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ABSTRACT A central endeavor in bioengineering concerns the construction of multistrain microbial consortia with desired
properties. Typically, a gene network is partitioned between strains, and strains communicate via quorum sensing, allowing
for complex behaviors. Yet a fundamental question of how emergent spatiotemporal patterning inmultistrainmicrobial consortia
affects consortial dynamics is not understood well. Here, we propose a computationally tractable and straightforward modeling
framework that explicitly allows linking spatiotemporal patterning to consortial dynamics. We validate our model against previ-
ously published results and make predictions of how spatial heterogeneity impacts interstrain communication. By enabling the
investigation of spatial patterns effects on microbial dynamics, our modeling framework informs experimentalists, helps
advance the understanding of complex microbial systems, and supports the development of applications involving them.
SIGNIFICANCE Multistrain microbial consortia are able to accomplish tasks difficult to engineer in any one strain. Thus,
substantial research in bioengineering has focused on the construction of multistrain microbial consortia with desired
properties. Yet how emergent spatiotemporal patterning affects consortial dynamics is still poorly understood. A better
understanding of this effect can aid the development and deployment of microbial consortia for various biotechnology
applications. Toward this goal, we propose a computationally tractable and straightforward modeling framework that
explicitly allows linking spatiotemporal patterning to consortial dynamics. Furthermore, our framework is flexible and
generalizes to a wide range of applications.
INTRODUCTION

Since the discovery of quorum sensing in the early
1970s (1), understanding of microbial communication
has grown tremendously. Multiple communication
mechanisms such as acyl-homoserine lactones
(AHLs) (2, 3) and autoinducing polypeptides (AIPs)
(4, 5) have been uncovered, and their role in the forma-
tion of complex social behaviors such as biofilms and
swarming motility have been deciphered (6–8). Recog-
nizing that consortia of interacting microbial popula-
tions can perform more complicated behaviors than
any one species individually, researchers have begun
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to leverage these systems for various biotechnology
applications (9). For example, microbial consortia
have been designed using natural or genetically engi-
neered bacterial strains for use in biosensors (10),
bioremediation (11, 12), and more efficient bio-
production (13–15). With this wide level of utility, the
impact of microbial consortia on industry and human
health are likely to grow as more efficient tools are
developed for their design and application.

Substantial tools exist for controlling a particular
consortium's behavior genetically using synthetic regu-
latory circuits (16–19), and tools for engineering a con-
sortium's spatial organization have also begun to be
developed (20). For example, Romano et al. recently
developed a novel optogenic method for regulating
gene expression that allowed them to re-create highly
complex images using bacterial lawns (21). Similarly,
Alnahhas et al. demonstrated that the number of sub-
population bands in an extended microfluidic device
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can be regulated through the seeding of the trap. Other
methods for regulating the spatial organization of con-
sortia including adhesion, cell-communication, and
motility are also being developed (20, 22–26). With
previous studies demonstrating that the spatial organi-
zation of a consortium can significantly alter its dy-
namics (18, 27), these experimental methods are
enabling an additional layer of control for engineering
microbial consortia.

What is lacking from the research are sufficiently
flexible modeling frameworks for investigating the
impact of complex spatiotemporal structure on micro-
bial consortium dynamics. These tools have the poten-
tial to streamline the rational engineering of spatial
patterns to control consortium behavior. Previous ap-
proaches to modeling the spatiotemporal dynamics
of microbial consortia have traditionally relied on
well-mixed compartment models (16, 17) or agent-
based frameworks (28–30). However, the well-mixed
compartment models do not allow for the explicit incor-
poration of strain patterns, and agent-based modeling
frameworks are computationally expensive for larger
systems (31). To address this gap in the literature,
we borrow from previous research focused on
modeling diffusion in heterogeneous media (32–34)
and develop a piecewise-defined reaction-diffusion
equation framework for modeling spatiotemporal con-
sortium dynamics. Here, we show that this modeling
framework allows for the explicit incorporation of con-
sortium spatial organization while remaining computa-
tionally tractable for larger systems. We then use this
framework to investigate the impact of spatial hetero-
geneity on consortium dynamics and, using our results,
demonstrate the rational design of consortium dy-
namics through spatial organization. Importantly, our
framework provides an explicit link between interstrain
communication and spatiotemporal patterning.
Modeling framework

For diffusion in heterogeneous media, variations in the
composition of the medium results in corresponding
discontinuities in its physical properties that need to
be accounted for when modeling molecular transport.
Researchers traditionally model this phenomenon us-
ing a reaction-diffusion equation (32–34):

vc
vt

� V$VðDðxÞcðx; tÞ Þ ¼ fðc; x; tÞ;
tR 0; x ¼ ðx; y; zÞ˛U;

(Reaction-Diffusion Equation)

where c ¼ cðx; tÞ is the local concentration of the
diffusing molecule, D is the diffusion coefficient, t is
time, U is the domain, and f ðc; x; tÞ describes the pro-
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duction and degradation of c. To account for variations
in transport properties in heterogeneous media, D is
piecewise-defined according to the medium composi-
tion to have the appropriate value in the appropriate
(user-controlled) location. Recognizing a natural corre-
spondence between media heterogeneity and cell het-
erogeneity, we modify this modeling approach so that
it can be used to study the spatiotemporal dynamics
of microbial consortia. In our modified approach, the
concentration of each signaling molecule in the con-
sortium is modeled using a reaction-diffusion equation
with components representing the local production and
degradation described by a source term f ðc; x; tÞ. We
incorporate the spatial organization of the consortium
strains into the resulting partial differential equation
(PDE) model by structuring the source term for each
signaling molecule on U as a piecewise function.
This ensures that each signal is only generated in
areas that contain a strain capable of producing it.
Since each strain is uniquely defined by the signaling
molecules that it produces, piecewise defining our sys-
tem creates areas of production that mimic the spatial
organization of the strains (see Fig. 1 A). This allows
the resulting system to incorporate the influence of
spatial organization on the dynamics of the microbial
consortium and allows for the investigation of any
desired organization.
Evaluation of framework and results

As a first application of this framework, we used it to
model a recent experimental study of the spatiotem-
poral dynamics of a well-known microbial consortium
(16). There, Kim et al. compared the dynamics of four
microbial consortia in a spatially extended microfluidic
trap consisting of different types of feedback net-
works. Each consortium consisted of an activator
and repressor microbial strain in an alternating
columnar spatial arrangement (diagrammed in Fig. 1
A). The two strains regulated each other's gene expres-
sion in a dual-feedback mechanism to produce an
oscillating fluorescent pattern (17). Through experi-
mentation and modeling, Kim et al. found that the addi-
tion of a positive feedback loop resulted in globally
coordinated oscillations. This was in spite of the fact
that the length of the trap was significantly larger
than the diffusion correlation length of the signaling
molecules, thereby preventing direct communication
between strains located far apart from each other
(16). However, their model omitted the organization
of the stripe spatial patterns. Stripe thickness could
affect the ability of the strains to couple their behavior
through diffusion. Thus, the influence of strain spatial
organization on consortium dynamics warrants investi-
gation. For simplicity, we only model two of the
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FIGURE 1 Consortial organization. (A) Micro and macro illustration of our spatial discretization that allows for the incorporation of columnar
spatial patterns in the P2N1 and P1N1 consortia. For spatial points corresponding to activator segments (blue), the production terms for the
repressor, hr0 and hr1 , are set to zero. The opposite holds in the repressor segments (orange) where the the production terms for the activator,
ha0 and ha1 , are set to zero. Diagram of the P2N1 (B) and P1N1 (C) gene circuit topology.
consortia studied in Kim et al., P2N1 and P1N1

(diagrammed in Fig. 1 B and C), since they behave
very similarly to the other two consortia. The P2N1

and P1N1 consortia also exhibited more robust
columnar stripe patterns making them better suited
to study in 1D.

Model derivation

To model the spatiotemporal dynamics of the P2N1 and
P1N1 consortia using our framework, we constructed
reaction-diffusion equations describing the dynamics
of the consortium's extracellular signaling molecules.
Like previous research into microbial consortia (35),
we developed a simplifiedmodel of the dynamics since
a thorough description of the underlying gene circuit in-
teractions has been previously shown to require 16
delay-differential equations (DDEs) (17). To do so,
we suppressed the dynamics of the fluorescent re-
porters and considered only the dynamics of the extra-
cellular signaling molecules. This simplification is valid
because the fluorescent reporters are produced in pro-
portion to the local concentration of the lactone-based
signaling molecules (17). We also ignored the role of in-
termediaries in producing these signaling molecules by
modeling their production using Langmuir-functions,
which take into account the overall activator-repressor
network interactions. These functions mirror the form
of previously developed equations for modeling pro-
duction in consortia (16, 17) and are provided below,
where a represents the local concentration of the
activator N-butanoyl-L-homoserine lactone (C4-HSL,
C4) and r represents the local concentration of the
repressor N-(3-hydroxytetradecanoyl)-DL-homoserine
lactone (3-OHC14-HSL, C14). We chose a similar strat-
egy to model their enzymatic degradation by AHL-lac-
tonase, AiiA, since it is produced in response to the
local concentration of the repressor. We also borrowed
from previous research by assuming linear degradation
of the signaling lactones and a 7.5-min transcriptional
delay, t (16, 17).

With these interactions characterized, the source
terms faðx; tÞ and frðx; tÞ are given by

faðx; tÞ ¼
ha0 þ ha1
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where athaðx; t � tÞ and rthrðx; t � tÞ. A complete
description of all the parameters and their correspond-
ing values can be found below in Table 1, and a descrip-
tion of how the parameters values were determined
can be found in the Methods section of the Supporting
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TABLE 1 Parameter Values and Descriptions

Parameter Description Value

ha0 Basal production rate of activator signaling molecule from promoter. 985:56 nM min� 1

ha1 Maximal production rate of activator signaling molecule from promoter in response to activator
signal.

17; 991:82=0 nM min� 1

hr0 Basal production rate of repressor signaling molecule from promoter. 74:46 nM min� 1

hr1 Maximal production rate of repressor signaling molecule from promoter in response to activator
signal.

46; 495:80 nM min� 1

Ka EC50 of activator signaling molecule for production. 5937 nM
Kr IC50 of repressor signaling molecule for repression. 10 nM
na Langmuir coefficient of production for activator signaling molecule. 4
nr Langmuir coefficient of repression for repressor signaling molecule. 2
D Diffusion coefficient signaling molecules. 4080 mm2 min� 1

de Maximal rate of internal enzymatic degradation of signaling molecules. 2257 min� 1

Ke EC50 of repressor signaling molecule for enzymatic degradation. 1000 nM
ne Langmuir coefficient of internal enzymatic degradation for repressor signaling molecule. 4
g Inherent rate of degradation of signaling molecules caused by dilution from both media flow and cell

growth.
0:128 min� 1

t Time delay for transcription and translation. 7:5 min
material. To differentiate between the P2N1 and P1N1

consortia, ha1 is set to zero for the P1N1 consortium
to account for the absence of the auto-activation, and

the
�
at
Ka

�na
in the denominator of the production term

is removed. We thus arrived at the following two-equa-
tion system, partial delay-differential equation model of
the P2N1 and P1N1 consortium spatiotemporal dy-
namics: 8>><

>>:
va
vt

� DV2a ¼ faðx; tÞ
vr
vt

� DV2r ¼ frðx; tÞ
(3)

The strain spatial organizations are included in this
model in a user-defined fashion through the piecewise
definition of faðx; tÞ and frðx; tÞ. Specifically, we set the
production rate terms in faðx; tÞ and frðx; tÞ to be zero
in areas that did not include an activator or repressor
strain, respectively.

Model validation

To validate our simplified model of the P2N1 and P1N1

consortia, we investigated its ability to accurately cap-
ture the spatiotemporal dynamics recently observed
in Kim et al. The main result of this paper was
that strains containing a second positive feedback
loop synchronized their dynamics across a spatially
extended microfluidic trap. Thus, we validated our
model by testing whether it could reproduce this key
behavior. For this test, we simulated the P2N1 and
P1N1 consortia in one dimension. A 1D model was cho-
sen since diffusion and variations in strain composi-
tion in the vertical direction are assumed to be
negligible in the spatially extended trap (16). We there-
4 Biophysical Reports 2, 100085, December 14, 2022
fore modeled the L ¼ 2 mm long trap (e.g., device
size in Kim et al. (16)) using the 1D spatial domain,
Uh½0;L�. The consortia were implemented by dividing
the spatial domain into 100 stripes of equal width alter-
nating between activator and repressor strains. The
consortium was then divided into two equally spaced
halves oscillating with an initial phase difference of
jD40j ¼ 25% of the oscillation period, 4. We chose
this value because it resulted in synchrony for P2N1

and asynchrony for P1N1 in Kim et al. Both the P2N1

and P1N1 consortia were then analyzed for whether
synchronization between the two halves occurred. To
determine the presence of synchronization, we calcu-
lated the phase difference of the activator concentra-
tion oscillations for the middle spatial points of the
left and right subpopulations, Dt4 (detailed explanation
provided in the Methods section of the Supporting ma-
terial). A percent phase difference, jD4j was then
calculated as follows:

jD4j ¼ Dt4
4

� 100 (4)

We assumed a phase difference of jD4j< 2:5% be-
tween the two halves corresponded to synchronization
across the trap. Since 4 depends on the basal produc-
tion rate, ha0, we chose to measure the phase differ-
ence after the 10th oscillation instead of after a
specified period of time had passed.

The presence of the autoinducing positive feedback
loop in the P2N1 consortium was cited in Kim et al. as
the reason P2N1 oscillations became coordinated,
whereas P1N1 oscillations did not. Thus, we originally
only varied the value of ha1 between our P2N1 and
P1N1 simulations, setting it to zero in the P1N1 simula-
tion to account for an absence of the feedback loop.



We failed to see any significant difference in coordina-
tion between the P2N1 and P1N1 consortia (Fig. 2 C).
With this finding, it was clear that the difference in
the activator basal production rate between the P2N1

and P1N1 consortia needed to be incorporated into
our model. In Chen et al., it was reported that the acti-
vator basal production rate in the P1N1 consortium is
approximately nine times greater than in the P2N1 con-
sortium, and this difference was even included in the
model used in Kim et al. Thus, to investigate the role
changing this basal production rate had on P1N1

behavior, we re-ran the P1N1 synchronization tests for
different values of ha0 . Specifically, we scaled ha0 by
a basal multiplier, bm, that varied from 0.1 to 10. The re-
sults of these tests are provided in Fig. 2 C and show
that the coordination of oscillations is strongly influ-
enced by the value of the activator basal production
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Investigating the role of spatial heterogeneity

Having validated our model against the experimentally
observed difference between the P2N1 and P1N1 con-
sortia, provided the difference in activator basal pro-
duction rates is incorporated, we proceeded to test
our model's ability to capture the influence of spatial
heterogeneity on consortium dynamics. This is the pri-
mary focus of this work and will provide new insight
into heterogeneous systems. First, we investigated
the impact changing stripe width had on the coordina-
tion of oscillations in the P2N1 consortium. This was
done by repeating the aforementioned synchronization
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test for the P2N1 consortium with stripe widths varying
from 10 to 200 mm. The results of these simulations
are provided in Fig. 3 B and show that coordination
breaks down as stripe width increases. In fact, we
observe a significant breakdown in synchrony for stripe
widths larger than 90 mm. This shows quantitative
agreement with previous experimental studies of the
same consortia in Gupta et al. There, they found that
separation distances larger than 100 mm between acti-
vator and repressor populations led to a loss of oscilla-
tory behavior. This demonstrates that our modeling
framework results are consistent with experimental re-
sults from different studies (16, 18).

Interestingly, a stripe width of 70 mm is optimal for
synchronization. We intuit this result as follows. For
stripe widths larger than 70 mm, the diffusion correla-
tion length of the quorum sensing molecules is not
great enough to allow for interstrain communication.
That is, the coupling is too weak. On the other hand,
for stripe widths less than 70 mm, chemical signals
can diffuse across several stripes, flooding the trap
with chemical signal. When active, the activator pro-
moters are maximally productive, leading to an effec-
tive basal production rate that corresponds to the
right-hand side of Fig. 2 C. In effect, the spatial hetero-
geneity provides an engineering methodology to con-
trol the effective basal production of the strains.

With this result in mind, we hypothesized that the co-
ordination of the consortium could be controlled by only
varying its spatial organization. To test this hypothesis,
we simulated twoP2N1 consortia side by side in a 4-mm-
long trap. Both consortia containedalternating activator
and repressor stripes whose widths increased linearly.
However, the first consortium contained small-width
stripes (0.56–47.06 mm), and the second consortium
contained large-width stripes (19.05–266.67 mm). The
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results of this test are provided in a kymograph showing
the concentration of the activator across the con-
sortium and time. As anticipated by the results provided
in Fig. 3 B, the left half of the consortium oscillated in a
coordinated manner, and the right half of the con-
sortium, containing larger stripes, had its oscillations
become decoupled.
DISCUSSION

We developed a new modeling framework to investi-
gate the impact of spatial heterogeneity on consortial
dynamics. We verified our framework results against
the modeling and experimental results found in Kim
et al. (16). We also observed quantitative agreement
between our stripe width investigation study and exper-
imental findings from Gupta et al. (18). Although our
model is much simpler than what is used by Kim
et al. and coarse-grains over many subcellular pro-
cesses, the qualitative behaviors of the two models
coincide. Our model gains tractability at the expense
of some fidelity to reality. But it is exactly in these sce-
narios that mathematical modeling can provide unex-
pected qualitative predictions regarding the biological
system.

The results demonstrate that our new modeling
framework is able to effectively incorporate the effect
of spatial organization on microbial consortium dy-
namics. By allowing for the explicit incorporation of
stripe patterns, our work complements and extends
previous research into modeling spatiotemporal dy-
namics of microbial consortia (16, 18, 22, 28–30, 36,
37). For example, Kim et al. modeled spatiotemporal
dynamics using well-mixed compartments containing
both activator and repressor strains. However, this
approach prevents the incorporation of well-defined
10203040506070809010011012013014015016070
Stripe Width (μm)
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spatial patterns into the consortia, which, in turn,
limits any investigation into their effect on consortium
dynamics. Our piecewise-defined diffusion equation
framework allowed us to investigate this impact in
the present study. Our modeling framework is thus
more faithful to the robust single-strain stripes
observed in Alnahhas et al. Compartment models force
all cells in a given compartment to experience the same
level of chemical signal. Our piecewise framework al-
lows for spatial variations within and between single-
strain stripes.

As expected, we found that small-width stripes al-
lowed for more coordination of consortium dynamics
due to better communication between stripes over
shorter distances (18, 27). Interestingly, our heteroge-
neous stripe test demonstrates consortium behavior
can be controlled through the consortium's spatial or-
ganization alone. Combined with a rise in experimental
methods for controlling spatial organizations in con-
sortia (20, 23, 24, 38), this opens an interesting avenue
for regulating consortium dynamics in the future (36).

An unexpected finding from our work was the strong
influence of the basal multiplier on consortium coordi-
nation. From the results of Kim et al., it was expected
that the presence or absence of the positive feedback
loop would be sufficient to control coordination. Our
simulation results indicate that the basal production
rate had a stronger impact. Since the results of the
basal multiplier test mirror that of the stripe width
investigation (see Figs. 2 C and 3 B), we hypothesize
that the observed behavior was due to variations in
communication strength at various multiplier values.
For lower values, the production rate of signaling mole-
cule is lower, which results in weaker signaling
between stripes. The opposite holds for higher produc-
tion rates. The fact that Kim et al. included differences
in basal production rates into their model may have
obfuscated the actual impact of the positive feedback
loop. However, since our model substantially simplifies
the underlying gene circuits in exchange for computa-
tional efficiency and understandability, the basal multi-
plier results could be an artifact of this simplification.

Separate from this simplified model is the underlying
framework of using piecewise-defined reaction-diffu-
sion equations to incorporate spatial patterns into
studies on consortium dynamics. Our ability to study
various spatial patterns using this framework demon-
strates its usefulness for modeling the spatiotemporal
dynamics of microbial consortia. One strength of this
framework is its flexibility. By varying the spatial points
where the production terms are nonzero, a researcher
can precisely control the spatial organization they are
studying, including heterogeneous arrangements. Be-
sides flexibility, another benefit of our model is its
computational tractability. One strategy that previous
studies have used to explicitly incorporate consortium
spatial patterns is agent-based modeling (28–30).
Although the fine-grained nature of these frameworks
provides the greatest level of control when investi-
gating the impact of spatial patterns, the complexity
of these systems makes the study of larger consortia
computationally infeasible (29, 31). Our continuum-
based framework complements these studies and fills
a gap in the literature by allowing for incorporation of
spatial organizations into studies on the dynamics of
large, spatially extended consortia.

Although we did not investigate other geometries or
consortia in this study, we are confident the flexibility
and computational tractability of our modeling frame-
work will enable the study of more complicated sys-
tems. For example, our model could be used to
investigate the effects of square size on consortium dy-
namics for the checkerboard pattern recently devel-
oped by Perkins et al. Besides allowing for a better
understanding of these systems, our heterogeneous
stripe results show that our modeling framework could
potentially be used to engineer consortium behavior
by finding spatial organizations that modulate the
communication between consortium subpopulations
in a desired fashion. Specifically, this can be done by
making the distance between subpopulations either
smaller or larger to modify the signaling strength be-
tween the subpopulations. We used this principle
here to design a consortium that oscillated synchro-
nously on the half that contained small stripes and
asynchronously on the half that contained large
stripes. Combined with a growing number of experi-
mental approaches for designing consortia with
specific spatial arrangements, including optogenic,
seeding, and other approaches (20, 22–24), modulating
consortium dynamics through spatial organization is
becoming more practical. Since the underlying numer-
ical scheme used to solve our reaction-diffusion
equation model has routinely been applied in higher di-
mensions (39–42), our framework is well suited to
interrogate the effects of the more complex spatial
organizations implemented by these experimental
methods (23, 43–45). Through enabling these investi-
gations into the impact of spatial organization on
microbial consortium dynamics, we hope that our
modeling framework helps advance the understanding
of these systems and supports the development of
new applications involving them.
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1. Methods

Determination of Parameter Values

In our model, there were 14 parameter values that needed to be determined: ηa0 , ηa1 , ηr0 , ηr1 ,

Ka, Kr, na, nr, D, de, Ke, ne, γ, τ . These parameter values and their description are provided

below in Table 1. The parameters Ka, na, nr, de, ne, and τ were taken directly from Kim et al..5

Specifically, they were assigned the value of the biological parameter corresponding to their function

in the model: Ka was assigned the EC50 value for Prhl/lac-s activation by C4, na was assigned the

Langmuir-coefficient value for C4 activation of Prhl/lac-s , na was assigned the Langmuir-coefficient

value for LacI repression of Prhl/lac-s , de was assigned the value of the catalytic constant for C4

and C14 degradation by AiiA, ne was assigned the Langmuir-coefficient value for Pcin∗ activation10

by C14, and τ was assigned the value of the time delay for transcription and translation. The

values for Ke and Kr were chosen to give good qualitative agreement with the experimental results,

and the remaining parameter values were calculated from parameters reported in Kim et al. These

calculations are provided below.

Table S1: Parameter Values, Descriptions, and Source
Parameter Description Value Source

ηa0 Basal production rate of activator signaling molecule from promoter. 985.56 nM min−1 Calculated.

ηa1
Maximal production rate of activator signaling molecule from

promoter in response to activator signal.
17991.82/0 nM min−1 Calculated

ηr0 Basal production rate of repressor signaling molecule from promoter. 74.46 nM min−1 Calculated

ηr1
Maximal production rate of repressor signaling molecule from

promoter in response to activator signal.
46495.80 nM min−1 Calculated

Ka EC50 of activator signaling molecule for production. 5937 nM Kim et al.

Kr IC50 of repressor signaling molecule for repression. 10 nM

na Hill coefficient of production for activator signaling molecule. 4 Kim et al.

nr Hill coefficient of repression for repressor signaling molecule. 2 Kim et al.

D Diffusion coefficient signaling molecules. 4080 µm2 min−1 Calculated

de Maximal rate of internal enzymatic degradation of signaling molecules. 2257 min−1 Kim et al.

Ke EC50 of repressor signaling molecule for enzymatic degradation. 1000 nM

ne

Hill coefficient of internal enzymatic degradation for repressor

signaling molecule.
4 Kim et al.

γ
Inherent rate of degradation of signaling molecules caused by dilution

from both media flow and cell growth.
0.128 min−1 Calculated

τ Time delay for transcription and translation. 7.5 min Kim et al.

For diffusion, we made the simplifying assumption that that diffusion was the same for both



extracellular signaling molecules C4 and C14. Thus, we took the diffusion as the average of the

reported diffusion values from Kim et al., DH for the activator (C4) and DI for the repressor (C14):

D =
DH +DI

2
(1)

=
4800 µm2 min−1 + 3360 µm2 min−1

2
(2)

D = 4080 µm2 min−1 (3)

The parameter value for non-enzymatic degradation, γ, was calculated by summing the contri-

butions of dilution from cell-growth, d, and media flow, µe:

γ = d+ µe (4)

= ln(2)/25 min−1 + 0.1 min−1 (5)

γ = 0.128 min−1 (6)

The remaining parameters were the production rates for the extracellular signaling lactones: ηa0 ,

ηa1 , ηr0 , and ηr1 . These lactones upregulated or downregulated Prhl/lac-s which in turn produced the

enzymes RhlI and CinI which are synthases that catalyze the production of C4 and C14, respectively.

Thus, to estimate production rates for C4 and C14 from the reported production rates for RhlI and

CinI in Kim et al., we made the simplifying assumption that each enzyme lasts 1 min on average

before being degraded by ClpXP. With production rates for RhlI and CinI of 16 min−1 and 2 min−1

this implies that each RhlI produces 16 C4 on average and each CinI produces 2 C14 on average.

Using this assumption, we can then calculate the production rates for C4 and C14 as follows. Note

that in the following calculations, SR and SC were indeterminate scalings for the parameters that

were estimated in Kim et al.. Additionally, ηRx and ηCx stand for the production rates of RhlI and

CinI from the promoters Prhl/lac-s and Prhl/lac-w , respectively.

ηa0 = 16 · ηR0 (7)

= 16 · 20.13 · SR nM min−1 (8)

= 16 · 20.13 · 3.06 nM min−1 (9)

ηa0 = 985.56 nM min−1 (10)



ηa1 = 16 · ηR1 (11)

= 16 · 367.48 · SR nM min−1 (12)

= 16 · 367.48 · 3.06 nM min−1 (13)

ηa1 = 17991.82 nM min−1 (14)

ηr0 = 2 · ηC0 (15)

= 2 · 1 · SC nM min−1 (16)

= 2 · 1 · 37.23 nM min−1 (17)

ηr0 = 74.46 nM min−1 (18)

ηr1 = 2 · ηC1 (19)

= 2 · 624.44 · SC nM min−1 (20)

= 2 · 624.44 · 37.23 nM min−1 (21)

ηr1 = 46495.80 nM min−1 (22)

Non-Dimensionalization15

Our model was non-dimensionalized as follows. The activator and repressor concentrations were

scaled by Ka, time was scaled by τ , and space was scaled by
√
D · τ . After introducing these

scalings, the following system with non-dimensionalized parameters was obtained:

!
"""""""#

"""""""$
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=
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1 + ana
τ +

%
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desa
%

rτ
Kes

&ne
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%

rτ
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&ne
− γsa
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ηrs0 + ηrs1a
na
τ

1 + ana
τ

+Ds
∂2r

∂2x
−

desr
%

rτ
Kes

&ne

1 +
%

rτ
Kes

&ne
− γsr

(23)

The parameters in the above system are defined as follows:

ηas0 =
ηa0 · τ
Ka

(24)



ηas1 =
ηa1 · τ
Ka

(25)

ηrs0 =
ηr0 · τ
Ka

(26)

ηrs1 =
ηr1 · τ
Ka

(27)

Krs =
Kr

Ka
(28)

Ds = 1 (29)

des = de · τ (30)

Kes =
Ke

Ka
(31)

γs = γ · τ (32)

Numerical Scheme and Synchronization Test Procedures20

All simulations were performed in MATLAB 2020a using custom scripts. To carry out the

synchronization test for the P2N1 and P1N1 consortia, the non-dimensionalized model, Equation

23, was implemented numerically using the Crank-Nicholson scheme in one spatial dimension. We

chose to discretize space by constructing our spatial mesh out of 5,000 points with a non-dimensional

spatial step of ∆x = 2000 µm√
D·τ(5000) and a time step of ∆t = 0.0001. Here D is the signal diffusion25

strength and τ is the delay time. The spatial step was chosen so that the scaled length of the

spatial domain was 2,000 µm long, equivalent to the length of the microfluidic trap used in Kim

et al.. Taking into account the design of the trap, Dirichlet (open) boundary conditions were used

at the endpoints: x = 0 and x = 2, 000 µm. Additionally, we defined the spatial domain, Ω, to be

piecewise by initially breaking it into 100 stripes of equal width (s1, s2,. . . , s100). The activator30

production terms (ηa0 , ηa1) were then defined to be zero for the even numbered stripes while the

repressor production terms (ηr0 , ηr1) were defined to be zero for the odd numbered stripes. This



created 100, 20 µm wide stripes of alternating activator and repressor producing areas, thereby

allowing us to incorporate the columnar spatial patterns observed in Kim et al.. For the P1N1

consortia, the production term ηa1 was set to 0 everywhere to account for the absence of the35

positive feedback loop.

Using this scheme, we carried out the synchronization test by first simulating the consortium

under study (P2N1 or P1N1) with initial values of a0,x = 0 and r0,x = 0 at all spatial points. This

resulted in synchronous oscillation of the consortium across the trap. We then extracted the period

of this oscillation post-transience, φ, and recorded the concentration of a and r for the middle40

spatial point at time 0.25φ. These concentrations were then used to initialize a second simulation.

Specifically, in the second simulation, the first 2500 spatial points (the left half of the consortium)

were initialized with concentrations a0,x = 0 and r0,x = 0. The next 2500 spatial points (the right

half of the consortium) were initialized with the activator and repressor concentrations extracted

from the previous simulation: a0,x = a0.25φ,2500 and r0,x = r0.25φ,2500. This resulted in the left and45

right halves of the consortium oscillating with the initial phase difference |∆φ|0 = 25%.

To evaluate whether synchrony occurred, we tracked the activator concentration for the spatial

points corresponding to the middle of the left and right sub-populations: x = 1250 and x = 3750. We

then calculated the time difference, ∆tφ, between the minima corresponding to the 10th oscillation

for these spatial points. This value was then used to calculate the final phase difference using:50

|∆φ| =
∆tφ
φ

∗ 100 (33)

This process was repeated for both the P2N1 and P1N1 consortia. In this study, we assumed a

phase difference of 2.5% of the period of oscillation, |∆φ| < 0.025φ corresponded to synchronous

oscillation across the trap.

This synchronization test was repeated with slight variations to study the effect of changing the

basal production rate and stripe width on the synchronization of the P1N1 and P2N1 consortia,55

respectively. To study the effect of changing the basal multiplier on the synchronization of the

P1N1 consortium, we repeated the P1N1 simulations for different values of the basal production

rate ηa0 . Specifically, we scaled ηa0 by a basal multiplier, bm, and evaluated synchrony for values of

bm ranging from 0.1-10. To evaluate the effect of changing the stripe width on the synchronization of

the P2N1 consortium, we repeated the P2N1 simulations and evaluated synchrony for stripe widths60

ranging from 200 µm to 10 µm. We took care to choose stripe widths that provided an even number

of stripes. This allowed us to properly partition the consortium into two equal halves.



Heterogeneous Stripes Test

To evaluate the effect of heterogeneous stripes on coordination of the P2N1 consortium, we again

divided the consortium into two halves. However, we modified our numerical scheme so that both65

halves consisted of stripes whose width increased according to a linear gradient. Specifically, if the

half consisted of nx spatial points and would contain k stripes, we first divided nx by the sum of the

first k numbers. This gave us a common difference, d, which we used to define the number of spatial

points in the k-th stripe, nk: nk = kd. For this study, we used 84 stripes in the left half of the

consortium and 14 stripes in the right. These numbers were chosen so that the linear gradient could70

be properly implemented in each half of the consortium with a manageable number of spatial points

equally divided between the halves. This resulted in nx = 7, 140 equally spaced spatial points. For

this test, we also chose to simulate a larger 4,000 µm consortium which changed our spatial step to

∆x = 4000 µm√
D·τ(nx)

. All other aspects of our numerical scheme were left unchanged. The numerically

implemented system was then simulated with initial values of a0,x = 0 and r0,x = 0 at all spatial75

points.
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