Cancer therapy remains challenging due to the myriad presentations of the disease and the vast genetic diversity of tumors that continuously evolve and often become resistant to therapy. Viruses can be engineered to specifically infect, replicate, and kill tumor cells (tumor virotherapy). Moreover, the viruses can be “armed” with therapeutic genes to enhance their oncolytic effect. Using viruses to treat cancer is exciting and novel and in principle can be used for a broad variety of tumors. However, the approach is distinctly different from other cancer therapies since success depends on establishment of an infection within the tumor and ongoing propagation of the oncolytic virus within the tumor itself. Therefore, the target itself amplifies the therapy. This introduces complex dynamics especially when the immune system is taken into consideration as well as the physical and other biological barriers to virus growth. Understanding these dynamics not only requires mathematical and computational models but also approaches for the noninvasive monitoring of the virus and tumor populations. In this perspective, we discuss strategies and current results to achieve this important goal of understanding these dynamics in pursuit of optimization of oncolytic virotherapy.

Introduction

Over the last decades, we have witnessed great progress in the understanding and therapy of cancer ever since the “war on cancer” was declared in 1971 with the signing of the National Cancer Institute Act. A revolution has occurred with the development of many approaches, including preventive therapies, cancer surveillance, organ sparing surgery, and the development of novel therapies, including monoclonal antibodies, targeted therapies such as tyrosine kinase inhibitors, safer chemotherapeutic agents, proton beam therapy, stem cell transplantation and more recently bispecific T-cell engagers, and chimeric antigen receptor-targeted T cells (CAR-T) [1]. These therapeutic modalities have all improved survival for patients with many different tumor types. The field accelerated further with the “omics” revolution, and now the prospect of personalized targeted therapy based on the identification of tumor-specific driver mutations appears to be at hand, at least for some tumors. However, it is also clear that most tumors recur due to the
emergence of resistant subclones that in the presence of therapy are positively selected, leading to disease relapse and ultimately death [2,3]. Therefore, the need for novel therapeutic approaches remains.

An emerging field of tumor therapy is the use of replication competent viruses to treat cancer [4–6]. To date, at least two virus-based therapies have been approved for cancer therapy: Ad-p53 (Gendicine) for head and neck cancer and talimogene laherparepvec (IMLYGIC) for injection in nonresectable malignant melanoma skin lesions and local lymph nodes. Viruses have evolved over millions of years to specifically infect, replicate, and propagate in cells where they hijack the cellular machinery for their own reproduction [4,5,7]. Perhaps fortuitously, many of the mutations that lead to the cancer phenotype are taken advantage of by viruses to enable them to preferentially infect, replicate in, and kill cancer cells [5–7]. Moreover, other viruses can be engineered to exploit differences between normal and cancer cells to spread only within the tumor cell population [8]. These observations have led to the development of tumor virotherapy, where either naturally occurring or engineered viruses are injected in patients with the specific purpose of selectively infecting and replicating within the tumor cell population leading to its demise [5]. Viruses can be engineered to enhance their potency, shielded from the immune response, or to optimally work with combination therapy including immunomodulation [4,9]. Recently, proof of principle that patients with a disseminated malignancy can be cured by a single dose of a replication competent virus was reported [10]. A patient with relapsed and refractory multiple myeloma who had failed essentially every therapeutic modality available, including stem cell transplant, was injected with a single, systemic dose of a recombinant, replication competent measles virus (MV) engineered to express the human thyroidal sodium iodide symporter (MV-NIS), at a dose of 1 x 10¹¹ TCID₅₀ [10,11]. This single dose of MV-NIS led to disease control (documented by a bone marrow biopsy that did not show any clonal plasma cells, negative positron emission tomography combined with computerized tomography (PET/CT), and normalization of the monoclonal protein studies) without the need for additional therapy for over 5 years [10]. Moreover, recombinant MV has shown promise against a wide variety of other tumor types including non-Hodgkin lymphoma [12], ovarian carcinoma [13], cerebral glioma [14], pancreatic carcinoma [15], pleural mesothelioma [16], medulloblastoma [17], and prostate carcinoma [18] in animal models. The Edmonton vaccine strain of MV enters cells by preferentially binding the viral hemagglutinin (H) protein to CD46 that is overexpressed by many tumor cells [19]. Moreover, the “H” protein can be mutated to negate CD46 binding [20] and re-engineered to specifically bind to target proteins such as CD38 [21,22], CD20 [23], carinoembryonic antigen (CEA) [24], and epidermal growth factor receptor (EGFR) [25] and therefore restricting entry of the virus to myeloma cells, B cells, colonic tumor cells, and head and neck cancer, respectively. Many other viruses are currently being studied as oncolytic agents including adenovirus [26], herpes simplex virus [27], reovirus virus [28], vesicular stomatitis virus [29], and Coxsackievirus [30] vaccinia virus [31–34] and retroviral vectors [35] among others. A partial list of current clinical trials of oncolytic virotherapy can be found in [36,37]. Moreover, a search in ClinicalTrials.gov using the terms ‘cancer’ and virotherapy yields a list of 55 clinical trials that are either actively recruiting patients or have recently closed to accrual. Valuable information can be gained from such clinical studies if the site and extent of viral infection and replication could be determined quantitatively.

In order to enable in vivo imaging of an oncolytic virus, we had generated MV-NIS, a replication competent virus that has been engineered to express the human thyroidal sodium iodide symporter (NIS) [11]. NIS expression by infected tumor cells enables them to concentrate radioactive isotopes that serve two purposes: (a) It allows the determination of the in vivo biodistribution of the virus-infected cells using single-photon emission computed tomography (SPECT)/CT with ¹²³I or ⁹⁹ᵐTcO₄⁻ or PET/CT imaging when combined with ¹²⁴I or ¹⁸F tetrafluorooborate (TFB) [11,38–41]. Similar observations have been made with adenovirus expressing NIS in other animal models [42,43] and in human studies [44,45]. (b) In addition, administration of ¹³¹I enables the killing of tumor cells that are resistant to virus-mediated oncolysis, together with death of neighboring uninfected tumor cells due to a bystander effect [11,38]. The latter is due to the macroscopic path length of the beta particles (electrons) that are emitted during the decay of ¹³¹I and that are able to travel across several cell diameters before being absorbed by surrounding tumor cells leading to their death [39]. In principle, other isotopes with more favorable physical characteristics (e.g., physical half-life of the isotope compared to its retention within the tumor, longer path length of the emitted electron or isotopes that decay by alpha particle emission such as astatine [46]) can be used for better disease control [39,42,47,48] providing a multipronged approach to cancer therapy.
The success of therapy in one patient with relapsed multifractory multiple myeloma mentioned earlier [10] testifies to the promise of the approach of tumor virotherapy but major hurdles remain. Indeed, subsequent patients with advanced multiple myeloma who were treated on the same protocol (N = 11) did not achieve such a sustained response [49]. Although many of these patients experienced a reduction in tumor burden, as measured by the size of the monoclonal protein, and had evidence of infection of diverse tumor sites by the virus documented with radionuclide isotope imaging, the responses were transient and they ultimately all progressed over the course of 2 months after MV-NIS administration. Several mechanisms can explain these outcomes, including that (a) the virus could not spread rapidly enough within the tumor sites to achieve long-lasting control of the disease (kinetic limitation), (b) local barriers limited virus spread (physical barriers), (c) eventual immune clearance of the virus led to failure of therapy, and (d) some tumor sites were never infected in the first place allowing the tumor to regrow once the immune system had cleared the virus. It is important to note that the patients studied in this Phase 1 trial did not have pre-existing neutralizing antibodies against MV prior to virus administration. Moreover, imaging studies in these patients confirmed successful infection of macroscopic tumor deposits. However, despite their prior heavy therapies, all patients mounted a robust and specific anti-MV immune response. This implies that oncolytic virotherapy with a specific virus may be a one-shot approach to therapy and patients have to be chosen carefully for optimal results since currently it appears unlikely that a second injection with MV-NIS (or other oncolytic viruses of the same clade) would be possible, unless the virus is pseudotyped to bypass the immune response [50].

If we want to reliably and consistently achieve successful outcomes with these novel therapies, the complex dynamic interactions that exist among the tumor, the virus, and likely immune response as well as the mechanisms and biochemical or biophysical barriers that may hinder or facilitate virus spread and tumor killing need to be understood. In essence, this is the equivalent of classical drug pharmacokinetics but with a twist. Tumor therapy with replicating oncolytic viruses is an exercise in population dynamics [51–66] since the approach in part depends on the amplification of the therapeutic agent (virus) by the target (tumor), a concept that is virtually unique to this approach to therapy (the other exception is immune effector cell therapy, e.g., CAR-T). Both in vitro and in vivo studies have shown that the outcomes of tumor therapy are highly variable, even when the same cell line is infected in vitro and in vivo with the same virus [67].

Virotherapy has many moving parts, and a large number of potential therapeutic scenarios exist that make it impossible to perform every plausible experiment in animal models to understand the outcomes. In silico studies of such dynamics can be extremely useful to narrow down the universe of possibilities, which reduce the number of in vivo studies that need to be performed to test such hypotheses. Therefore, the development of accurate computational models that capture in a realistic fashion the dynamics of such systems is highly desirable. Many models that describe the dynamics of tumor virotherapy exist. Some are based on the Lotka–Volterra “predator–prey” model [53–58,65], and others are based on partial differential equations [59,61,62] that capture diffusion of the virus, while others take into consideration the effect of space [51,68–71] and even include stochastic dynamics [66,68,69,71]. Often these models contain many free parameters, and the data available for fitting are limited and generally restricted to macroscopic values of estimated tumor population size and perhaps some of the “initial conditions.” Therefore, the process of data fitting and parameter estimation can be quite challenging, and this ultimately limits the use of such models to make meaningful predictions that can be tested experimentally and incorporated in the process to optimize therapy [64].

Molecular imaging technology that can serially and noninvasively monitor in real time the dynamics of the tumor and virus populations without disturbing the system in the process is a novel approach that can add much-needed spatiotemporal data to greatly improve fitting parameters of the models and thus limit the parameter space for such mathematical modeling. Ideally, these systems can be used in both small animal models as well as large mammals including humans for ease of translation and reproducibility. Several attempts utilized radionuclide-based imaging such as 18F-labeled substrates for thymidine kinase [72], a dopamine D2 receptor [73], the human somatostatin receptor 2 (hSSRT2) [74], the human norepinephrine transporter (hNET) [75] or the thyroidal sodium iodide symporter (NIS) using both 99mTc or 123I (SPECT) [39,45] or 124I (PET) [40,43]. Bioluminescence imaging using luciferase as a reporter has also been utilized [76], although translation of this approach into larger animals is difficult. NIS can concentrate a variety of anions (125I, 99mTcO4) [39,45] that undergo various types of radionuclide decay leading to the release of gamma photons (SPECT imaging), alpha or beta.
particles (211At, 131I, therapeutic) [46], or positrons (124I, 18F TFB) that enable PET imaging [40,43].

Quantitative imaging in tumor virotherapy has been studied using two complementary imaging technologies: SPECT- or PET-based nuclear imaging [15,43,77–82] and, more recently, fluorescence-based imaging at a single-cell resolution using the implantable dorsal skinfold chamber (DSFC) with fluorescently labeled cells [83]. We discuss both in the following in detail.

Nuclear imaging

The initial attempts at in vivo tracking of oncolytic virus spread depended on NIS expression by virus-infected tumor cells that concentrate radioactive isotopes for serial in vivo imaging [84]. This approach may be suitable for human studies since the technology is already approved for use in humans and we have evidence of the applicability of this approach in clinical trials [10,49]. The fundamental concept is that infection of cancer cells by the oncolytic virus induces NIS expression that will lead to radioisotope uptake by the cells. Imaging using SPECT (or PET) will be able to quantify the isotope concentration in the tumor, and this will in turn be related to the amount of virus present in the tumor at that time [43,81,82]. Serial imaging should then provide information on the dynamics of the virus-infected cell population and indirectly about the oncolytic virus itself. Critical to this approach are the following features: (a) low to absent background isotope uptake/activity in the tumor, (b) rapid isotope elimination due to decay so as to prevent spillover effect from serial imaging [39], (c) the isotope has no impact on the virus population, and (d) reproducible and accurate quantification of the isotope activity in the tumor based on imaging [77,78].

Pictorially, the hypothesis is shown in Fig. 1A with a series of steps that follow logically one after the other. Initially, the hypothesis was tested in vitro by infecting tumor cells and assessing them for NIS expression both by radioactive isotope uptake and by gene expression using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) (Fig. 1B) [77]. Parallel serial studies also were performed to measure viable virus production and release from infected cells by titration of the collected supernatant on Vero cells.

In order to ensure that the results were robust and reproducible, two virus-encoded genes were quantitated—the “N” gene which is a structural viral gene and NIS itself (the reporter gene) (Fig. 1C). The genomic organization of MV-NIS is presented in Fig. 2. It is important to note that with this genome structure, one expects a higher level of “N” gene expression compared with “NIS” due to the “stuttering” of the viral polymerase when it reaches the end of each transcriptional unit present in the viral genome. We observed a strong linear relationship between infectious virus particles, viral N and NIS expression, and radioactive isotope uptake. Therefore, it appears that in vitro the hypothesis is correct.

Proving an association between isotope uptake and virus population in vivo (Fig. 1D) is experimentally more difficult due to the variability of infection within the tumor, the loss of signal from isotope due to tissue attenuation, and anisotropies between infected foci within the tumor. It is essential to establish that SPECT/CT imaging can accurately quantitate the isotope activity within the tumor. Therefore, once the imaging data were captured, each mouse was euthanized, the tumor was excised, and the activity in the tumor was measured using a dose calibrator (Fig. 3).

There was a high degree of correlation between the activity as measured by SPECT/CT imaging and the dose calibrator [77]. This is similar to what had been reported by Carlson et al. [78]. Similar observations have been made with PET based imaging using 124I in combination with NIS [43].

In vivo, a high correlation between viral “N” and “NIS” gene expression [77] was observed which suggests that the virus is behaving similarly in vitro and in vivo. The intratumoral concentration of radioactive isotope also correlated well with the levels of viral gene expression. Parts of the excised tumors were lysed, and virus was isolated. Viable virus was detected in all tumors isolated from mice injected with the oncolytic virus but in none of the controls. Moreover, while the control tumors did not express NIS to any extent (1.5 copies-ng$^{-1}$ RNA), the transgene was expressed in all tumors infected with the virus (76.9 copies-ng$^{-1}$ RNA, $P = 0.001$). As a consequence, isotope uptake mediated by NIS was significantly higher than background isotope activity in the control tumors, as also reported by other groups with other vector systems such as adenovirus [44,45,84], vesicular stomatitis virus [85] and vaccinia virus [86]. These observations are also supported by independent studies which showed that using a threshold of 1.5 times over the background activity of the isotope in the tumor could reliably predict that 2.7% of the tumor cells are infected with the oncolytic virus [79]. A significant correlation between the virus population isolated from the tumors and isotope uptake was found; however, it was lower than what had been observed in vitro. What could account for these differences?

Potential explanations were identified from the in vivo experiments, in which two MV-derived
oncolytics were studied: MV-NIS [11] and MV-I98A-NIS. The latter virus is derived from MV-NIS by a mutation in the viral hemagglutinin (H) gene with isoleucine (I) being replaced by alanine (A) at position 98. The phenotypic effect of this mutation is a reduced ability of the virus to fuse cells together [87, 88], and consequently, infected cells are killed more slowly. Tumors infected with MV-I98A-NIS had higher in vivo isotope activity although the peak was reached at a later time point due to slower kinetics of spread. This suggests that apart from the dynamics of the virus, the rate of expression of the transgene and how long the infected cells remain alive can have an impact on the ability to image and quantify the infected cell burden in vivo. Moreover, there is likely a threshold level of NIS expression that is needed for isotope to be concentrated in the tumor and detectable by SPECT/CT imaging [89].

The in vivo scenario introduces additional new variables that can influence the correlations between virus population and isotope uptake including (a) differences in the speed of replication and spread within the tumor.

Fig. 1. In vitro and in vivo correlations between reporter gene function and virus infection of tumor cells. In (A), we present the general hypothesis and experimental schema to determine whether in vivo imaging can be used to predict intratumoral oncolytic virus concentrations. In vivo correlations between (B) NIS mediated isotope uptake in the tumor and NIS gene expression, (C) viral ‘N’ gene and ‘NIS’ gene expression within the tumor xenografts and (D) intratumoral viable virus recovery versus isotope concentration. Strong positive correlations are found between all parameters, thus supporting our hypothesis.

Fig. 2. Schematic representation of the genome organization of the MV and its recombinant derivatives used in our studies. MV-Edm has 6 genes that are transcribed starting from the “N” (highest number of copies) to the “L” which is the viral RNA-dependent RNA polymerase. Additional transcription units can be introduced to add more genes such as blue fluorescent protein (BFP) upstream of “N” or the sodium iodide symporter (NIS), downstream of “H.” One of our vectors has both additional genes present to enable both fluorescent-based imaging and nuclide-based imaging of infected tumor cells.
and (b) anisotropies in the distribution of the virus. There is some evidence that the spatial relationships between cells may impact isotope retention by the tumor due to possible recycling of the isotope \(^{90}\)Tc. If this is true, then the spatial distribution of the infected cells with respect to one another becomes quite important. Unfortunately, the resolution provided by micro-SPECT/CT is not enough to allow proper quantification of the size of the infected tumor foci \(^{79}\) and imaging techniques with a higher resolution are needed. This is clearly an example where the average is not good enough since significant differences across animals and between metastatic tumor deposits within the same animal can be expected due to spatial anisotropies and stochastic effects with respect to both the tumor cells and the sites of tumor cell infection by the virus \(^{77,79,80,91}\). It is likely that accurate determination of the number of tumor cells, how many of them are infected, and the spatial distribution of infected cells within the tumor environment is required for better understanding of isotope-based imaging data.

Fluorescence imaging

Fluorescence-based imaging can provide single-cell resolution, and, in principle, quantify the number of cells in a given volume. With the advent of multiphoton microscopy and the use of the DSFC \(^{92}\), it is possible to determine \(\text{in vivo}\) the number of cells present in a specific volume of tumor. This technology was applied to determine oncolytic virus dynamics \(\text{in vivo}\) using the two MV platforms mentioned: MV-Edm and MV-I98A but engineered to express fluorescent proteins in the nucleus of infected cells \(^{93}\) (blue in Fig. 4). Nuclear localization facilitates the discrimination between individual cells and enables counting of the number of cells in a focus of infection. Tumor cells that express a different fluorophore without restriction to the nucleus (red in Fig. 4) were used as targets of infection. Experimentally, tumor cells were injected subcutaneously in the flank of athymic mice and once the tumors reached a diameter of \(~ 0.4\) cm, the DSFC was inserted over the tumor xenograft under anesthesia. The oncolytic virus was subsequently injected in the tumor volume and imaging started 24 h later using a multiphoton microscope with the mouse held in a restrainer under inhalational anesthesia (isoflurane) and with passive warming. The observations obtained using this approach were insightful and also illustrated some of the persistent barriers to successful tumor therapy with viruses.

The oncolytic viruses established multiple foci of infection within the tumor and were able to spread to adjacent cells. Spread could be quite rapid, especially with the fusogenic virus (MV-Edm) (Fig. 4C–F) that can eliminate sheets of tumor cells over the course of a few days. In combination with image analysis software such as Imaris\(^\text{TM}\), it was possible to determine the number of cells in any focus of infection and how this changed in time (Fig. 4G–J). However, despite the presence of high-level infection, many areas within the tumor may remain uninfected. It is currently not clear whether this relates to the dose of virus injected or to the fact the injection is within the tumor itself. It is well known

Fig. 3. \(\text{In vivo}\) experimental schema for the described experiments. After establishment of tumor xenografts in nude mice, the tumors are injected with MV-NIS and subsequently injected with \(^{99m}\)Tc for imaging using SPECT/CT. Quantitation of intratumoral isotope is performed both by imaging and by dose counter of the excised tumor. The tumor is subsequently divided into parts to enable isolation of RNA for viral gene quantitation as well as titration for viable virus.
Fig. 4. Fluorescent-based imaging of MV replication in vivo. (A) Athymic nude mouse with a DSFC implanted. (B) Schematic representation of the plasmids coding for the measles virus MV-EBFP-NLS (fusogenic) and MV-I98A-EBFP-NLS (hypofusogenic) genomes. (C–F) Maximum-intensity projections of HT1080-tdTomato tumors (red) grown in the DSFC and infected with MV-EBFP-NLS (blue nuclei), imaged at day 3 (C), day 4 (D), day 5 (E), and day 7 (F) postinfection. Scale bars, 50 μm. (G–J) The number of infected cells was determined by counting blue nuclei with the Imaris spot analysis software. (K–N) Maximum-intensity projections of HT1080-tdTomato tumors grown in the DSFC and infected with MV-I98A-EBFP-NLS, imaged at day 4 (K), day 5 (L), day 6 (M), and day 7 (N) postinfection. (O–R) The number of infected cells was determined with the Imaris Spot Analysis software.
that systemic delivery of the virus is possible and can establish infection within tumor xenografts [11,67]. Interestingly, rapid tumor cell death, such as with vesicular stomatitis virus, can lead to the development of voids within the tumor that represent volumes that do not contain any tumor cells [80,94]. Perhaps this leads to the cessation of virus spread since the infection foci lose contact with the rest of the tumor. Systemic delivery may be expected to produce a more uniform infection within the tumor [94] that could improve spread of the virus and its oncolytic effect [79]. One model has suggested that diffusion is a major limitation of viral spread in vivo [59] and in such a scenario, having multiple foci of infection at the time of administration is likely to be critical. Spread of infection via cell to cell fusion appears to enable faster propagation of the virus, and over the same timescale, the number of infected cells and the area under curve are higher compared with the slower and less fusogenic-mutant virus MV-I98A [93]. Recently, it was reported that some viruses can spread from cell to cell via nanotubes that allow cell–cell interactions [95–97]. Although we have observed what appears to be the transport of cytoplasmic material in nanotubes in vitro using cultured tumor spheroids (Fig. 5), to date, our studies have not documented this method of spread in vivo.

Combined approaches

While fluorescent-based imaging is able to accurately determine the size of infected foci, the approach cannot be used for orthotopic models or translated into larger mammals. However, combining fluorescent-based imaging with nuclear imaging in small animals may provide an optimal way to answer fundamental questions with respect to tumor virotherapy that can be more easily translated into larger mammals. Specifically, what is the minimum size of an infection focus that can be reliably imaged with SPECT/CT? Can the virus population be inferred from the isotope concentration within the tumor as determined by imaging? What is the best time window to monitor viral spread? How do the dynamics of cell killing impact the ability to image the foci of infection? Is it better to have many cells infected at a low level or a smaller number of cells infected that express NIS at a high level for optimal imaging? Is the latter option superior if a therapeutic radionuclide is added to enhance the cytoreductive effect of the virus on the tumor [11,15]? When would be the optimal time to intervene with a therapeutic radionuclide and what would be the best dose to maximize tumor cell killing? In the era of imaging-based approaches to personalized cancer therapy, answering such questions would be of fundamental importance.

These questions can be addressed with a recombinant MV that expresses both a fluorescent protein in infected cells as well as NIS (Fig. 2) and a DSFC that is made of plastic to minimize interference with imaging. Fluorescent imaging will determine the distribution and number of infected cells. Immediately after, the same mice can be injected with 99mTc and imaged using micro-CT/SPECT. Isotope uptake in the tumors may be correlated with the number of infected cells in the tumor determined by fluorescent imaging, the distribution of the infected cells in space (Fig. 4), and the lifespan of infected cells.

Cancer therapy with viruses or CAR-T is more complex than the use of chemotherapy or antibodies. Outcomes are determined by the dynamic interactions of the populations, and determining the size of such
populations as a function of time will be critical for optimization of therapy. Combined imaging modalities should provide vitally important insights into these dynamics and planning of future therapies. At the same time, many investigators are developing approaches to surmount immunologic and physical barriers to successful tumor virotherapy. Some potential solutions include the use of cells as carriers of oncolytic viruses [98–100], altering the tumor microenvironment using immune checkpoint inhibitors [101] or immunomodulatory drugs such as cyclophosphamide or ruxolitinib [102,103] and engineering oncolytic viruses to express enzymes which can disrupt the extracellular matrix that can interfere with local virus spread within tumors [104,105].

Acknowledgements

This work was in part supported by R01 CA184241 (NCI) and Grant 09.03 from the Minnesota Partnership for Biotechnology and Medical Genomics.

Conflict of interest

The authors declare no conflict of interest.

Author contributions

All the authors contributed to the concepts, approaches, and discussions in relation to this article and meet all criteria for authorship. The manuscript was written by DD with critical input from all the co-authors.

References

duramycin to visualize tumor susceptibility to oncolytic virus infection. Mol Ther Oncolytics 15, 178–185.

Imaging and dynamics of tumor virotherapy

I. Kemler et al.

