
James-Stein Shrinkage for High Dimensional
Eigenvectors

Alec Kercheval1, Lisa R. Goldberg2, Hubeyb Gurdogan3

1Department of Mathematics, Florida State University, Tallahassee, FL 32306
2Departments of Economics and Mathematics, University of California, Berkeley

94720, and BlackRock, Inc, NY, NY
3Department of Mathematics, UCLA, Los Angeles, CA 90024

Abstract

For high dimensional covariance estimation, the phenomenon of concentration of mea-

sure causes a bias in the direction of the estimated leading eigenvector when the number

of observations is limited. This can be mitigated by means of James-Stein shrinkage.

We describe that method, including rigorous results on the degree of improvement it

provides, and discuss applications to quadratic optimization with estimated covariance

matrices.

1. Introduction

Markowitz [9] introduced mean-variance optimization to quantitative portfolio con-

struction. A case of interest is the minimum variance portfolio, which is the solution to

the optimization problem

minw⊤Σw (1)

w⊤1 = 1 (2)

where we are minimizing over all w ∈ Rp, representing a vector of portfolio weights

of p securities, w⊤ denotes transpose, and 1 represents the p-vector with every entry

equal to 1. The covariance matrix Σ is not observed but must be estimated as Σ̂, for

example from a time series of observed security returns.

However, variance optimization sheds light on covariance matrix estimation error, be-

cause variance optimizers tend to be estimation error maximizers. Portfolio solutions

will tend to overweight variances and covariances that have been underestimated, and

and conversely. The result is a bias, sometimes severe, toward underestimating the

variance of the estimated minimum variance portfolio. This has sparked a vast body of

research aimed a mitigating estimation error in a covariance matrix.

Motivated by the financial applications mentioned above, we consider the typical set-

ting in which the number of securities p is substantially larger than the number of

observations n available for estimation. In the asymptotic limit when p tends to infinity

and n is fixed, we call this the high dimension, low sample size (HL) asymptotic regime

– the reverse of the classical regime in statistics where p is fixed and n tends to infinity.

Factor models of security returns are typically used to highlight structure and reduce

the number of parameters that need to be estimated. In this paper we consider the
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simple one-factor model:

r = βx+ ε , (3)

where r ∈ Rp represents a vector of returns, β ∈ Rp is an unknown vector of (non-

random) factor loading, x ∈ R is the random factor return, and ε ∈ Rp is a random

vector of idiosyncratic returns not explained by the factor. We assume that x and ε
are uncorrelated with mean zero, and the components εi of ε are mutually independent

with bounded variances var(εi) = δ 2
i such that the limiting average variance is positive:

(1/p)∑δ 2
i → δ 2 > 0 (4)

as p → ∞. (The assumption that the εi are independent may be relaxed – see [3].)

We do not need to assume that the variables are normal, subnormal, or belong to any

particular parametric family. We do assume they have bounded fourth moments. We

emphasize here that only r is observed in each of n time periods.

With this factor model, the p× p covariance matrix for r can be expressed as a sum:

Σ = σ2ββ⊤+Ω, (5)

where σ2 = var(x) and Ω = var(ε) is a diagonal matrix. Since the scales of β and σ
are not separately identifiable from observation, we write

Σ = η2bb⊤+Ω, (6)

where η2 =σ2|β |2 and b= β/|β |. We further assume that the components of β asymp-

totically do not cluster at zero or infinity, to the extent that |β |2/p converges to a pos-

itive finite limit as p → ∞. This means that η2 tends to infinity at rate p, while Ω has

bounded eigenvalues, so we can describe this as a single spiked covariance model.

Since the number of securities p is greater than the number of observations n, the

sample covariance matrix is singular, and hence, a poor estimate of Σ for the purpose

of optimization. This is remedied by (6), given appropriate estimates of the scalar η2,

the unit vector b, and the diagonal matrix Ω, yielding:

Σ̂ = η̂2b̂b̂⊤+ Ω̂. (7)

If Ω were the scalar matrix δ 2I, then the leading eigenvalue of Σ would be η2 + δ 2

with eigenvector b, and this remains approximately true for general Ω. We can there-

fore make use of the leading (principal component) eigenvalue and eigenvector of the

sample covariance matrix. For the HL regime, we can consistency (as p → ∞) estimate

η2 and δ 2, but not b. As described in the next section, the sample leading eigenvector

is not a consistent estimator of the population leading eigenvector, but has a limiting

non-zero bias.

In the next section, we describe this bias, discuss the James-Stein shrinkage method

to mitigate it, and examine how that mitigation impacts the optimized portfolio when

optimized with the estimated covariance matrix.
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The results described here summarize a part of the results of a series of papers, pri-

marily [3] and [4], by several researchers working over the past several years. For

simplicity of exposition we restrict our discussion to the simple case of a one-factor

model and optimization with the single equality constraint in (1). The reader may find

more general results and details, full proofs, further background and generalizations,

and fuller discussion of the related literature by consulting that paper and the other

referenced works [4], [5], [6], [7], [10],[11].

2. James-Stein for Eigenvectors

With assumptions as above, denote by Y the p× n data matrix of n observations of p

samples of the return r modeled in (3). The sample covariance matrix is S = YY⊤/n,

which is singular when n < p, as in our HL regime.

Denote by λ the leading eigenvalue of S, hPCA the (unit) leading eigenvector (principal

component) of S, and

ℓ2 =
trace(S)−λ 2

n−1
, (8)

the average of the remaining non-zero eigenvalues. By convention we choose the sign

of hPCA so that the inner product
〈
hPCA,1

〉
is non-negative.

The eigenvector hPCA can be thought of as an estimator of the population spike b, but

with significant bias. A better estimator is the JSE estimator hJSE, defined as follows.

For a p-vector h, let m(h) denote the average of its entries: m(h) = (1/p)∑hi. The

estimator hJSE is a normalized convex combination of hPCA and m(hPCA)1 given by

hJSE = HJSE/|HJSE|, (9)

where

HJSE = m(hPCA)1+ cJSE(hPCA −m(hPCA)1), (10)

the shrinkage constant cJSE is given by

cJSE = 1− ℓ2/p

s2(hPCA)
(11)

and where, for any p-vector h, we define

s2(h) =
1

p

p

∑
i=1

(λhi −λm(h))2. (12)

The quantity s2(h) measures the variation of the entries of λh around their average

λm(h).

The JSE (James-Stein for eigenvectors) estimator hJSE is so-called because it bears a

very close relationship to the classical James-Stein shrinkage estimator developed in

[12] and [8] for a collection of averages.
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Theorem 1 ([3]) Assume, as p → ∞, ∠(β ,1) has a positive limit Θ < π/2.

Then,

lim
p→∞

|hJSE −b|< lim
p→∞

|hPCA −b| a.s. (13)

Asymptotically,

cos2(∠(hJSE,b))− cos2(∠(hPCA,b)) =
(ℓ2/λ 2)2 cos2 Θ

sin2 Θ+(ℓ2/λ 2)
> 0 (14)

Theorem 1 says that hJSE is asymptotically a better estimate of the population eigen-

vector b than hPCA. This can be intuitively understood in the following way. Con-

sider the unit vector u = 1/
√

p as the north pole on the unit sphere S, with equator

E = {v∈ S : 〈v,u〉= 0}. In high dimensions, the concentration of measure phenomenon

(see [13] and [1]) means that the volume of S is concentrated near E, so a random unit

vector will be approximately orthogonal to u with high probability. This means that

additive noise will tend to push estimates of b (like hPCA) toward E and away from u.

Shrinking back toward u by the proper amount (such as hJSE) improves the estimate.

Theorem 1 quantifies the improvement. See [3], [4] and [2] for further explanation.

When the JSE estimator is used in favor of PCA in constructing an estimated covariance

matrix, we observe the significance of the improvement. We compare the following two

covariance estimators:

ΣPCA = (λ 2 − ℓ2)hPCA(hPCA)⊤+(n/p)ℓ2I

ΣJSE = (λ 2 − ℓ2)hJSE(hJSE)⊤+(n/p)ℓ2I.

Both of these preserve the trace of S, which is a consistent estimator of trace(Σ). It

can also be shown (see [6]) that (λ 2 − ℓ2)/p−η2/p → 0 and (n/p)ℓ2 → δ 2 as p → 0.

Hence these are natural estimators of the form (7) that only differ in the choice of b̂.

For comparison, we also consider

Σraw = (λ 2 − n−1

p−1
ℓ2)hPCAhPCA⊤

+
n−1

p−1
ℓ2I, (15)

which matches the leading eigenvalue and eigenvector of S without correction. We will

see that eigenvalue correction (passing from Σraw to ΣPCA) makes little improvement

compared to the eigenvector correction implemented in ΣJSE.

As a measure of performance, we examine the tracking error and variance forecast ratio

for optimized portfolios ŵ, using one of the two estimated covariance matrices.

The (squared) tracking error of an optimized portfolio ŵ relative to the true optimal

portfolio w∗ is

T E
2(ŵ) = (ŵ−w∗)⊤Σ(ŵ−w∗).

The variance forecast ratio measures error in the risk forecast:

V (ŵ) =
ŵ⊤Σ̂ŵ

ŵ⊤Σŵ
.
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Theorem 2 ([3]) With assumptions as before, then asymptotically as p → ∞ with n

fixed, almost surely,

1. T E
2(wPCA)> T E

2(wJSE)

2. V (wPCA)→ 0 but V (wJSE)> 0

Simulations show the asymptotic regime is reached for fairly small p like 500.

A third measure of estimation error as it affects the optimization problem is the true

variance ratio, defined as
w∗⊤Σw∗

ŵ⊤Σŵ
.

The true variance ratio is less than one, larger is better.

In Figure 1, we show boxplots of simulation experiments examining the performance

of optimized portfolios using Σraw,ΣPCA,ΣJSE. In this experiment, we draw n = 252

consecutive samples of the factor return f and specific return ε independently with

mean zero and standard deviation 16% and 60%, respectively, as typical market val-

ues. The factor return is drawn from a normal distribution, while the specific returns

are drawn independently from a t-distribution with five degrees of freedom. The factor

loadings β are drawn once independently from a normal distribution with mean 1 and

variance 0.25 to imitate typical market betas, and are kept fixed across time and exper-

iments. We are in dimension p = 500, and simulate the 252-period sample a total of

400 times to produce the box plots shown.

These results are typical of many simulation experiments with varying parameters. The

tracking error and true variace ratio are significantly improved when employing the JSE

estimate as compared to PCA. The variance forecast ratio shows even more dramatic

improvement, indicating that the estimated variance is very close to the (unobserved)

true variace of the estimated portfolio.
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(a) Tracking error
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(b) Variance forecast ratio
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(c) True variance ratio

Figure 1: Portfolio-level accuracy metrics for simulated minimum variance portfolios

optimized with Σraw, ΣPCA, and ΣJSE: (a) annualized tracking error, (b) variance fore-

cast ratio, and (c) true variance ratio. A perfect tracking error is equal to zero, and

perfect variance forecast ratios and true variance ratios are equal to one. The estimated

covariance matrix is based on n= 252 observations of p= 500 securities. Each boxplot

summarizes 400 simulations. The experiments show that eigenvalue correction (PCA)

makes no improvement, but the eigenvector correction (JSE) is substantial. Figures are

taken from [4].
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