

⎞

⎟

⎟

⎝ 𝜆(𝛽𝑆1𝐼1 − 𝜆𝐼1) ⎠ ⎝ 𝜆(𝛽𝑆2𝐼2 − 𝜆𝐼2) ⎠

4 
This clearly implies 𝑅1 = 𝑅2 and 𝐼1 = 𝐼2. Finally, we have 𝜆(𝛽𝑆1𝐼1 −
𝜆𝐼1) = 𝜆(𝛽𝑆2𝐼2−𝜆𝐼2). Since 𝐼1 = 𝐼2, this implies 𝑆1 = 𝑆2 and injectivity 
is proved. For surjectivity, take 𝛷(𝑆, 𝐼, 𝑅) = (𝑎, 𝑏, 𝑐)𝑇  for some (𝑎, 𝑏, 𝑐)𝑇
in the codomain of 𝛷. Then clearly we can take 𝑅 = 𝑎, 𝐼 = 𝑏

𝜆  and 
𝑆 = 𝑐

𝜆𝛽𝑏 +
𝜆
𝛽  as a preimage and surjectivity is proved. □

One subtle point is that we must constrain the codomain of 𝛷 to 
be R3 ⧵ {(𝑎, 0, 𝑐) ∶ 𝑎, 𝑐 ∈ R} for it to be surjective. This is completely 
consistent with the Jacobian in Eq. (9), which says that 𝐼 ≠ 0 is 
necessary for observability. This is also consistent physically, since a 
situation where 𝐼 = 0 is not particularly interesting when studying the 
spread of disease.

With the bijectivity of the differential embedding established, it is 
sufficient to consider the Jacobian of various embeddings to deter-
mine whether or not the observed variable renders the full system 
observable. From this perspective, we next show that observing 𝐼 in 
the absence of the conserved quantity does not render the system 
observable.

Consider now the differential embedding 𝛹 (𝑆, 𝐼, 𝑅) = (𝐼, 𝐼̇ , 𝐼)𝑇 =
(𝐼, 𝛽𝑆𝐼 − 𝜆𝐼, (𝛽𝑆 − 𝜆)2𝐼 − 𝛽2𝑆𝐼2)𝑇 . Clearly, 𝛹 is not injective because 
the image of a point (𝑆, 𝐼, 𝑅) is agnostic to the value 𝑅 takes.

The conserved quantity renders 𝐼 a sufficient observable. Consider the 
same differential embedding 𝛹 = (𝐼, 𝐼̇ , 𝐼)𝑇 , but now let 𝐼 = 𝑁 −𝑆 −𝑅, 
where we solve for 𝐼 in the conserved population equation 𝑆 + 𝐼 +𝑅 =
𝑁 ∀𝑡. The corresponding differential equation system becomes
𝑑𝑆
𝑑𝑡

= −𝛽𝑆(𝑁 − 𝑆 − 𝑅)

𝑑𝐼
𝑑𝑡

= −𝑆̇ − 𝑅̇

𝑑𝑅
𝑑𝑡

= 𝜆(𝑁 − 𝑆 − 𝑅)

The corresponding differential embedding is

𝛹 =
⎛

⎜

⎜

⎝

𝐼
(𝛽𝑆 − 𝜆)(𝑁 − 𝑆 − 𝑅)

(𝛽𝑆 − 𝜆)2(𝑁 − 𝑆 − 𝑅) − 𝛽2𝑆(𝑁 − 𝑆 − 𝑅)2

⎞

⎟

⎟

⎠

Then, the resulting Jacobian is 

( 𝜕𝛹
𝜕𝐗

)

=
⎛

⎜

⎜

⎝

0 1 0
𝛽(𝑁 − 2𝑆 − 𝑅) 0 𝜆 − 𝛽𝑆

𝐹 (𝑆,𝑅) 0 −(𝛽𝑆 − 𝜆)2 + 2𝛽2𝑆(𝑁 − 𝑆 − 𝑅)

⎞

⎟

⎟

⎠

(10)

where 𝐹 (𝑆,𝑅) = (𝛽𝑆−𝜆)(2𝛽(𝑁−𝑆−𝑅)−𝛽𝑆+𝜆)+𝛽2(𝑁−𝑆−𝑅)(3𝑆+𝑅−𝑁). 
Again, provided 𝛽 ≠ 0 and 𝜆 ≠ 0, 

(

𝜕𝛹
𝜕𝐗

)

 has full rank and renders the 
system observable with the observed variable being 𝐼(𝑡).

Relating the two embeddings. Since the system in Eq. (4) is observable, 
the embedding 𝛷(𝑆, 𝐼, 𝑅) = (𝑅, 𝑅̇, 𝑅̈)𝑇  is bijective. Let 𝛷̂(𝑅, 𝑅̇, 𝑅̈) = 𝛹 =
(𝐼, 𝐼̇ , 𝐼)𝑇  where 𝐼 = 𝜓(𝑆,𝑅) = 𝑁 − 𝑅 − 𝑆. Then, 𝛷̂ is a bijection such 
that the following diagram commutes.

R3 R3

R3

𝛷

𝛷̂

3.1.1. Relating to the graphical approach
In summary, the preceding discussion says that Eq. (4) is observable 

if the observed state is 𝑅(𝑡). This is consistent with what is obtained in 
the corresponding directed graph.

In the directed graph of the original SIR system, the only source 
node is 𝑅 (see Fig.  2A). The graphical approach for determining observ-
ability states that observing the source nodes of the directed graph of a 
system is necessary and sufficient to render the system observable. Con-
sistent with the analysis in the previous section, observing 𝑅 rendered 
Eq. (4) observable. Furthermore, in the original system, observing 𝐼 will
not render the system observable as 𝐼 is not a source node. However, 
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it can be made into a source node by invoking the conserved quantity 
and transforming the system by setting 𝐼 = 𝑁 − 𝑆 − 𝑅 (see Fig.  2B). 
In the transformed system, 𝐼 is the only source node, thereby making 
the system observable by observing 𝐼 . We note that if we make the 
transformation 𝑆 = 𝑁 −𝑅−𝐼 , then 𝑆 will become the source node and 
it will be sufficient to observe 𝑆 to render the system observable.

A main takeaway is that the existence of the conserved quantity 
allows for more flexibility in tracking an epidemic from the perspective 
of the SIR model. Sans the conserved quantity, one can strictly observe 
only 𝑅, the number of recovered individuals, to understand the full 
system. Simply observing only 𝑆 or only 𝐼 will not do the job. However, 
the existence of the conserved quantity says that observing any one of 
the state variables is sufficient to completely understand the system. 
Thus, trackers of epidemics have flexibility in measuring the epidemic 
by observing any one of the subpopulations—whichever one is easiest.

3.2. Michaelis–Menten kinetics

The simplest enzyme kinetics are Michaelis–Menten kinetics, ap-
plied to enzyme-catalyzed reactions of one substrate and one prod-
uct [37]. An enzyme E binds with its substrate S to form a complex 
ES which then dissociates into E and P, the product of the enzymatic 
reaction. The reaction network is as follows: 

E + S
𝑘1

←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←
𝑘−1

ES
𝑘2

←←←←←←←←←←←←←←←←←→ E + P (11)

where 𝑘1, 𝑘−1, 𝑘2 are rate constants quantitating the corresponding 
reactions. Using the law of mass action, we can derive a model charac-
terizing reaction (11). Let 𝑒 ≡ [𝐸], 𝑠 ≡ [𝑆], 𝑐 ≡ [𝐸𝑆],  and 𝑝 ≡ [𝑃 ]. Then 
we have [38] 
𝑑𝑒
𝑑𝑡

= (𝑘−1 + 𝑘2)𝑐 − 𝑘1𝑒𝑠

𝑑𝑠
𝑑𝑡

= 𝑘−1𝑐 − 𝑘1𝑒𝑠

𝑑𝑐
𝑑𝑡

= 𝑘1𝑒𝑠 − (𝑘−1 + 𝑘2)𝑐

𝑑𝑝
𝑑𝑡

= 𝑘2𝑐

(12)

There are two conserved quantities in this system: 
𝑒 + 𝑐 = 𝐸0

𝑠 + 𝑐 + 𝑝 = 𝑆0
(13)

where 𝐸0 ∈ R represents the initial amount of enzyme in the system 
and 𝑆0 ∈ R is the initial amount of substrate. Because these quantities 
are user-controlled, 𝐸0 and 𝑆0 can be construed as implicit inputs to 
the enzymatic system, Eq. (12). The two conserved quantities allow for 
dimensional reduction of system (12) to a planar system 
𝑑𝑠
𝑑𝑡

= 𝑘−1𝑐 − 𝑘1(𝐸0 − 𝑐)𝑠

𝑑𝑐
𝑑𝑡

= 𝑘1(𝐸0 − 𝑐)𝑠 − (𝑘−1 + 𝑘2)𝑐
(14)

By rescaling 𝑠, 𝑐, and 𝑡 and assuming that the concentration of substrate 
vastly outweighs the concentration of enzyme, we can derive the 
nondimensionalized system 
𝑑𝜎
𝑑𝜏

= −𝜎 + (1 − 𝜂 + 𝜎)𝜌

𝜀
𝑑𝜌
𝑑𝜏

= 𝜎 − (1 + 𝜎)𝜌
(15)

where 𝜎 ≡ 𝑘1𝑠∕(𝑘−1+𝑘2), 𝜌 ≡ 𝑐∕𝐸0, 𝜏 ≡ 𝑘1𝐸0𝑡. We define the dimension-
less parameters 𝜀 ≡ 𝐸0𝑘1∕(𝑘−1+𝑘2) and 𝜂 ≡ 𝑘2∕(𝑘−1+𝑘2) with 0 < 𝜀 ≪ 1. 
We can thereafter invoke the stationary state approximation [39] and 
project onto the slow manifold [40] by assuming 𝜌 = 𝜎(1 + 𝜎)−1. 
Substituting this expression into the differential equation for 𝑝 then 
yields the classical Michaelis–Menten equation: 
𝑑𝑝

=
𝑉max𝑠 (16)
𝑑𝑡 𝐾 + 𝑠

5 
where 𝑉max ≡ 𝑘2𝐸0 is the fastest rate possible at which product P can 
be synthesized and 𝐾 ≡ (𝑘−1 + 𝑘2)∕𝑘1 is the dissociation constant.

The derivation and generalization of Eq. (16) to more complicated 
enzyme–substrate mechanisms are a central focus in the theoretical 
biochemical literature [37,41]. While such derivations are important 
for the description of biochemical processes, they do not inform ex-
perimentalists of the ramifications of the theoretical models to the 
experiments themselves.

The conserved quantities in the Michaelis–Menten system confine 
the 4D dynamics to a two-dimensional submanifold, thereby allotting 
the desirable property of analytic tractabillity in the system. But what 
does the conserved quantity imply for experimentalists? Broadly, the 
existence of a conserved quantity consisting of variables that correspond 
to sources in the directed graph representation1 increases the number of 
variables that render the full system observable.

The reaction diagram for system (12) is shown in Fig.  3A. The 
product P is the only source, implying that to understand the full 
system (i.e., to render the system observable), one must observe P. In 
an experimental setting, the kinetics of a given enzyme are measured 
and calculated from the observed dynamics of P. In a real setting, if P is 
easily measurable, then the situation at hand is no problem. However, 
in many situations, the product P is not directly measurable [37]. 
One must find an alternative to derive the kinetics of the correspond-
ing enzymatic reaction. We demonstrate here that the presence of 
conserved quantities involving source terms allow for more freedom 
in observing the system. We now systematically examine how the 
conserved quantities given in Eqs. (13) alter the reaction diagram.

3.2.1. Enzyme conservation
Let us suppose that we only impose enzyme conservation in the 

system. How does this alter the reaction diagram? In this case, we set 
𝑒 = 𝐸0 − 𝑐, and the Michaelis–Menten system becomes 
𝑑𝑒
𝑑𝑡

= −𝑑𝑐
𝑑𝑡

𝑑𝑠
𝑑𝑡

= 𝑘−1𝑐 − 𝑘1(𝐸0 − 𝑐)𝑠

𝑑𝑐
𝑑𝑡

= 𝑘1(𝐸0 − 𝑐)𝑠 − (𝑘−1 + 𝑘2)𝑐

𝑑𝑝
𝑑𝑡

= 𝑘2𝑐.

(17)

Following our formalism for obtaining the corresponding reaction dia-
gram, we obtain the diagram shown in Fig.  3B. It now has two sources: 
E and P. This means that to render the system observable, one must 
observe the dynamics of both E and P. Although the conserved quantity 
greatly simplifies mathematical analysis, the existence of this conserved 
quantity thus complicates the experimental setting. The issue arises 
because the imparted conserved quantity does not consist of the source 
from the full system, P.

We note that the reaction diagram would have a similar issue even 
if we took 𝑐 = 𝐸0 − 𝑒 in the conserved quantity.

3.2.2. Substrate conservation
Now let us examine what happens when we impart substrate con-

servation. In this case, we set 𝑐 = 𝑆0 − 𝑠 − 𝑝, rendering system (12) as 

𝑑𝑒
𝑑𝑡

= (𝑘−1 + 𝑘2)(𝑆0 − 𝑠 − 𝑝) − 𝑘1𝑒𝑠

𝑑𝑠
𝑑𝑡

= 𝑘−1(𝑆0 − 𝑠 − 𝑝) − 𝑘1𝑒𝑠

𝑑𝑐
𝑑𝑡

= −𝑑𝑠
𝑑𝑡

−
𝑑𝑝
𝑑𝑡

𝑑𝑝
𝑑𝑡

= 𝑘2(𝑆0 − 𝑠 − 𝑝)

(18)

1 In the enzyme kinetics section of this paper, we will describe observability 
strictly through the graphical approach.



B.R. Karamched et al. Physica D: Nonlinear Phenomena 477 (2025) 134714 
Fig. 3. Reaction graphs corresponding to the Michaelis–Menten system. (A) The full model. (B) The model with enzyme conservation imposed. (C) The model with enzyme 
conservation and substrate conservation imposed. (D) The model with substrate conservation imposed.
The corresponding reaction diagram is given in Fig.  3D. There is again 
only one source: C. All other nodes have incoming edges including 
self loops. The implication here is that now we need only observe C 
to understand the system. Furthermore, if we had set 𝑠 = 𝑆0 − 𝑐 − 𝑝
instead, the only source in the resulting reaction diagram would be S, 
meaning we need to only observe S to render the system observable. 
The experimental implication is that one can observe the dynamics of 
any of S, C, or P to completely understand the system. Hence, if any 
of S, C, or P are measurable in a laboratory setting, the system can be 
understood. Thus, the conserved quantity consisting of the source node 
vastly expanded the number of state variables the we can measure to 
render the system completely observable.

3.2.3. Enzyme and substrate conservation
What happens if we impose conservation of both enzyme and sub-

strate? Does this simplify the system further? In this case, we set 𝑐 =
𝑆0 − 𝑠 − 𝑝 and 𝑒 = 𝐸0 − 𝑐 = 𝐸0 − 𝑆0 + 𝑠 + 𝑝. The system becomes 
𝑑𝑒
𝑑𝑡

= 𝑑𝑠
𝑑𝑡

+
𝑑𝑝
𝑑𝑡

𝑑𝑠
𝑑𝑡

= 𝑘−1(𝑆0 − 𝑠 − 𝑝) − 𝑘1(𝐸0 − 𝑆0 + 𝑠 + 𝑝)𝑠

𝑑𝑐
𝑑𝑡

= −𝑑𝑠
𝑑𝑡

−
𝑑𝑝
𝑑𝑡

𝑑𝑝
= 𝑘 (𝑆 − 𝑠 − 𝑝)

(19)
𝑑𝑡 2 0

6 
The corresponding reaction diagram is shown in Fig.  3C. Again, the 
diagram depicts two source nodes (E and C), implying one must observe 
both C and E to understand the system. This is, of course, incorrect.

The above analysis brings to light an important point: one must 
not conclude that theoretical conserved quantities imply positive ex-
perimental ramifications. Indeed, if one only analyzed the model with 
both substrate and enzyme conservation, they would conclude that one 
must observe two state variables to understand the enzymatic system. 
Conserved quantities that do not include source node state variables 
do not inform the observability of the system. The conserved quantity 
𝑠 + 𝑐 + 𝑝 = 𝑆0, on the other hand, yields a correct interpretation of 
observability. Namely, any one of the terms involved in the conserved 
quantity can be observed to understand the system.

4. Conclusions

We summarize the main contributions of this manuscript as follows. 
Most generally, we have proved a theorem conveying that observable 
dynamical systems with conserved quantities that involve source nodes 
in the corresponding directed graph representation of the system can 
be recast so that many more system outputs than originally thought 
could be observed to render the system observable. We used differential 
embeddings to prove this. In effect, we generalized the observabil-
ity criteria provided by the graphical approach and the rank-based 
approach of differential embeddings.
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Our approach has important implications for physical and biological 
sciences. Namely, we argue that systems with conserved quantities 
exhibit more flexibility in what must be observed for the full system 
to be understood. We demonstrate this with two concrete biological 
examples with conserved quantities: the constant population SIR model 
and the classical Michaelis–Menten system for enzymatic reactions. For 
the former model, the original system necessitates observation of 𝑅(𝑡) to 
render the system observable. However, the conserved quantity allows 
any one of 𝑆, 𝐼 , or 𝑅 to be observed for the system to be observable. 
Similarly, the classical Michalis-Menten system requires observation of 
the product, 𝑃 (𝑡), to render the system observable. The appropriate 
conserved quantity allows for product, substrate, or enzyme–substrate 
complex to be observed for the full system to be understood. Such flexi-
bility can be the difference between success and failure in experimental 
settings.

For dynamical systems exhibiting multiple conserved quantities, our 
method identifies the ‘correct’ submanifold of phase space to which 
dynamics should be projected to obtain alternative observables that 
render the full system observable. Only conserved quantities that incor-
porate source nodes of the associated directed graph of the dynamical 
system can yield other outputs of the system that render the dynamical 
system observable. Employing conserved quantities that do not involve 
source nodes yield no benefit from the observability perspective. More-
over, conserved quantities that are hidden in systems but provide no 
physical interpretation can also be unavailing (see Appendix  B for an 
example).

Mathematically, we contribute to the rich mosaic of literature avail-
able on controllable and observable systems. Our method will be of 
interest because it expands upon and improves the popular meth-
ods given by the graphical approach and the rank-based differential 
embeddings approach.
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Appendix A. A very small example

As a toy example, for any nonzero number 𝑎, we examine the 
two-variable linear system 
𝑑𝑅
𝑑𝑡

= 𝑎𝑅

𝑑𝑆
𝑑𝑡

= −𝑎𝑅
(20)

We analyze the toy example explicitly, using the algebraic method, 
using the graphical method, and then the updated graphical method 
with conserved quantities. 
7 
A.0.1. Explicit
Eq.  (20) can be explicitly solved as 𝑅 = 𝑅0𝑒𝑎𝑡 and 𝑆̇ = −𝑎𝑅0𝑒𝑎𝑡 so 

𝑆 = 𝑆0 + 𝑅0 − 𝑅0𝑒𝑎𝑡.
We might observe 𝑦 = 𝑔(𝑅,𝑆) = 𝑅 in order to find 𝑦(0) = 𝑅0 and 

𝑦̇(0) = 𝑎𝑅0, but this does not reveal 𝑆0 and therefore 𝑆(𝑡) could not be 
recovered.

We might observe 𝑦 = 𝑔(𝑅,𝑆) = 𝑆 in order to find 𝑦(0) = 𝑆0 and 
𝑦̇(0) = −𝑎𝑅0. We can recover 𝑅0 = − 1

𝑎 𝑦̇(0) and 𝑆0 = 𝑦(0). Hence we can 
recover 𝑅(𝑡) and 𝑆(𝑡).

In other words, 𝑅 is not a sufficient observable, but 𝑆 is a sufficient 
observable. There are no degenerate parameters (assuming 𝑎 ≠ 0) or 
initial conditions. 
Observed 𝑅0 𝑆0 Degenerate

𝑅 𝑦0 unobservable all

𝑆 −1
𝑎
𝑦̇0 𝑦0 none

A.0.2. Algebraic
As Eq.  (20) is linear, we can easily use the algebraic characterization 

of observability.
Let 𝑥⃗(𝑡) =

[

𝑅(𝑡)
𝑆(𝑡)

]

 and 𝐴 =
[

𝑎 0
−𝑎 0

]

 so that 𝑥̇ = 𝐴𝑥.

If we observe 𝑦 = 𝑔(𝑅,𝑆) = 𝑅, then 𝐶 =
[

1 0
] and the 

observability matrix is 𝑂 =
[

𝐶
𝐶𝐴

]

=
[

1 0
𝑎 0

]

 which does not have full 
rank, so we cannot recover 𝑆.

If we observe 𝑦 = 𝑔(𝑅,𝑆) = 𝑆, then 𝐶 =
[

0 1
] and the 

observability matrix is 𝑂 =
[

0 1
−𝑎 0

]

 which is full rank and 𝑆 is a 
sufficient observable.

Thus again 𝑅 is not a sufficient observable, but 𝑆 is a sufficient 
observable.

A.0.3. Graphical
Using the graphical approach, we get ↻ 𝑅 ← 𝑆. Hence we expect 

that 𝑆 is a sufficient observable, and 𝑅 is not. This agrees with our 
previous analysis.

A.0.4. Conserved
We note that ℎ(𝑅,𝑆) = 𝑅+𝑆 is a conserved quantity. If we observe 

both it and 𝑅, then we can rewrite the system as: 
𝑑𝑅
𝑑𝑡

= −𝑑𝑆
𝑑𝑡

𝑑𝑆
𝑑𝑡

= −𝑎(𝑄0 − 𝑆)
(21)

with our modified graph 𝑅 → 𝑆 ↻ . Hence we expect that 𝑅 is a 
sufficient observable if the conserved quantity 𝑄0 is also available. We 
verify this explicitly:

If we observe 𝑔(𝑅,𝑆) = 𝑅, then we would know 𝑅(0) = 𝑅0 and 
𝑅̇(0) = 𝑎(𝑄0 − 𝑆(0)). We can solve for 𝑆(0) = 𝑄0 − 1

𝑎 𝑅̇(0). Hence 
we can recover 𝑅0 and 𝑆0 and thus all 𝑅(𝑡) and 𝑆(𝑡). Alternatively, 
𝑅(0) + 𝑆(0) = 𝑄0 immediately yields 𝑆(0) = 𝑄0 − 𝑅0.

Note that our formula for 𝑆0 involves the conserved quantity 𝑄0, 
but in a very simple way.

In order to rule out other graphical results, we classify all conserved 
quantities. If ℎ(𝑅,𝑆) is any conserved quantity, then it must be constant 
on the trajectories (𝑅0𝑒𝑎𝑡, 𝑆0+𝑅0−𝑅0𝑒𝑎𝑡). Letting 𝑎𝑡 → −∞, we get that 
ℎ(𝑅,𝑆) = ℎ(0, 𝑆 + 𝑅) = 𝑘(𝑅 + 𝑆) is a function 𝑅 + 𝑆, so our conserved 
quantity 𝑄0 = 𝑅0 + 𝑆0 = 𝑅(𝑡) + 𝑆(𝑡) is the most general possible.

The only graphical representations possible using the conserved 
method are:

• ↻

𝑅 ← 𝑆 with no conserved quantities observed, and
• 𝑅 → 𝑆  with the conserved quantity 𝑅 + 𝑆  observed.
↻ 0 0
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Appendix B. An example where conserved quantities are not use-
ful

The Lotka–Volterra predator–prey example has parameters 𝑅 > 0, 
𝐷 > 0, 𝐵 > 0, 𝑀 > 0 describing the prey Reproductive rate, the Death 
probability when prey and predator meet, the Benefit of a meeting 
of prey and predator to the predator, and the Mortality rate of the 
predator in the absence of prey. We let 𝑟 be the prey (rabbits), and 
𝑚 be the predators (monsters). 
𝑑𝑟
𝑑𝑡

= 𝑅𝑟 −𝐷𝑟𝑚

𝑑𝑚
𝑑𝑡

= 𝐵𝑟𝑚 −𝑀𝑚
(22)

We again analyze repeatedly.

B.0.1. Explicit
There is no explicit solution for 𝑟(𝑡) and 𝑠(𝑡). However, we can 

still provide explicit recovery formulas for 𝑟0 and 𝑚0, including the 
degenerate solution spaces.

If we observe 𝑦 = 𝑔(𝑟, 𝑚) = 𝑟, then we know 𝑦0 = 𝑟0 and 𝑦̇0 =
𝑅𝑟0−𝐷𝑟0𝑚0. If 𝑟0 ≠ 0, then we may recover 𝑟0 = 𝑦0 and 𝑚0 =

𝑅
𝐷

− 1
𝐷
𝑦̇0
𝑦0
. 

If 𝑟0 = 0, then 𝑟(𝑡) ≡ 0, and 𝑚(𝑡) = 𝑚0𝑒−𝑀𝑡 with 𝑚0 arbitrary. Hence 
when 𝑟0 = 0, 𝑟0 is not a sufficient observable, but otherwise it is.

Similarly, if we observe 𝑦 = 𝑔(𝑟, 𝑚) = 𝑚, then we know 𝑦0 = 𝑚0 and 
𝑦̇0 = 𝐵𝑟0𝑚0 −𝑀𝑚0. If 𝑚0 ≠ 0, then we may recover 𝑟0 = 𝑀

𝐵
+ 1
𝐵
𝑦̇0
𝑦0
. If 

𝑚0 = 0, then 𝑚(𝑡) ≡ 0 and 𝑟(𝑡) = 𝑟0𝑒𝑅𝑡 with 𝑟0 arbitrary.
Hence each population is a sufficient observable, assuming it is not 

zero. 
Observed 𝑟0 𝑚0 Degenerate

𝑟 𝑦0
𝑅
𝐷

− 1
𝐷
𝑦̇0
𝑦0

𝑦0 = 0

𝑚 𝑀
𝐵

+ 1
𝐵
𝑦̇0
𝑦0

𝑦0 𝑦0 = 0

B.0.2. Algebraic
While the system is not linear, we can linearize near a stationary 

point, and check there.

𝑥⃗ =

⎡

⎢

⎢

⎢

⎣

𝑟 − 𝑀
𝐵

𝑚 − 𝑅
𝐷

⎤

⎥

⎥

⎥

⎦

 and 𝐴 =
⎡

⎢

⎢

⎣

0 −𝐷𝑀
𝐵

𝐵𝑅
𝐷

0

⎤

⎥

⎥

⎦

 and 𝑥̇ ≈ 𝐴𝑥⃗.

If we observe 𝑦 = 𝑔(𝑟, 𝑚) = 𝑟, then 𝐶 =
[

1 0
] and 𝑂 =

[

1 0
0 −𝐷𝑀

𝐵

]

is full rank, so 𝑟 is a sufficient observable as expected.
If we observe 𝑦 = 𝑔(𝑟, 𝑚) = 𝑚, then 𝐶 =

[

0 1
] and 𝑂 =

[

0 1
𝐵𝑅
𝐷

0

]

is full rank, so 𝑚 is a sufficient observable as expected.
Here 𝑥̇1 −𝐴1,∶𝑥⃗ = −𝐷𝑥1𝑥2 and 𝑥̇2 −𝐴2,∶𝑥⃗ = 𝐵𝑥1𝑥2, so our results are 

valid in some open neighborhood of the stationary point. Indeed, our 
explicit results, show that our results are valid as long as 𝑟0 > 0 and 
𝑚0 > 0.

B.0.3. Graphical
We have a complete graph: ↻ 𝑟 ↔ 𝑚 ↻ , so we expect each 

population to be a sufficient observable, agreeing with our previous 
analysis.

B.0.4. Conserved
There is a conserved quantity, found by separation of variables 

on 𝑑𝑚
𝑑𝑟

= 𝐵𝑟𝑚 −𝑀𝑚
𝑅𝑟 −𝐷𝑟𝑚

 to get 𝑅𝑟 −𝐷𝑟𝑚
𝑟𝑚

𝑑𝑚 = 𝐵𝑟𝑚 −𝑀𝑚
𝑟𝑚

𝑑𝑟 and so 
∫ (𝑅 1

𝑚 −𝐷)𝑑𝑚 = ∫ (𝑁 −𝑀 1
𝑟 )𝑑𝑟 and so 𝑅 ln(𝑚) −𝐷𝑚 = 𝐵𝑟−𝑀 ln(𝑟) +𝑄0. 

Hence ℎ(𝑟, 𝑚) = 𝑅 ln(𝑚) +𝑀 ln(𝑟) −𝐷𝑚 − 𝐵𝑟 is a conserved quantity.
Each trajectory (other than the stationary point (𝑟, 𝑚) =

(𝑀
𝐵
, 𝑅
𝐷

)

) 
consists of the entire curve given by the implicit equation ℎ(𝑟, 𝑚) = 𝐶
8 
for a unique 𝐶 > ℎ
(𝑀
𝐵
, 𝑅
𝐷

)

. In particular, every conserved quantity 
ℎ2(𝑟, 𝑚) must be equal to 𝑘(𝐶) = 𝑘(ℎ(𝑟, 𝑚)) for some function 𝑘, and this 
conserved quantity is the most general conserved quantity.

However, using the conserved quantity does not affect our graphical 
methods. We would simply have to observe both 𝐶 and either 𝑦 = 𝑟 or 
𝑦 = 𝑚. Since merely observing 𝑦 = 𝑟 or 𝑦 = 𝑚 was already sufficient, 
nothing is gained by additionally observing 𝐶.

This matches the intuitive feeling that the conserved quantity ℎ(𝑟, 𝑚)
is not of much use in solving this system. Its main use seems to be 
showing the trajectories are bounded.

Data availability

No data was used for the research described in the article.
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