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Abstract

Recent research identifies and corrects bias, such as
excess dispersion, in the leading sample eigenvector
of a factor-based covariance matrix estimated from
a high dimension low sample size (HL) data set. We
show that eigenvector bias can have a substantial im-
pact on variance-minimizing optimization in the HL
regime, while bias in estimated eigenvalues may have
little effect. We describe a data-driven eigenvector
shrinkage estimator in the HL regime called “James-
Stein for Eigenvectors” (JSE) and its close relation-
ship to the James-Stein (JS) estimator for a collection
of averages. We show, both theoretically and with
numerical experiments, that, for certain variance-
minimizing problems of practical importance, efforts
to correct eigenvalues have little value in compari-
son to the JSE correction of the leading eigenvector.
When certain extra information is present, JSE is a
consistent estimator of the leading eigenvector.

Significance Statement

Eigenvectors are used throughout the physical and
social sciences to reduce the dimension of complex
problems to manageable levels, and to distinguish
signal from noise. Our research identifies and mit-
igates bias in the leading eigenvector of a sample
factor-based covariance matrix estimated in the high
dimension low sample size (HL) regime. The analy-
sis illuminates how estimation error in a covariance
matrix can affect quadratic optimization. Eigenvec-
tor estimation in the HL regime may be useful for
disciplines, such as finance, machine learning, or ge-
nomics, in which high dimensional variables need to

be analyzed from a limited number of observations.

Averaging is the most important tool for distilling
information from data. To name just two of countless
examples, batting average is a standard measure of
the likelihood that a baseball player will get on base,
and an average of squared security returns is com-
monly used to estimate the variance of a portfolio of
stocks.

The average can be the best estimator of a mean
in the sense of having the smallest mean squared er-
ror. But a strange thing happens when considering
a collection of many averages simultaneously. The
aggregate sum of mean squared errors is no longer
minimized by the collection of averages. Instead, the
error can be reduced by shrinking the averages to-
ward a common target, even if, paradoxically, there
is no underlying relation among the quantities.

For baseball players, since an individual batting
average incorporates both the true mean and estima-
tion error from sampling, the largest observed bat-
ting average is prone to be over-estimated and the
smallest under-estimated. That is why the aggregate
mean squared error is reduced when the collection of
observed averages are all moved toward their center.

This line of thinking has been available at least
since Sir Francis Galton introduced “regression to-
wards mediocrity” in 1886. Still, Charles Stein sur-
prised the community of statisticians with a sequence
of papers about this phenomenon beginning in the
1950s. Stein showed that it is always possible to lower
the aggregate squared error of a collection of three or
more averages by explicitly shrinking them toward
their collective average. In 1961, Stein improved and
simplified the analysis in collaboration with Willard
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James. The resulting empirical James-Stein shrink-
age estimator (JS) launched a new era of statistics.
This article describes “James-Stein for Eigenvec-

tors” (JSE), a recently discovered shrinkage estima-
tor for the leading eigenvector of an unknown co-
variance matrix. A leading eigenvector is a direc-
tion in a multi-dimensional data set that maximizes
explained variance. The variance explained by the
leading eigenvector is the leading eigenvalue.
Like a collection of averages, a sample eigenvec-

tor is a collection of values that may be overly dis-
persed. This can happen in the high dimension low
sample size (HL) regime, when the number of vari-
ables is much greater than the number of observa-
tions. In this situation, the JSE estimator reduces
excess dispersion in the entries of the leading sample
eigenvector. The HL regime arises when a relatively
small number of observations is used to explain or
predict complex high-dimensional phenomena, and it
falls outside the realm of classical statistics. Exam-
ples of such settings include genome-wide association
studies, such as [1] and [2], in which characteristics
of a relatively small number of individuals might be
explained by millions of single nucleotide polymor-
phisms (SNPs); machine learning in domains with
a limited number of high dimensional observations,
such as in [3]; and finance, in which the number of
assets in a portfolio can greatly exceed the number
of useful observations.
We work in the context of factor models and prin-

cipal component analysis, which are used throughout
the physical and social sciences to reduce dimension
and identify the most important drivers of complex
outcomes. Principal component analysis (PCA) is
a statistical technique that uses eigenvectors as fac-
tors. The results in this article are set in the context
of a one-factor model that generates a covariance ma-
trix with a single spike. This means that the lead-
ing eigenvalue is substantially larger than the others.
We do not provide a recipe for practitioners work-
ing in higher rank contexts; our goal is to describe
these ideas in a setting in which we can report the
current state of the theory. However, similar results
are reported experimentally for multifactor models
by Goldberg, Papanicolaou, Shkolnik, and Ulucam
[4], and continuing theoretical work indicates that

the success of this approach is not limited to the one-
factor case.

We begin this article by describing the JS and
JSE shrinkage estimators side by side, in order to
highlight their close relationship. We then describe
three asymptotic regimes, low dimension high sam-
ple size (LH), high dimension high sample size (HH),
and high dimension low sample size (HL), in order to
clarify the relationship between our work and the lit-
erature. Subsequently we describe an optimization-
based context in which a high dimensional covariance
matrix estimated with the JSE estimator performs
substantially better than eigenvalue correction esti-
mators coming from the HH literature. We describe
both theoretical and numerical supporting results for
performance metrics relevant to minimum variance
optimization.

The novelty of the work described in this article
lies in an an explicit focus on high-dimensional co-
variance matrix estimation via shrinkage of eigenvec-
tors, rather than eigenvalues or the entire covariance
matrix; the reliance on results from the less-studied
HL regime; and the use of optimization-based per-
formance metrics. The bulk of the existing high-
dimensional covariance estimation literature concerns
correction of biased eigenvalues, or provides results
only in the HH regime, or focuses on metrics that do
not take account of the use of covariance matrices in
optimization.

James-Stein for averages

Suppose there are p > 3 unknown means µ =
(µ1, µ2, . . . , µp) to be estimated. We observe a fixed
number of samples, and compute the corresponding
sample averages z = (z1, z2, . . . , zp).

It is common practice to use zi as an estimate for
the unobserved mean value µi, and this may be the
best one can do if estimating only a single mean. The
discovery of Stein [5] and James & Stein [6] is that a
better estimate is obtained by shrinking the sample
averages toward their collective average.

Let m(z) =
∑p

i=1 zi/p denote the collective aver-
age, and 1 = (1, 1, . . . , 1), the p-dimensional vector of
1s. With certain normality assumptions, James and
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Stein define:

µ̂JS = m(z)1+ cJS(z −m(z)1). (1)

The shrinkage constant cJS is given by

cJS = 1− ν2

s2(z)
, (2)

where

s2(z) =
1

p− 3

p∑
i=1

(zi −m(z))2 (3)

is a measure of the variation of the sample averages
zi around their collective average m(z), and ν2 is an
estimate of the conditional variance of each sample
average around its unknown mean. The value of ν2, a
measure of the noise affecting each observed average,
must be either assumed or estimated independently
of s2(z), and is sometimes tacitly taken to be 1.
The observable quantity s2(z) incorporates both

the unobserved variation of the means and the noise
ν2. The term ν2/s2(z) in equation [2] can be thought
of as an estimated ratio of noise to the sum of signal
and noise. Equation [1] calls for a lot of shrinkage
when the noise dominates the variation of the sample
averages around their collective average, and only a
little shrinkage when the reverse is true. Readers
may consult Efron and Morris [7], [8], and Efron [9]
for more complete discussion and motivation behind
formula [1] as an empirical Bayes estimator.
James and Stein showed that the JS estimator µ̂JS

is superior to z in the sense of expected mean squared
error,

Eµ,ν

[
|µ̂JS − µ|2

]
< Eµ,ν

[
|z − µ|2

]
. (4)

For any fixed µ and ν, the conditional expected mean
squared error is improved when using µ̂JS instead of
z. This result comes with an unavoidable caveat: z
remains the optimal estimate when p = 1 and p = 2,
and sometimes when p = 3.
Suppose we have p > 3 baseball players, and, for

i = 1, 2, . . . , p, player i has true batting average µi,
meaning that in any at-bat the player has a prob-
ability µi of getting a hit. This probability is not
observable, but we do observe, say over the first 50
at-bats of the season, the realized proportion zi of

hits. Assuming we know ν2 or have an independent
way to estimate it, equation [1] improves on the zi as
estimates of the true means µi.

This example lends intuition to the role of the noise
to signal-plus-noise ratio ν2/s2(z) in the JS shrinkage
constant. If the true batting averages differ widely,
but the sample averages tend to be close to the true
values, then equation [1] calls for little shrinkage, as
appropriate. Alternatively, if the true averages are
close together but the sampling error is large, a lot
of shrinkage makes sense. The JS estimator prop-
erly quantifies the shrinkage and interpolates between
these extremes.

James-Stein for eigenvectors

Consider a sequence of n independent observations of
a variable of dimension p, drawn from a population
with unknown covariance matrix Σ. The p×p sample
covariance matrix S has the spectral decomposition:

S = λ2hh⊤ + λ2
2v2v

⊤
2 + λ2

3v3v
⊤
3 · · ·+ λ2

pvpv
⊤
p (5)

in terms of the non-negative eigenvalues λ2 ≥
λ2
2 ≥ · · · ≥ λ2

p ≥ 0 and orthonormal eigenvectors
{h, v2, . . . , vp} of S. Our interest is primarily in the
leading eigenvalue λ2 and its corresponding eigenvec-
tor h when p >> n. In what follows, the sample
eigenvector h plays the role of the collection of sam-
ple averages z in the previous discussion.

In classical statistics with fixed p, the sample eigen-
values and eigenvectors are consistent estimators of
their population counterparts when the population
eigenvalues are distinct. This means that the sam-
ple estimates converge to the population values as n
tends to infinity. However, this may fail when the
dimension tends to infinity. The purpose of JSE is
to provide an empirical estimator improving on the
sample eigenvector h in the HL setting.

JSE is a shrinkage estimator, analogous to JS, that
improves on h by having lower squared error with
high probability, and leading to better estimates of
covariance matrices for use in quadratic optimiza-
tion. Goldberg, Papanicolaou, and Shkolnik intro-
duced and analyzed the JSE estimator in [10] as a
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means to improve the output of quadratic optimiza-
tion. It is further developed and extended by Gold-
berg, et. al. [4], Shkolnik [11], and Gurdogan and
Kercheval [12].
The JSE estimator hJSE is defined by shrinking

the entries of h toward their average m(h), just as in
equation [1]:

hJSE = m(h)1+ cJSE(h−m(h)1), (6)

where the shrinkage constant cJSE is

cJSE = 1− ν2

s2(h)
, (7)

where

s2(h) =
1

p

p∑
i=1

(λhi − λm(h))
2

(8)

is a measure of the variation of the entries of λh
around their average λm(h), and ν2 is equal to the av-
erage of the non-zero smaller eigenvalues of S, scaled
by 1/p,

ν2 =
tr(S)− λ2

p · (n− 1)
. (9)

As with JS, JSE calls for a lot of shrinkage when
the average of the non-zero smaller eigenvalues dom-
inates the variation of the entries of λh around their
average, and only a little shrinkage when the reverse
is true. The estimator hJSE improves on the sam-
ple leading eigenvector h of S, as we describe below,
by reducing its angular distance to the population
eigenvector.
To state a precise result, we introduce the factor

model framework in which we are applying JSE, as
initiated in [10] and elaborated in [11] and [12]. Fac-
tor models are widely used to reduce dimension in
settings where there are a relatively small number of
drivers of a complex outcome. The prototype is a
one-factor model:

r = βf + ϵ, (10)

where r is a p-vector that is the sole observable, β is
a p-vector of factor loadings, the scalar f is a com-
mon factor through which the observable variables
are correlated, and ϵ is a p-vector of variable-specific

effects that are not necessarily small, but are homo-
geneous and uncorrelated with f and each other. Set-
ting the factor variance to be σ2 and the specific vari-
ance to be δ2, the population covariance matrix takes
the form:

Σ = σ2ββ⊤ + δ2I, (11)

and β is its leading eigenvector.
Our theoretical results are asymptotic in the num-

ber of variables p, so we introduce a fixed sequence
of scalars {βi}∞i=1, from which we draw factor load-
ings. Suppressing dependence on dimension in our
notation, let β be the p-vector whose entries are the
first p elements of the fixed sequence. To prevent
asymptotic degeneracy of the p-indexed sequence of
models, we impose the normalizing condition that
|β|2/p = (1/p)

∑p
i=1 β

2
i tends to a finite positive limit

as p → ∞.
Any non-zero multiple of an eigenvector is an eigen-

vector, so we define the distance between population
and estimated eigenvectors as the smallest positive
angle, denoted ∠, between representatives.

Theorem 1 ([10]). Assume that the angle ∠(β,1)
tends to a limit less than π/2.
Then, in the limit as p → ∞ with n fixed,

∠(hJSE, β) < ∠(h, β) (12)

almost surely.

The proofs in [10] assume the slightly stronger hy-
potheses that the mean m(β) and dispersion d(β)
have finite positive limits, where

d2(β) =
1

p

p∑
i=1

(
βi −m(β)

m(β)

)2

. (13)

A limiting mean of zero corresponds to a limiting
angle between β and 1 of π/2, in which case hJSE

reduces to h and the strict inequality of Theorem 1
becomes a weak inequality. Another boundary case
arises when ∠(β,1) tends to zero, in which case any
shrinkage toward 1 will be beneficial.

The unit eigenvector b = β/|β| is featured in our
illustration of [12] in Figure 1. The left panel shows
JSE shrinkage as defined by equation [6]. The right
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panel shows an equivalent formulation of JSE shrink-
age in terms vectors on the unit sphere obtained by
normalization.

Figure 1: Shrinkage of the sample eigenvector h along
the line connecting h and m(h)1 in Euclidean space
(left panel) and projected on the unit sphere (right
panel.

The conclusion of Theorem 1 is equivalent to the
statement that the JSE estimator reduces the Eu-
clidean distance on the unit sphere between normal-
ized representatives∣∣∣∣ hJSE

|hJSE|
− b

∣∣∣∣ < |h− b| (14)

when they are chosen to lie in the same hemisphere.
This is due to the elementary relation (1/2)|u−v|2 =
1− cos∠(u, v) for any unit vectors u, v.

Theorem 1 guarantees that the angle between hJSE

and b becomes smaller than the angle between h and
b for p sufficiently large as long as ∠(β,1) tends to
a value in the interval [0, π/2) and |β|2/p tends to a
positive value as p tends to infinity. We explore the
magnitude of improvement offered by JSE on a data
set of n = 40 observations and p = 50, 100, 200, 500
variables. Gaussian data are simulated with the fac-
tor model [10], with σ = 0.16, δ = 0.60, and β gen-
erated by applying an appropriate affine transforma-
tion to pseudo-random draws from a normal distri-
bution so that |β|2/p = 1 and ∠(β,1) is as desired.
The choice of these parameters is motivated by eq-
uity markets, as described in [4]. We consider small,
medium and large angles, ∠(β,1) = 0.174, 0.785, 1.40
radians, equivalently, 10, 45 and 80 degrees. For each

fixed p and β, our experiment relies on 1000 simulated
paths.

Table 1 shows the mean and median difference,

D = ∠(h, b)− ∠(hJSE, b), (15)

along with its interquartile range and the proba-
bility that D is positive. The mean, median and
interquartile range of improvement D by JSE are
small and positive for the largest angle we consider,
∠(β,1) = 1.40 radians, close to a right angle, and in-
crease materially as that angle diminishes. The prob-
ability thatD is positive exceeds 0.72 in all cases, and
exceeds 0.96 for the two smaller angles. The results
are stable across values of p, consistent with the hy-
pothesis that n = 40 and p = 50 are effectively in
the asymptotic regime for the factor model that we
specified.

A more general shrinkage target

In equations [1] and [6], JS and JSE reduce excess
dispersion in an estimated vector of interest relative
to a shrinkage target, τ = m(·)1, with constant en-
tries. Efron and Morris [7] describe the JS estimator
for a more general shrinkage target, where the disper-
sionless vector m(·)1 is replaced by an initial guess
τ ∈ Rp for the unknown µ. In that case the JS esti-
mator becomes

µ̂JS = τ + cJS(z − τ) (16)

where cJS is defined relative to τ , with

s2(h) =

p∑
i=1

(zi − τi)
2/(p− 2). (17)

We describe a similar generalization of Theorem
1. As we did for factor loadings β, we introduce a
fixed sequence of scalars {τi}∞i=1, from which we draw
coordinates of a shrinkage target vector τ . In the
previous case τi = 1 for all i. Continuing to suppress
dimension in our notation, let τ be the p-vector whose
entries are the first p elements of the sequence. To
avoid degeneracy, we again impose the normalizing
assumption that |τ |2/p tends to a finite positive limit
as p → ∞.
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Table 1: Improvement (D) measured in radians, by JSE over the sample eigenvector as an estimator of the
population eigenvector. Gaussian data are generated from the factor model [10] with σ = 0.16, δ = 0.60 and
|β|2/p = 1. Results are based on 1000 simulations of n = 40 observations for each values of ∠(β,1) and p.
Average and median improvement are uniformly positive, and they increase as ∠(β,1) decreases. Results
are consistent across values of p considered.

∠(β,1) interquartile
(radians) p mean D median D range D P(D> 0)

0.174

50 0.276 0.289 0.051 0.996
100 0.316 0.345 0.055 0.989
200 0.276 0.367 0.066 0.967
500 0.328 0.370 0.071 0.983

0.785

50 0.066 0.066 0.025 0.995
100 0.069 0.069 0.028 0.998
200 0.070 0.068 0.027 1.000
500 0.069 0.067 0.025 1.000

1.396

50 0.000 0.002 0.004 0.724
100 0.001 0.003 0.004 0.762
200 0.002 0.003 0.004 0.757
500 0.002 0.002 0.003 0.867

For any p-vector y, denote the the orthogonal pro-
jection of y onto τ by

Pτ (y) = y, τ
τ

|τ |2
. (18)

Define the generalized variance relative to τ as

v2τ (y) =
1

p
|y − Pτ (y)|2, (19)

and define the generalized shrinkage constant

cJSEτ = 1− ν2

λ2v2τ (h)
, (20)

where ν2 is defined as before and we assume h ̸=
Pτ (h). We may now define the generalized JSE esti-
mator as

hJSE
τ = Pτ (h) + cJSEτ (h− Pτ (h)), (21)

which depends only on the line spanned by τ , rather
than on τ itself.

Theorem 2 ([10]). Assume that the angle ∠(β, τ)
tends to a limit less than π/2.

Then, in the limit as p → ∞ with n fixed,

∠(hJSE
τ , β) < ∠(h, β) (22)

almost surely.

The proof of Theorem 2 is a formal generalization
of the proof of Theorem 3.1 in [10], with the original
target 1 replaced by τ , as long as the non-degeneracy
condition on |τ |2/p is satisfied.

When the entries of τ are all ones, we recover The-
orem 1 as a special case of Theorem 2.

The analogy of JSE with JS suggests viewing τ as
a guess at the identity of the true eigenvector β. An
alternative is to think of τ as an exogenously imposed
constraint in a variance minimizing optimization. In
this situation, JSE corrects the sample eigenvector
in the direction of τ to reduce optimization error.
The effectiveness of this correction is controlled by
the angle between β and τ , ∠(β, τ) as well as |β2|/p
and |τ |2/p. This alternative perspective allows us to
think of a τ -indexed family of biases in the sample
eigenvector h.
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A consistent estimator

An extension of the generalized JSE estimator de-
veloped by Gurdogan and Kercheval in [12] incor-
porates multiple targets to further reduce estima-
tion error. The result depends on a specific col-
lection of k = k(p) < p linearly independent tar-
get vectors {τ1, τ2, . . . , τk}. Letting τ denote the
(p × k)-dimensional matrix whose columns are the
τ is, we express projection of a p-vector y onto the
k-dimensional space spanned by the columns of τ as

Pτ (y) = τ(τ⊤τ)−1τ⊤y. (23)

Suppose we know the rank ordering of the betas
β1, β2, . . . , βp, but not their actual values. Group the
betas into k ordered quantiles, where k is approxi-
mately

√
p. For i = 1, 2 . . . , k, define the target vec-

tor τ i = (a1, a2, . . . , ap) where aj = 1 if βj belongs to
group i, and zero otherwise.

Theorem 3 ([12]). Let the number n of observations
be fixed. For τ equal to the (p× k)-dimensional ma-
trix whose columns are the τ is defined from the rank
ordering of betas as above, the JSE estimator defined
by equation [21] is a consistent estimator of b in the
sense that

lim
p→∞

∠(hJSE
τ , b) = 0 (24)

almost surely.

In [12] it is shown that the full rank ordering is not
needed; only the ordered groupings are used.

Three regimes

The two James-Stein estimators, for averages and for
the leading eigenvector, are structurally parallel, but
the current state of theory guarantees their perfor-
mance in different settings. The dominance of JS over
the sample mean expressed in inequality [4] holds in
expectation, typically under normality assumptions,
for finite p > 3. In contrast, the JSE theory of The-
orems 1 and 3 is asymptotic in the HL regime, and
is non-parametric, courtesy of the strong law of large
numbers.

The relevance of the HL regime to the analysis of
scientific data was recognized as early as 2005, by
Hall, Marron and Neeman [13]. The 2018 article by
Aoshima et al. [14] surveys results on the HL regime.

The HL regime stands in contrast to the low di-
mension high sample size (LH) regime of classical
statistics, where the number of variables p is fixed
and the number of observations n tends to infinity.
In the LH regime, a sample covariance matrix based
on identically distributed, independent observations
is a consistent estimator of the population covariance
matrix, converging in expectation as n tends to in-
finity. Different effects emerge in the high-dimension
high-sample-size (HH) regime, in which both p and
n tend to infinity. The HH regime is part of ran-
dom matrix theory, dating back to the 1967 work of
Marčenko and Pastur [15]. This three-regime clas-
sification of data analysis is discussed by Jung and
Marron in their 2009 article [16].

Placing any particular finite problem into an
asymptotic context, whether LH, HL, HH or some-
thing in between, requires specifying how the model
is to be extended asymptotically. For LH this means
letting the number of independent observations grow,
but the HH and HL regimes require defining a se-
quence of models of increasing dimension. This ex-
tension was natural in early works from random ma-
trix theory that character the limiting spectra of stan-
dard Gaussian variables in the HH regime. John-
stone [17] looks at the HH spectrum of eigenval-
ues in a spiked model, where the eigenvalues of a
fixed-dimensional set of eigenvectors are substantially
larger than the remaining eigenvalues. The covari-
ance matrix corresponding to the factor model [10]
is spiked. In some settings, it can be beneficial to
estimate the spiked covariance model guided by The-
orems 1 and 3 from the HL regime.

A schematic diagram of the three regimes is in Fig-
ure 2. Duality enables us to use classical statistics
to obtain results in the HL regime. This has been
observed by various researchers, including Shen and
co-authors in 2016 [18] and Wang and Fan in 2017
[19], and used in [10]. For example, if Y is our p× n
data matrix with p > n, the p× p sample covariance
matrix Y Y ⊤/n has rank at most n. If we consider
the n×n dual matrix SD = Y ⊤Y/p, it has a fixed di-
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mension in the HL regime. The non-zero eigenvalues
of SD and S are related by the multiplicative factor
p/n, and the eigenvectors are related by left multi-
plication by Y or Y ⊤. Since, for SD, the roles of p
and n are reversed, methods from classical statistics
apply.

co
m

p
le

x
it

y
 

dualit
y

LH: p<<n

HL: p>>n

HH: p~n

Figure 2: Three asymptotic regimes for data analyis.
LH is the low dimension high sample size regime of
classical statistics. HH is the high dimension high
sample size regime of classical random matrix theory.
HL is the high dimension low sample size regime of
alternative random matrix theory. HH tends to be
more complex than HL because duality arguments
allow some features of classical statistics to emerge
in the HL regime.

High dimensional covariance ma-
trix estimation

Eigenvalue adjustment to improve covariance perfor-
mance metrics, or loss functions, goes back at least
to Stein’s 1956 and 1986 articles [20] and [21]. In this
section we discuss aspects of the literature.
In their 2018 article [22], Donoho, Gavish and

Johnstone emphasize the dependence of the optimal
estimator on the choice of performance metric. Like
Stein [21], they consider estimators obtained by vary-
ing the eigenvalues while keeping the sample eigen-
vectors fixed. In describing a benchmark oracle op-
timal estimator for their spiked covariance model in

the HH regime, they write:

The oracle procedure does not attain zero
loss since it is “doomed” to use the eigen-
basis of the empirical covariance, which is
a random basis corrupted by noise, to esti-
mate the population covariance.

This situation is reasonable in the context they con-
sider in which there is no prior information, other
than data, about the eigenvectors. As indicated in
[11] and [12], prior information can allow for the cor-
rection of a wide range of eigenvector biases in the
HL regime.

Similar themes emerges from a a series of arti-
cles [23], [24], [25], [26], [27] and [28], by Ledoit and
Wolf. Beginning in 2003, these papers explore high-
dimensional covariance matrix estimation with appli-
cations to financial portfolio construction and other
disciplines. As in the paper by Donoho, Gavish and
Johnstone [22], Ledoit and Wolf, in their 2017 arti-
cle, [28], consider “the class of rotation-equivariant
estimators”.

Ledoit and Wolf write:

Rotation equivariance is appropriate in the
general case where the statistician has no a
priori information about the orientation of
the eigenvectors of the covariance matrix....

The fact that we keep the sample eigenvec-
tors does not mean that we assume they are
close to the population eigenvectors. It only
means that we do not know how to improve
upon them.

In earlier papers Ledoit and Wolf consider estima-
tors that shrink a sample covariance matrix toward a
target. Some of these estimators modify the sample
eigenvectors. By implementing a spiked shrinkage
target in [25], Ledoit and Wolf provide prior struc-
tural information to the estimator. For the JSE esti-
mator, that structural information is in the form of
a factor model and the positive mean assumption on
the leading population eigenvector.

In their 2017 article, Wang and Fan [19] develop
the S-POET eigenvalue shrinkage estimator that can
be applied to the spiked covariance model in the HH
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and certain HL regimes. They evaluate S-POET
with performance metrics based on the relative spec-
tral norm, the relative Frobenius norm, the spectral
norm and the max norm. Their candidate estimators,
again, use the sample eigenvectors. In the absence of
structural information, they also remark that “cor-
rection for the biases of estimating eigenvectors is
almost impossible”.

Despite the challenges of characterizing or correct-
ing sample eigenvectors in high dimensions, there are
streams of literature on the subject in both the HH
and HL regimes. Some of the literature concerns con-
sistency of sample eigenvectors under different mod-
eling assumptions. HH references include Paul [29],
Nadler [30], Mestre [31], and Johnstone and Lu [32].
A 2018 survey by Johnstone and Paul [33] has an
extensive reference list. HH results that are partial
analogs of our findings include Montanari [34] and
Montanari and Venkataramanan [35], who study es-
timation of singular vectors for low-rank matrices us-
ing approximate message passing (AMP) algorithms.
In a 2022 article [36], Zhong, Su and Fan describe
a Bayes AMP algorithm to estimate principal com-
ponents in the HH regime. Techniques from the HH
regime have been applied to improve optimized port-
folios; see, for example, the 2012 paper by Menchero
and Orr [37], and the 2013 publication by El Karoui
[38].

For the HL regime, asymptotics and estimation
of eigenvectors has been studied in work previously
cited and, among others, Ahn, Marron, Muller, and
Chi [39], Jung, Sen, and Marron [40], Lee, Zou, and
Wright [41], and Jung [42].

In the next section, we introduce a focus on opti-
mization error and relevant performance metrics. We
show that JSE eigenvector shrinkage, perhaps sur-
prisingly, can substantially dominate the gains due
to eigenvalue correction in optimization-based per-
formance metrics.

JSE corrects an optimization
bias

Estimated covariance matrices are used in quadratic
optimization, which chooses coefficients to minimize
the variance of a linear combination of random vari-
ables subject to constraints. In what follows, we eval-
uate estimators of high-dimensional spiked covariance
matrices with performance metrics that measure the
accuracy of optimized quantities.

We present simulations of practical situations
where JSE materially improves optimization-based
performance metrics while eigenvalue corrections can
have little effect. Our simulations illustrate re-
sults from [10] and [12] showing the dependence of
optimization-based performance metrics on the opti-
mization bias as the number of variables p tends to
infinity, and the lack of dependence of these metrics
on errors in eigenvalues. Our context and examples
are taken from financial economics, but our results
apply in any discipline where spiked covariance mod-
els are used as inputs to quadratic optimization.

Quantitative portfolio construction

From a universe of p financial securities, there are
countless ways to construct a portfolio. We focus
on quantitative portfolio construction, which has re-
lied on mean-variance optimization since Markowitz
[43]. In this framework, a portfolio is represented by
a vector whose ith entry is the fraction or weight of
the portfolio invested in security i. A portfolio is ef-
ficient if it has minimum forecast variance subject to
constraints, and the search for efficient portfolios is
central to quantitative finance. The simplest efficient
portfolio is minimum variance.

A fully invested but otherwise unconstrained min-
imum variance portfolio is the solution ŵ∗ to the
mean-variance optimization problem

minw∈Rp w⊤Σ̂w

subject to:

w⊤1 = 1,

(25)

where the p × p matrix Σ̂ is a non-singular estimate
of the unknown true security covariance matrix Σ. If
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the estimate Σ̂ is derived from observed data, then ŵ∗

is a data-driven approximation of the true optimum
w∗, defined as the solution to [25] with Σ̂ replaced by
Σ.

Performance metrics and optimization

We review three performance metrics that are sensi-
tive to different aspects of the impact of covariance
matrix estimation error on optimization.
The variance forecast ratio (VFR) is the quotient

of estimated by true variance of a linear combination
of random variables. Considered in 1956 by Stein
[20] for arbitrary combinations, the VFR can be sub-
stantially less than the maximum value 1 when it
is applied to an optimized quantity like a minimum
variance portfolio:

VFR(ŵ∗) =
ŵ∗⊤Σ̂ŵ∗

ŵ∗⊤Σŵ∗
. (26)

This is because a variance-minimizing optimization
tends to place excess weight on securities whose
variances and correlations with other securities are
under-forecast. In the words of Richard Michaud [44],
mean-variance optimizers are “estimation error max-
imizers”. Bianchi, Goldberg and Rosenberg [45] use
the VFR to assess risk underforecasting in optimized
portfolios. By considering the additional metrics de-
scribed next, we are able to gauge the accuracy of
optimized portfolios themselves, not merely the ac-
curacy of their risk forecasts.
Unlike the VFR the true variance ratio TVRmakes

sense only for optimized combinations of random
variables. TVR is the quotient of true variance of
the true quantity by true variance of the optimized
quantity, and it measures excess variance in the lat-
ter:

TVR(ŵ∗) =
w∗Σw∗

ŵ∗⊤Σŵ∗
. (27)

A more direct measure of the accuracy of an op-
timized quantity is tracking error, which we define
as:

TE2(ŵ∗) = (ŵ∗ − w∗)⊤Σ(ŵ∗ − w∗) (28)

for the minimum variance portfolio. Tracking error
is widely used by portfolio managers to measure the
width of the distribution of the difference in return of
two portfolios, and it is commonly applied to measure
the distance between a portfolio and its benchmark.

In simulation, these performance metrics illumi-
nate different aspects of the impact of error in Σ̂ on
ŵ∗. Since they require knowledge of the true covari-
ance matrix Σ, they cannot be used directly in an
empirical study. The numerator of VFR, the true
variance of the optimized quantity, can be approxi-
mated in out-of-sample empirical tests.

Factor models, eigenvalues, and eigen-
vectors

When p > n, the sample covariance matrix S is sin-
gular, and so is not a candidate for Σ̂. Factor models
are used throughout the financial services industry
and the academic literature to generate full-rank es-
timates of security return covariance matrices. In the
discussion below, we rely on the one-factor model
specified in [10]. However, similar results are ob-
tained numerically in the case of multiple factors and
non-homogeneous specific risk in [4], and are sup-
ported by theoretical work currently in development.

Writing the factor loadings β as a product |β|b of
a scale factor and a unit vector, the population co-
variance matrix [11] takes the form

Σ = (σ2|β|2)bb⊤ + δ2I. (29)

The quantities σ2 and |β|2 are not identifiable from
data, but their product η2 = σ2|β|2 is. Thus, we

specify an estimator Σ̂ in terms of an estimator b̂ ∈
Rp of unit length and positive estimators η̂2, δ̂2 ∈ R
so that

Σ̂ = η̂2b̂b̂⊤ + δ̂2I. (30)

In what follows, we use guidance from the HL regime
to estimate the identifiable but unobservable quanti-
ties η2 and δ2 from a data set.

We assume, without loss of generality, that the
sample covariance matrix S has rank n. The sym-
bol λ denotes the leading eigenvalue as before, and
we set ℓ to be the average of the remaining non-zero
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eigenvalues,

ℓ2 =
tr(S)− λ2

n− 1
, (31)

where tr denotes trace. Under the assumptions of
Theorem 1, Lemma A.2 of [10] provides the asymp-
totic relationships between eigenvalues of S and fac-
tor model parameters. If p is sufficiently large,

λ2 ≈ |β|2|f |2

n
+

p

n
δ2, (32)

where f = (f1, f2 . . . , fn) is the vector of realizations
of the common factor return, and

ℓ2 ≈ p

n
δ2, (33)

where ≈ means equality after division by p, in the
limit as p → ∞. An immediate consequence is an
approximate expression the trace of S in terms of the
observable elements of the factor model:

tr(S) ≈ |β|2|f |2

n
+ pδ2. (34)

Although we don’t have access to |f |2/n, it is an un-
biased estimator of the true factor variance σ2. Rela-
belling |f |2/n by σ̂2 and applying formulas [32]–[33]
gives us estimators:

η̂2 = σ̂2|β|2 ≈ λ2 − ℓ2. (35)

δ̂2 = (n/p)ℓ2 (36)

that determine, for any choice of eigenvector estima-
tor b̂, the covariance estimator

Σ̂(b̂) = (λ2 − ℓ2)b̂b̂⊤ + (n/p)ℓ2I (37)

with leading eigenvalue λ2 − ℓ2 + (n/p)ℓ2 and trace
λ2 + (n− 1)ℓ2. The leading sample eigenvalue is ap-
proximately equal to the leading population eigen-
value σ2|β|2 + δ2. It also agrees, for p >> n, with
the S-POET leading eigenvalue estimate of Wang and
Fan [19], developed in a regime that includes our
spiked model in the HL setting.
It remains to estimate b, the leading population

eigenvector. To help quantify the effect of estimation

error on our performance metrics, we use the follow-
ing two quantities defined for any non-zero eigenvec-
tor estimate b̂ of b. The “optimization bias” E(b̂),
introduced in [10], is

E2(b̂) =
(b, q)− (b, b̂)(b̂, q)

1− (b̂, q)2
. (38)

and the “eigenvector bias” D(b̂), introduced in [12],
is

D(b̂) =
(b̂, q)2(1− (b̂, b)2)

(1− (b̂, q)2)(1− (b, q)2)
(39)

where q is the unit vector 1/
√
p and (·, ·) denotes the

Euclidean inner product. Note E2(b) = 0, meaning
the population eigenvector has zero bias, as desired.

As shown in [10], [12], and discussed below, these
bias measures are substantial contributors to the
optimization-based performance metrics VFR, TVR
and TE. A primary lesson of [10] is that eigenvalue
estimates can be less important, for the purpose of
optimization in the HL regime, than estimating the
leading eigenvector. This is especially true when con-
sidering the true variance (ŵ∗)⊤Σŵ∗ of an estimated
minimum risk portfolio ŵ∗ defined by equation [25]
using estimated covariance matrix.

Correcting the optimization bias

In a factor model in the HL regime, JSE can correct
the optimization bias [38], leading to greater accu-
racy in optimized quantities. Theoretical guarantees
of this assertion are expressed in terms of η2 = σ2|β|2
and its estimator η̂2 from [30], for ŵ∗, the minimum
variance portfolio using the estimated covariance ma-
trix [30]. As a consequence of our assumptions on β,
η2 is of order p asymptotically, so the covariance ma-
trix of data generated by our factor model is spiked.

As in the setting of Theorem 1, we assume the
non-degeneracy condition that |β|2/p tends to a finite
positive limit as p → ∞.

Theorem 4 ([10], [12]). Assume that the angle
∠(β,1) tends to a limit less than π/2. Assume the
population covariance matrix is given by [29] and

that the estimates η̂/p and δ̂ have positive limits as
p → ∞.
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1. Asymptotically, the true variance of the esti-
mated portfolio is

(ŵ∗)⊤Σŵ∗ = (η/p)E2(b̂) + o(p). (40)

In particular, the true variance of the estimated
minimum variance portfolio is asymptotically in-
dependent of eigenvalue estimates, but depends
only on the eigenvector estimate b̂ and the true
covariance matrix Σ.

2. limp→∞ E(hJSE) = 0 and limp→∞ E(h) > 0 al-
most surely, where h is the leading eigenvector
of S.

3. Asymptotically, the tracking error of the optimal
portfolio ŵ∗ is

TE2(ŵ) =
η

p
E2(b̂)+

δ2

p
D(b̂)+

C

p
E(b̂)+o(p), (41)

where C is a constant depending on the popula-
tion covariance matrix, the data, η̂, and δ̂, but
not on b̂ (see [12]).

If we denote by wPCA the minimum variance port-
folio constructed using the sample eigenvector h in
[37], and wJSE using hJSE, parts 1 and 2 of Theo-
rem 4 imply that TVR(wPCA) tends to zero as the
dimension p tends to infinity, but TVR(wJSE) does
not. From parts 2 and 3, it follows that TE2(wPCA)
is bounded below, and TE2(wJSE) tends to zero.
Simulations calibrated to financial markets in [4],

[10] and [12] illustrate that these asymptotic proper-
ties are already present for values of p and n that are
typical in financial markets. In addition, we observe
the variance forecast ratio is drastically improved by
the JSE estimator.

Numerical illustration

Consider the problem of estimating a covariance ma-
trix with a year’s worth of daily observations for
stocks in an index like the S&P 500. The observation
frequency and size of the data window are limited by
empirical considerations: stocks enter and exit the in-
dex, markets undergo changes in volatility, and intra-
day sampling magnifies serial correlation.

In the case at hand, we have approximately n =
252 days to estimate a covariance matrix for approx-
imately p = 500 variables. Since p > n, this problem
falls outside the realm of classical statistics. Whether
it falls under the HH or HL regime, and which per-
formance metrics should be used, depend on applica-
tion details. The example described here illustrates
a realistic context in which substantial performance
improvements can be achieved using results from the
HL regime to correct the leading eigenvector, while
HH/HL corrections of the leading eigenvalue have lit-
tle value.

We examine a hypothetical market driven by the
one-factor model [10] with covariance matrix [29].
Because the diagonal elements of S are unbiased esti-
mators of the population variances, the trace tr(S) is
an unbiased estimator of the sum tr(Σ) of the popu-
lation variances. As a consequence, we preserve tr(S)
in our covariance matrix estimators.

We consider the following three data-driven, trace-
preserving estimators:

Σraw = (λ2 − n− 1

p− 1
ℓ2)hh⊤ +

n− 1

p− 1
ℓ2I (42)

ΣPCA = (λ2 − ℓ2)hh⊤ + (n/p)ℓ2I (43)

ΣJSE = (λ2 − ℓ2)
hJSE(hJSE)⊤

|hJSE|2
+ (n/p)ℓ2I. (44)

Here, Σraw matches the leading eigenvalue and
eigenvector of S without correction. ΣPCA has the
corrected leading eigenvalue, but still uses the lead-
ing eigenvector h to estimate b; ΣJSE improves further
by substituting hJSE of [6] for h.
Our factor model parameters are taken approxi-

mately from [4] and [10], which contain detailed in-
formation about calibration to financial markets. We
draw factor and specific returns f and ϵ indepen-
dently with mean 0 and standard deviations 16% and
60%, respectively. In the simulation, factor returns
are normal, and specific returns are drawn from a
t-distribution with 5 degrees of freedom. We use
this fat-tailed t-distribution to illustrate that the re-
sults do not require Gaussian assumptions; repeating
the experiment with several different distributions in-
cluding the normal gives similar results.

The factor loadings β are inspired by market betas.
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We draw entries of β independently from a normal
distribution with mean 1 and variance 0.25, and hold
them fixed across time and simulations.
We compare the effect of eigenvalue vs eigenvec-

tor correction on our portfolio performance metrics.
In the experiment summarized in Figure 3, we fix
p = 500, n = 252, and examine the tracking error,
variance forecast ratio, and true variance ratio for
each of the three estimators Σraw, ΣPCA, and ΣJSE,
with box plots summarizing the values for 400 simu-
lations.
Correcting the leading eigenvalue, from λ2 to the

asymptotically correct λ2 − (1− n/p)ℓ2, has little ef-
fect compared to the JSE eigenvector correction. Re-
lated experiments described in [10] and [4] confirm
that improving the accuracy of optimized quantities
has negligible dependence on the eigenvalue estima-
tor and almost entirely on the choice of eigenvector.
All else equal, the magnitude of the improvement in
accuracy increases as the dispersion of beta decreases.
Comparing our experiment to the numerical study

in [19] illustrates a conclusion from [22]: the choice
of performance metric materially affects the optimal
covariance matrix estimator.

Summary and outlook

This article concerns James Stein for eigenvectors,
a shrinkage method that is structurally identical to
classical James Stein. JSE has asymptotic guarantees
to improve optimization-based performance metrics
in the high dimension low sample size HL regime.
In the context of an empirically motivated one-factor
model with a spiked covariance matrix, we show the-
oretically and illustrate numerically that optimiza-
tion error is materially reduced by the JSE estimator,
while relatively unaffected by eigenvalue correction.
Next steps are to extend the theoretical results to

multi-factor models and further develop the link be-
tween constrained optimization and eigenvector bias.
Open problems include an empirical Bayes formu-
lation of JSE for finite p and n, and a more com-
prehensive understanding of the relationship between
performance metrics and errors in eigenvectors and
eigenvalues. The notion of “three regimes” is a sim-
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Figure 3: Portfolio-level accuracy metrics for sim-
ulated minimum variance portfolios optimized with
Σraw, ΣPCA, and ΣJSE: (a) annualized tracking error,
(b) variance forecast ratio, and (c) true variance ra-
tio. A perfect tracking error is equal to zero, and per-
fect variance forecast ratios and true variance ratios
are equal to one. The estimated covariance matrix
is based on n = 252 observations of p = 500 securi-
ties. Each boxplot summarizes 400 simulations. The
experiments show that eigenvalue correction (PCA)
makes no improvement, but the eigenvector correc-
tion (JSE) is substantial.
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plified framework that allows us to organize results,
but, in reality, the three regimes belong to a family
of largely uninvestigated possibilities. Applications of
JSE to GWAS studies, machine learning, and other
high dimension low sample size empirical problems
await exploration.

Supplementary Materials

Python simulation code used to create
the boxplots in Figure 3 is available at
https://github.com/kercheval-a/JSE.
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