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Abstract.6
Covariance estimation for high-dimensional returns is well-known to be impeded by the lack of long data7

history. We extend the work of Goldberg, Papanicolaou, and Shkolnik (GPS) [14] on shrinkage estimates for8
the leading eigenvector of a covariance matrix in the high dimensional, low sample-size regime, which has9
immediate application to estimating minimum variance portfolios. We introduce a more general framework of10
eigenvector shrinkage targets – multiple anchor point shrinkage – that allows the practitioner to incorporate11
additional information, such as rank ordering or sector separation of equity betas, or prior beta estimates from12
the recent past. We show that certain rank ordering information can be used to define a consistent estimator of13
the leading eigenvector. We prove some asymptotic statements and illustrate our results with some numerical14
experiments.15

Key words. Covariance matrix estimation, shrinkage, minimum variance portfolio16

AMS subject classifications. 91G60, 91G70, 62H2517

1. Introduction. This paper is about the problem of estimating covariance matrices for18

large random vectors, when the data for estimation is a relatively small sample. We discuss a19

shrinkage approach to reducing the estimation error asymptotically in the high dimensional,20

bounded sample size regime, denoted HL. We note at the outset that this context differs from21

that of the more well-known random matrix theory of the asymptotic “HH regime” in which22

the sample size grows in proportion to the dimension (e.g. [8]). See [19] for earlier discussion23

of the HL regime, and [9] for a discussion of the estimation problem for factor models in high24

dimension.25

Our interest in the HL asymptotic regime comes from the problem of portfolio optimization26

in financial markets. There, a portfolio manager is likely to confront a large number of assets,27

like stocks, in a universe of hundreds or thousands of individual issues. However, typical28

return periods of days, weeks, or months, combined with the irrelevance of the distant past,29

mean that the useful length of data time series is usually much shorter than the dimension of30

the returns vectors being estimated.31

In this paper we extend the successful shrinkage approach introduced in [14] (GPS) to a32

framework that allows the user to incorporate additional information into the shrinkage target33

and improve results. Our “multiple anchor point shrinkage” (MAPS) approach includes the34
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2 H. GURDOGAN AND A. KERCHEVAL

GPS method as a special case.35

The problem of sampling error for portfolio optimization has been widely studied ever36

since Markowitz [25] introduced the approach of mean-variance optimization. That paper37

immediately gave rise to the importance of estimating the covariance matrix Σ of asset returns,38

as the risk, measured by variance of returns, is given by wTΣw, where w is the vector of weights39

defining the portfolio.40

For a survey of various approaches over the years, see [14] and references therein. Reducing41

the number of parameters via factor models has long been standard; see for example [26]42

and [27]. The applicability of factor models in a very general HL setting is justified by [3].43

Discussion of consistent estimation of factors in the HL and HH regimes is contained in [5]44

and [6]. There, the HH regime in which both p and n tend to infinity is required for exact45

consistency. In comparison, Theorem 2.3 below attains a consistent estimator of a single factor46

in the HL setting for a bounded number of observations.47

[30] and [12] initiated a Bayesian approach to portfolio estimation and the efficient frontier.48

Practitioners are frequently interested in estimating the sensitivity (called “beta”) of asset49

returns to the overall market return. Vasicek used a prior cross-sectional distribution for50

betas to produce an empirical Bayes estimator for beta that amounts to shrinking the least-51

squares estimator toward the prior in an optimal way. This is one of a number of “shrinkage”52

approaches in which initial sample estimates of the covariance matrix are “shrunk” toward53

a prior e.g. [21], [2], [22], [23], [10]. [24] describes a nonlinear shrinkage estimator of the54

covariance matrix focused on correcting the eigenvalues, set in the HH asymptotic regime.55

A number of results in the HL and HH regimes related to correcting biases in the spiked56

covariance setting of factor models are described in [31].57

The key insight of [14] was to identify the PCA leading eigenvector of the sample covari-58

ance matrix as the primary culprit contributing to sampling error for the minimum variance59

portfolio problem in the HL asymptotic regime. Their approach to eigenvector shrinkage is60

not explicitly Bayesian, but can be viewed in that spirit (see section 2.5). This is the starting61

point for the present work.62

It is worth pointing out that shrinkage approaches to estimation are far broader than63

estimating covariance matrices. The books [11] and [16] discusses an array of shrinkage esti-64

mators, mainly centered on the famous James-Stein (JS) estimator [20], [7]. The JS estimator65

as a prototype is not merely incidental to this work: it turns out that there are close structural66

parallels between JS and GPS/MAPS, as described in the recent works [29] and [13].67

1.1. Mathematical setting and background. Next we describe the mathematical setting,68

motivation, and results in more detail. We restrict attention to a familiar and well-studied69

(e.g. [28]) baseline model for financial returns: the one-factor, “single-index” or “market”,70

model71

(1.1) r = βx+ z,72

where r ∈ Rp is a p-dimensional random vector of asset (excess) returns in a universe of p73

assets, β ∈ Rp is an unobserved non-zero vector of parameters to be estimated, x ∈ R is74

an unobserved random variable representing the common factor return, and z ∈ Rp is an75

unobserved random vector of residual returns specific to the individual assets.76
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MULTIPLE ANCHOR POINT SHRINKAGE 3

With the assumption that the components of z are uncorrelated with x and each other, the77

returns of different assets are correlated only through β, and therefore the covariance matrix78

of r is79

Σ = σ2ββT +∆,80

where σ2 denotes the variance of x, and ∆ is the diagonal covariance matrix of z. Typical81

models in practice use multiple drivers of correlation, so this model represents a base case in82

which to set our results. However, to the extent that we will measure success below by the83

performance of the estimated minimum variance portfolio, to a good approximation only a84

single market factor is relevant ([4], [15]).85

Under the further simplifying model assumption1 that each component of z has a common86

variance δ2 (also not observed), we obtain the covariance matrix of returns87

(1.2) Σ = σ2ββT + δ2I,88

where I denotes the p× p identity matrix.89

This means that β, or its normalization b = β/||β||, is the leading eigenvector of Σ,90

corresponding to the largest eigenvalue σ2||β||2 + δ2. As estimating b becomes the most91

significant part of the estimation problem for Σ, a natural approach is to take as an estimate92

the first principal component (leading unit eigenvector) hPCA of the sample covariance of93

returns data generated by the model. This principal component analysis (PCA) estimate is94

our starting point.95

Consider the optimization problem96

min
w∈Rp

wTΣw97

eTw = 198

where e = (1, 1, . . . , 1), the vector of all ones.99

The solution, the “minimum variance portfolio”, is the unique fully invested portfolio100

minimizing the variance of returns. Of course the true covariance matrix Σ is not observable101

and must be estimated from data. Denote an estimate by102

(1.3) Σ̂ = σ̂2β̂β̂T + δ̂2I103

corresponding to estimated parameters σ̂, β̂, and δ̂.104

Let ŵ denote the solution of the optimization problem105

min
w∈Rp

wT Σ̂w106

eTw = 1.107

1The assumption of homogeneous residual variance δ2 is a mathematical convenience. If the diagonal
covariance matrix ∆ of residual returns can be reasonably estimated, then the problem can be rescaled as
∆−1/2r = ∆−1/2βx+∆−1/2z, which has covariance matrix σ2β∆βT

∆ + I, where β∆ = ∆−1/2β.

This manuscript is for review purposes only.



4 H. GURDOGAN AND A. KERCHEVAL

It is interesting to compare the estimated minimum variance108

V̂ 2 = ŵT Σ̂ŵ109

with the actual variance of ŵ:110

V 2 = ŵTΣŵ,111

and consider the variance forecast ratio V 2/V̂ 2 as one measure of the error made in the112

estimation of minimum variance, hence of the covariance matrix Σ.113

The remarkable fact proved in [14] is that, asymptotically as p tends to infinity with n114

fixed, the true variance of the estimated portfolio doesn’t depend on σ̂, δ̂, or ||β̂||, but only115

on the unit eigenvector β̂/||β̂||. Under some mild assumptions stated later, they show the116

following.117

Definition 1.1. For a p-vector β = (β(1), . . . , β(p)), define the mean µ(β) and dispersion118

d2(β) of β by119

(1.4) µ(β) =
1

p

p∑
i=1

β(i) and d2(β) =
1

p

p∑
i=1

( β(i)
µ(β)

− 1
)2
.120

We use the notation for normalized vectors121

b =
β

||β||
, q =

e
√
p
, and h =

β̂

||β̂||
.122

123

Proposition 1.1 ([14]). The true variance of the estimated portfolio ŵ is given by124

V 2 = ŵTΣŵ = σ2µ2(β)(1 + d2(β))E2(h) + op125

where E(h) is defined by126

E(h) = (b, q)− (b, h)(h, q)

1− (h, q)2
,127

and where the remainder op is such that for some constants c, C, c/p ≤ op ≤ C/p for all p.128

In addition, the variance forecast ratio V 2/V̂ 2 is asymptotically equal to pE2(h).129

Goldberg, Papanicolaou and Shkolnik call the quantity E(h) the optimization bias associated130

to an estimate h of the true vector b. They note that the optimization bias E(hPCA) is asymp-131

totically bounded above zero almost surely, and hence the variance forecast ratio explodes as132

p→ ∞.133

With this background, the estimation problem becomes focused on finding a better esti-134

mate h of b from an observed time series of returns. GPS [14] introduces a shrinkage estimate135

for b – the GPS estimator hGPS – obtained by “shrinking” the PCA eigenvector hPCA along136

the unit sphere toward q, to reduce excess dispersion. That is, hGPS is obtained by moving a137

specified distance (computed only from observed data) toward q along the spherical geodesic138

connecting hPCA and q. “Shrinkage” refers to the reduced geodesic distance to the “shrinkage139

target” q.140
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MULTIPLE ANCHOR POINT SHRINKAGE 5

The GPS estimator hGPS is a significant improvement on hPCA. First, E(hGPS) tends141

to zero with p, and in fact pE2(hGPS)/ log log(p) is bounded (proved in [17]). In [14] it142

is conjectured, with numerical support, that E[pE2(hGPS)] is bounded in p, and hence the143

expected variance forecast ratio remains bounded. Moreover, asymptotically hGPS is closer144

than hPCA to the true value b in the ℓ2 norm, and it yields a portfolio with better tracking145

error against the true minimum variance portfolio.146

1.2. Our contributions. The purpose of this paper is to generalize the GPS estimator by147

introducing a way to use additional information about beta to adjust the shrinkage target q148

in order to improve the estimate.149

We can consider the space of all possible shrinkage targets τ as determined by the family150

of all nontrivial proper linear subspaces L of Rp as follows. Given L (assumed not orthogonal151

to h), let the unit vector τ(L) be the normalized orthogonal projection of h onto L. τ(L) is152

then a shrinkage target for h determined by L (and h). We will describe such a subspace L as153

the linear span of a set of unit vectors called “anchor points”. In the case of a single anchor154

point q, note that τ(span{q}) = q, so this case corresponds to the GPS shrinkage target.155

The “MAPS” estimator is a shrinkage estimator with a shrinkage target defined by an156

arbitrary collection of anchor points, usually including q. When q is the only anchor point,157

the MAPS estimator reduces to the GPS estimator. We can therefore think of the MAPS158

approach as allowing for the incorporation of additional anchor points when this provides159

additional information.160

In Theorem 2.2, we show that expanding span{q} by adding additional anchor points at161

random asymptotically does no harm, but makes no improvement.162

In Theorem 2.3, we show that if the user has certain mild a priori rank ordering infor-163

mation about groups of components of β, even with no information about magnitudes, an164

appropriately constructed MAPS estimator is a consistent estimator in the sense that it con-165

verges exactly to the true vector b in the asymptotic limit, even though the sample size is held166

fixed.167

Theorem 2.4 shows that if the betas have positive serial correlation over recent history, then168

adding the prior PCA estimator h as an anchor point improves the ℓ2 error in comparison169

with the GPS estimator, even if the GPS estimator is computed with the same total data170

history.171

The benefit of improving the ℓ2 error in addition to the optimization bias is that it also al-172

lows us to reduce the tracking error of the estimated minimum variance fully invested portfolio,173

discussed in Section 3 and Theorem 3.1.174

In the next sections we present the main results. The framework, assumptions, and state-175

ments of the main theorems are presented in Sections 2 and 3. Some simulation experiments176

are presented in Section 4 to illustrate the impact of the main results for some specific situ-177

ations. Proofs of the theorems of Section 2 are organized in Section 5, followed by Section 6178

describing some open questions for further work.179

To limit the length of this article, the proofs of some of the needed technical propositions180

and lemmas appear in a separate document [18], available online. Additional details and181

computations may be found in [17].182

2. Main Theorems.183
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6 H. GURDOGAN AND A. KERCHEVAL

2.1. Assumptions and Definitions. We consider a simple random sample history gener-184

ated from the basic model (1.1). The sample data can be summarized as185

(2.1) R = βXT + Z186

where R ∈ Rp×n holds the observed individual (excess) returns of p assets for a time window187

that is set by n ≥ 2 consecutive observations. We may consider the observables R to be188

generated by non-observable random variables β ∈ Rp, X ∈ Rn and Z ∈ Rp×n.189

The entries of X are the market factor returns for each observation time; the entries190

of Z are the specific returns for each asset at each time; the entries of β are the exposure191

of each asset to the market factor, and we interpret β as random but fixed at the start of192

the observation window of times 1, 2, 3, ..., n and remaining constant throughout the window.193

Only R is observable.194

In this paper we are interested in asymptotic results as p tends to infinity with n fixed.195

Therefore we consider equation (2.1) as defining an infinite sequence of models, one for each196

p.197

To specify the relationship between models with different values of p, we need a more198

precise notation. We’ll let β refer to an infinite sequence (β(1), β(2), . . . ) ∈ R∞, and βp =199

(β(1), . . . , β(p)) ∈ Rp the vector obtained by truncation after p entries. When the value p is200

understood or implied, we will frequently drop the superscript and write β for βp.201

Similarly, Z ∈ R∞×n is a vector of n sequences (the columns), and Zp ∈ Rp×n is obtained202

by truncating the sequences at p.203

With this setup, passing from p to p+ 1 amounts to simply adding an additional asset to204

the model without changing the existing p assets. The pth model is denoted205

Rp = βpXT + Zp,206

but for convenience we will often drop the superscript p in our notation when there is no207

ambiguity, in favor of equation (2.1).208

Let µp(β) and dp(β) ≥ 0 denote the mean and dispersion of βp, given by209

(2.2) µp(β) =
1

p

p∑
i=1

β(i) and dp(β)
2 =

1

p

p∑
i=1

(
β(i)− µp(β)

µp(β)
)2.210

We make the following assumptions regarding β, X and Z:211

A1. (Regularity of beta) The entries β(i) of β are uniformly bounded, independent random212

variables, fixed prior to time 1. The mean µp(β) and dispersion dp(β) converge to limits213

µ∞(β) ∈ (0,∞) and d∞(β) ∈ (0,∞).214

A2. (Independence of beta, X, Z) β, X and Z are jointly independent.215

A3. (Regularity of X) The entriesXi ofX are iid random variables with mean zero, variance216

σ2 .217

A4. (Regularity of Z) The entries Zij of Z have mean zero, finite variance δ2, and uniformly218

bounded fourth moment. In addition, the n-dimensional rows of Z are mutually219

independent, and within each row the entries are pairwise uncorrelated.2220

2Note we do not assume β,X, or Z are Normal or belong to any specific family of distributions.

This manuscript is for review purposes only.



MULTIPLE ANCHOR POINT SHRINKAGE 7

The assumptions above are for the sake of convenience and to simplify the statements221

of results, but in practice are non-binding or can be partly relaxed. In assumption A1,222

boundedness is automatic in a finite market, and the betas can be viewed as constants as a223

special case if desired (until section 2.4). Once β is determined, it is held fixed during the224

observation window of length n. In contrast, X and the columns of Z are drawn independently225

at each of the n observations times. The existence of the limits µ∞(β) and d∞(β) could be226

relaxed by considering the limit superior and inferior of the sequence at the cost of more227

complicated theorem statements, so long as lim inf µp(β) ̸= 0, with a change of sign if needed228

to make it positive.229

Assumptions A2 and A3 are conveniences that simplify the analysis and statements of230

results. In [14] X and Z are only assumed uncorrelated, so the stronger independence as-231

sumption, used in our proofs, is not necessary in all cases. Assumption A4 is one of a few232

alternatives that serve the proofs. The fourth moment condition can be dropped in favor233

of the additional assumption that the rows of Z are identically distributed, but we prefer234

boundedness conditions as they are always satisfied in finite markets.235

With the given assumptions the covariance matrix Σβ of R, conditional on β, is236

(2.3) Σβ = σ2ββT + δ2I.237

Since β stays constant over the n observations, the sample covariance matrix 1
nRR

T converges238

to Σβ almost surely if n is taken to ∞, and is the maximum likelihood estimator of Σβ.239

We will work with normalized vectors on the unit sphere Sp−1 ⊂ Rp. To that end we240

define241

(2.4) b =
β

||β||
, q =

e
√
p
,242

where e = ep = (1, 1, . . . , 1) ∈ Rp, and ||.|| denotes the usual Euclidean norm.243

The vector b is the leading eigenvector of Σβ (corresponding to the largest eigenvalue). We244

denote by h the PCA estimator of b, i.e. h is the first principal component, or the unit leading245

eigenvector, of the sample covariance matrix 1
nRR

T . For convenience we always select the246

sign of the unit eigenvector h such that the inner product (h, q) > 0, ignoring the probability247

zero case (h, q) = 0.248

Since β and X appear in the model R = βX + Z only as a product, there is a scale249

ambiguity that we can resolve by combining their scales into a single parameter η:250

ηp =
1

p
|βp|2σ2.251

It is easy to verify that252

ηp = µp(β)
2(dp(β)

2 + 1)σ2,253

and therefore by our assumptions ηp tends to a positive, finite limit η∞ as p→ ∞.254

Our covariance matrix becomes255

(2.5) Σβ ≡ Σb = pηbbT + δ2I,256
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8 H. GURDOGAN AND A. KERCHEVAL

where we drop the superscript p when convenient. The scalars η, δ and the unit vector b are257

to be estimated by η̂, δ̂, and h. As described above, asymptotically only the estimate h of b258

will be significant. Improving this estimate is the main technical goal of this paper.259

In [14] the PCA estimate h is replaced by an estimate hGPS that is “data driven”, meaning260

that it is computable solely from the observed data R. We henceforth use the notation261

hGPS = ĥq, for a reason that will be clear shortly. As an intermediate step we also consider a262

non-observable “oracle” version hq, defined as the point on the short Sp−1-geodesic joining h263

to q that is closest to b. (Recall that both b and h are chosen to lie in the half-sphere centered264

at q.) The oracle version is not data driven because it requires knowledge of the unobserved265

vector b that we are trying to estimate, but it is a useful concept in the definition and analysis266

of the data driven version. Both the data driven estimate ĥq and the oracle estimate hq can be267

thought of as obtained from the eigenvector h via “shrinkage” along the geodesic connecting268

h to the anchor point, q.269

The GPS data-driven estimator ĥq is successful in improving the variance forecast ratio,270

and in arriving at a better estimate of the true variance of the minimum variance portfolio.271

In this paper we have the additional goal of reducing the ℓ2 error of the estimator, which, for272

example, is helpful in reducing tracking error. To that end, we introduce the following new273

data driven estimator, denoted ĥL.274

Let L = Lp ⊂ Rp denote a nontrivial proper linear subspace of Rp. If v is any vector in275

Rp, we write276

proj
L

(v)277

for the Euclidean orthogonal projection of v onto L. Denote by kp the dimension of Lp, with278

1 ≤ kp ≤ p− 1.279

Let h = hp denote our normalized leading eigenvector of 1
nR

p(Rp)T , s2p its largest eigen-280

value, and l2p the average of the remaining non-zero eigenvalues. Then we define the data281

driven “MAPS” (Multiple Anchor Point Shrinkage) estimator by282

(2.6) ĥL =

τph+ proj
L

(h)

||τph+ proj
L

(h)||
283

where284

(2.7) τp =

ψ2
p − ||proj

L
(h)||2

1− ψ2
p

and ψp =

√
s2p − l2p
s2p

.285

Here ψp measures the relative gap between s2p and l2p. The MAPS estimator can be viewed286

as obtained by “shrinking” the PCA estimator h toward the target proj
L

(h) along the sphere287

Sp−1 by a specified amount.288

Recall that we sometimes use a superscript to emphasize the dimension of a vector, and289

the notation (·, ·) for the Euclidean inner product of two vectors. The next lemma from [14]290

describes the asymptotic limit of ψp and inner products (hp, bp), (hp, qp), and (bp, qp) as the291

dimension p tends to infinity.292
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MULTIPLE ANCHOR POINT SHRINKAGE 9

Lemma 2.1 ([14]). The limits ψ∞ = limp→∞ ψp, (h, b)∞ = limp→∞(hp, bp), (h, q)∞ =293

limp→∞(hp, qp), and (b, q)∞ = limp→∞(bp, qp) exist almost surely. Moreover,294

ψ∞ = (h, b)∞ ∈ (0, 1),295

and296

(h, q)∞ = (h, b)∞(b, q)∞ ∈ (0, 1).297

When L is the one-dimensional subspace spanned by the vector q, then ĥL is precisely the298

GPS estimator ĥq, located along the short spherical geodesic connecting h to q. The phrase299

“multiple anchor point” comes from thinking of q as an “anchor point” shrinkage target in300

the GPS paper, and L as a subspace spanned one or more anchor points. The new shrinkage301

target determined by L is the normalized orthogonal projection of h onto L. When L is the302

one-dimensional subspace spanned by q, the normalized projection of h onto L is just q itself.303

In the event that L is orthogonal to h, the MAPS estimator ĥL reverts to h itself.304

2.2. The MAPS estimator with random extra anchor points. Does adding anchor points305

to create a MAPS estimator from a higher-dimensional subspace improve the estimation? The306

answer depends on whether there is any relevant information about b in the added anchor307

points. In the case where there is no added information and we simply add new anchor points308

at random, the next theorem says this doesn’t help.309

First some terminology. We say that Lp is a random linear subspace of Rp if it is non-310

trivial, proper, and the span of a collection of random, linearly independent unit vectors. The311

random linear subspace Hp is a uniform random subspace of Rp if, in addition, it has spanning312

vectors are uniformly distributed on the sphere Sp−1.3 We say Lp is independent of a random313

variable Ψ if it has spanning vectors that are independent of Ψ.314

Definition 2.1. A non-decreasing sequence {kp} of positive integers is square root domi-315

nated if316
∞∑
p=1

k2p
p2

<∞.317

For example, any non-decreasing sequence satisfying kp ≤ Cpα for some C > 0 and α < 1/2318

is square root dominated. Roughly speaking, a square-root dominated sequence is one that319

grows more slowly than
√
p. In particular, any constant sequence qualifies.320

Theorem 2.2. Let the assumptions 1,2,3 and 4 hold. Suppose, for each p, Lp is a random321

linear subspace and Hp is a uniform random subspace of Rp. Suppose also that Lp is inde-322

pendent of Z, and Hp is independent of both Z and β. Assume also the sequences dimLp and323

dimHp are square root dominated.324

Let L′
p = span{Lp, q

p} and H ′
p = span{Hp, q

p}.325

Then, almost surely,326

(2.8) lim sup
p→∞

||ĥL′ − b|| ≤ lim
p→∞

||ĥq − b||,327

3Uniform random subspaces are called Haar random subspaces in [18] because they can be defined alterna-
tively in terms of the Haar (uniform) measure on the orthogonal group.
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10 H. GURDOGAN AND A. KERCHEVAL

328

(2.9) lim
p→∞

||ĥH′ − b|| = lim
p→∞

||ĥq − b||,329

and330

(2.10) lim
p→∞

||ĥH − b|| = lim
p→∞

||h− b||.331

The limits on the right hand sides of (2.8), (2.9), and (2.10) exist by an easy application332

of Lemma 2.1. The need for some upper bounds, such as square root domination, for the333

dimensions of L and H can be understood by considering the extreme case of maximum334

dimension p. In that case, the MAPS estimators all reduce to h itself, so (2.8) and (2.9) fail.335

Theorem 2.2 says adding random anchor points to form a MAPS estimator does no harm336

asymptotically, but also makes no improvement asymptotically. Inequality (2.8) says that337

adding anchor points to q that are independent of Z creates a MAPS estimator that is asymp-338

totically never worse, in the Euclidean distance, than the GPS estimator ĥq, though it might339

be better (intuitively, if the MAPS estimator incorporates some addtional information about340

β).341

Equation (2.9) says that the GPS estimator is asymptotically neither improved nor harmed342

by adding extra anchor points uniformly at random when they are independent of β and Z.343

Therefore the goal will be to find useful anchor points that take advantage of additional344

information about β that might be available. Necessarily those anchor points will not be345

independent of β, but can be thought of as creating choices of L′
p to create a strict inequality346

in (2.8).347

Equation (2.10) confirms that the anchor point q used by the GPS estimator has value:348

without it, a random selection of anchor points independent of β and Z will define a MAPS349

estimator that is asymptotically no better than the PCA estimator h. While q is not random,350

it has an implicit relationship to β coming from Assumption A1, which is motivated by the fact351

that equity betas are empirically observed to cluster around 1. In this sense, the non-random352

anchor point q contains baseline information about β. This is one of the central intuitions353

behind the GPS estimator in [14].354

As a final remark, notice that in Theorem 2.2 we do not require L or H to be independent355

ofX (butX, Z, and β are mutually independent by Assumption A2). The asymptotic analysis356

in the proof requires independence from Z in order to apply a version of the strong law of357

large numbers as p→ ∞. In contrast, X does not depend on p and so its contribution can be358

controlled a priori uniformly in p.359

2.3. The MAPS estimator with rank order information about the entries of beta. We360

now wish to consider what kind of information about β could be added in the form of anchor361

points to create an improved MAPS estimator.362

In this section we consider rank order information. Use of estimated rank ordering of363

unknown quantities is not new in finance, but has mostly been applied to estimated ordering364

of returns rather than betas, such as in [1]. Here we consider order information about betas,365

used in connection with shrinkage estimation.366

It so happens that if a well-informed observer somehow knows the rank-ordering of the367

components of βp for each p – that is, which entry is the largest, which second largest, etc.,368
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then that information alone, without knowing the actual magnitudes, is sufficient to determine369

b asymptotically with zero error almost surely, using an appropriate MAPS estimator. The370

resulting consistent estimator is unexpected because the asymptotics are not with regard to371

sample size n tending to infinty, but rather dimension p→ ∞ with fixed n.372

In fact, significantly less information than this is needed to create a consistent MAPS373

estimator in this sense. It suffices to be able to separate the components of beta into ordered374

groups, where the rank ordering of the groups is known, but not the ordering within groups.375

The meaning of ordered groups and the constraints on group sizes are explained below.376

Definition 2.2. For any p ∈ N, let P = P(p) be a partition of the index set {1, 2, .., p} (i.e. a377

collection of pairwise disjoint non-empty subsets, called atoms, whose union is {1, 2, .., p}).378

The number of atoms of P is denoted by |P|.379

We say the sequence of partitions P(p) is semi-uniform if there exists M > 0 such that380

for all p,381

(2.11) max
I∈P(p)

|I| ≤M
p

|P(p)|
.382

In other words, no atom is larger than a fixed multiple M of the average atom size.383

Given β ∈ Rp, we say P is β-ordered if, for each distinct I, J ∈ P, either max
i∈I

βi ≤ min
j∈J

βj384

or max
j∈J

βj ≤ min
j∈I

βi.385

Intuitively, a semi-uniform β-ordered partition P(p) defines a way to organize the elements386

βpi of βp into disjoint groups (atoms) that are of similar size, and such that for each group,387

no element outside the group lies strictly in between two elements of the group.388

It is easy to see that many such semi-uniform β-ordered partitions always exist, and are389

easily constructed if a rank ordering if the betas is known. For example, for each p, first390

rank order the elements of βp, then divide the elements into deciles by taking the largest ten391

percent, then the next ten percent, etc., rounding as needed. The result is ten atoms, and392

each atom is approximately p/10 in size. If in addition we want the number of atoms to393

tend to infinity with p, we can replace “ten percent” by a percentage that declines toward394

zero as p → ∞. If instead of ten percent we choose 0 < α < 1/2 and let the atoms be of395

size approximately p1−α, there will be approximately pα atoms in the resulting semi-uniform,396

β-ordered partition P(p), and the sequence |P(p)| will be square root dominated.397

Once we have such a partition, each atom A ⊂ {1, 2, . . . , p} defines an anchor point as398

follows.399

Definition 2.3. For any A ⊂ {1, 2, ..., p} let 1A ∈ Rp denote the vector defined by the400

indicator function of A: 1A(i) = 0 if i ∈ A, and otherwise 1A(i) = 0. We may then define,401

for any partition P = P(p), an induced linear subspace L(P) of Rp by402

(2.12) L(P) = spanp{1A
∣∣A ∈ P} ≡< 1A

∣∣A ∈ P > .403

Theorem 2.3. Let the assumptions 1,2,3 and 4 hold. Consider a semi-uniform sequence404

{P(p) : p = 1, 2, 3, . . . } of β-ordered partitions such that the sequence {|P(p)|} tends to infinity405

and is square root dominated. Then406

(2.13) lim
p→∞

||ĥL(P(p)) − b|| = 0 almost surely.407
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12 H. GURDOGAN AND A. KERCHEVAL

Theorem 2.3 says that if we have certain prior information about the ordering of the β408

elements in the sense of finding an ordered partition (but with no other prior information409

about the actual magnitudes of the elements or their ordering within partition atoms), then410

asymptotically we can estimate b exactly.411

Having in hand a true β-ordered partition a priori will usually not be possible because412

even the ordering of the betas is not likely to be known in practice. However, Theorem 2.3413

suggests the hypothesis that partial grouped order information about the betas can still be414

helpful in improving our estimate of β.415

We test this hypothesis in Section 4.2 by considering industry sectors as a proposed way416

to form a partition of asset betas. To the extent that betas for equities belonging to the417

same sector are similar, and separated from those of other sectors, the partition will be418

approximately β-ordered. The experiments of Section 4.2 illustrate, as least in that case, that419

these approximations can suffice to create a MAPS estimator that improves on the PCA and420

GPS versions.421

2.4. A data-driven dynamic MAPS estimator. Theorem 2.4 of this section shows that422

even with no a priori information about betas beyond the observed time series of returns, we423

can still use the MAPS framework to improve the GPS estimator by making more efficient424

use of the data history.425

In the analysis above we have treated β as a constant throughout the sampling period,426

but in reality we expect β to vary slowly over time. To capture this in a simple way, let’s427

now assume that we have access to returns observations for p assets over a fixed number of428

2n periods. The first n periods we call the first (or previous) time block, and the second n429

periods the second (or current) time block. We then have returns matrices R1, R2 ∈ Rp×n430

corresponding to the two time blocks, and R = [R1R2] ∈ Rp×2n the full returns matrix over431

the full set of 2n observation times.432

Define the sample covariance matrices S, S1, S2 as 1
2nRR

T , 1
nR1R

T
1 , and

1
nR2R

T
2 , respec-433

tively. Let h, h1, h2 denote the respective (normalized) leading eigenvectors (PCA estimators)434

of S, S1, S2. (Of the two choices of eigenvector, we always select the one having non-negative435

inner product with q.)436

Instead of a single β for the entire observation period, we suppose there are random vectors437

β1 and β2 that enter the model during the first and second time blocks, respectively, and are438

fixed during their respective blocks. We assume both β1 and β2 satisfy assumptions (1) and439

(2) above, and denote by b1 and b2 the corresponding normalized vectors. The vectors β1 and440

β2 should not be too dissimilar in the mild sense that (β1, β2) ≥ 0.441

Definition 2.4. Define the co-dispersion dp(β1, β2) and pointwise correlation ρp(β1, β2) of
β1 and β2 by

dp(β1, β2) =
1

p

p∑
i=1

( β1(i)
µp(β1)

− 1
)( β2(i)
µp(β2)

− 1
)

and

ρp(β1, β2) =
dp(β1, β2)

dp(β1)dp(β2)
.

The Cauchy-Schwartz inequality shows −1 ≤ ρp(β1, β2) ≤ 1. Furthermore, it is straight-442
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forward to verify that443

(2.14) (b1, b2)− (b1, q)(b2, q) =
dp(β1, β2)√

1 + dp(β1)2
√

1 + dp(β2)2
.444

and hence dp(β1, β2), and ρp(β1, β2) have limits d∞(β1, β2), and ρ∞(β1, β2) as p→ ∞.445

The motivation for this model is our expectation that estimated betas are not fixed, but446

nevertheless recent betas still provide some useful information about current betas. To make447

this precise in support of the following theorem, we make the following additional assumptions.448

A5. [Relation between β1 and β2] Almost surely, (β1, β2) > 0, µ∞(β1) = µ∞(β2), d∞(β1) =449

d∞(β2), and limp→∞ dp(β1, β2) = d∞(β1, β2) exists.450

Theorem 2.4. Assume β1, β2, R,X,Z satisfy assumptions 1-5. Denote by ĥsq and ĥdq the451

GPS estimators for R2 and R, respectively, i.e. the current (single) and previous plus current452

(double) time blocks. Let h1 and h2 be the PCA estimators for R1 and R2, respectively.453

Let Lp =< h1, q > and define a MAPS estimator for the current time block as454

(2.15) ĥL =

τph2 + proj
L

(h2)

||τph2 + proj
L

(h2)||
where τp =

ψ2
p − ||proj

L
(h2)||2

1− ψ2
p

,455

where ψp is computed from the eigenvalues of the sample covariance matrix corresponding to456

the current time block R2. Then, almost surely,457

(2.16) lim
p→∞

(
||ĥL − b2|| − ||ĥsq − b2||]

)
≤ 0 and lim

p→∞

(
||ĥL − b2|| − ||ĥdq − b2||]

)
≤ 0,458

and, if 0 < |ρ∞(β1, β2)| < 1,459

(2.17) lim
p→∞

(
||ĥL − b2|| − ||ĥsq − b2||

)
< 0 and lim

p→∞

(
||ĥL − b2|| − ||ĥdq − b2||

)
< 0.460

Theorem 2.4 says that the MAPS estimator obtained by adding the PCA estimator h from461

the previous time block as a second anchor point outperforms the GPS estimator asymptoti-462

cally, as measured by ℓ2 error, whether the latter is estimated with the most recent time block463

R2 or with the full 2n (double) data set. This works when the previous time block carries some464

information about the current beta (non-zero correlation). In the case of perfect correlation465

ρ∞(β1, β2) = 1 the two betas are equal, and we then return to the GPS setting where beta is466

assumed constant across the entire 2n observations, so no improved performance is expected.467

The cost of implementing this “dynamic MAPS” estimator is comparable to that of the468

GPS estimator, so should generally be preferred when no rank order information is available469

for beta.470

In this analysis we have chosen to use two historical time blocks of equal length n for the471

sake of a definite statement and to illustrate the idea. It is likely that the idea also works472

when the time blocks have different lengths, or when there are multiple historical time blocks473

in use. Theoretical or experimental analysis could determine rules for making such choices,474

but we do not do so here.475
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2.5. Remarks and connections. The theorems above illustrate a general theme of the476

MAPS framework: the performance of a shrinkage estimator like GPS can be improved when477

additional information can be added in the form of additional anchor points. For Theorem 2.3,478

that means a certain amount of prior ordering information about the betas can be converted479

to anchor points that are good enough to make a bona fide consistent estimator of b. For480

Theorem 2.4, the use of a PCA estimator from a prior interval in time as an additional anchor481

point improves the estimator if betas are correlated across time. The general point is that482

when there is some prior information about the betas that is independent of the time interval483

used for the estimation, the investigator should formulate that information as one or more484

anchor points and use the MAPS technique.485

This discussion has close connections to Bayesian decision theory (BDT), which makes486

use of a prior distribution of a parameter to be estimated. One could view the addition of an487

anchor point in the MAPS framework as an adjustment to a prior distribution for beta.488

We think it likely that the MAPS approach can be reformulated in BDT terms, although489

our results in the current form don’t conform to them. We don’t formulate the prior informa-490

tion in terms of a prior distribution of the parameters. And since our setting is asymptotic as491

p→ ∞, our conclusions are almost sure statements, rather than statements about minimizing492

posterior expected loss. However, the structural connections between GPS/MAPS and the493

James-Stein estimator mentioned in the introduction provides a link. The JS estimator is a494

kind of empirical Bayes estimator, for example see [11]. Similarly, the GPS/MAPS estimator495

is an empirical version of an “oracle” estimator – see Section 5.496

Another connection, especially for Theorem 2.4, is to the setting of machine learning.497

Although Theorem 2.4 itself is not about machine learning because there is no training process,498

one could imagine the use of prior time intervals as input to a training process that finds499

optimal anchor points as a function of the prior data. This is likely to improve on our default500

use of the PCA leading eigenvector as additional anchor point.501

3. Tracking Error. Our task has been to estimate the covariance matrix of returns for a502

large number p of assets but a short time series of n returns observations.503

Recall that for the returns model (1.1), under the given assumptions, we have the true504

covariance matrix505

Σb = pηbbT + δ2I,506

where η and δ are positive constants and b is a unit p-vector, and we are interested in corre-507

sponding estimates η̂, δ̂, and h that define an estimator508

Σh = pη̂hhT + δ̂2I.509

Our focus on the estimator h and relative neglect of η̂ and δ̂ is justified by Proposition510

1.1, showing that the true variance of the estimated minimum variance portfolio ŵ, and the511

variance forecast ratio, are asymptotically controlled by h alone through the optimization bias512

E(h) = (b, q)− (b, h)(h, q)

1− (h, q)2
.513

The preceding theorems have focused on a particular measure of estimation error for h:514

the ℓ2 error (Euclidean distance) ||h − b|| = 2(1 − (h, b)). By comparison, [14, 15] focus on515
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the variance forecast ratio of the minimum variance portfolio. This error measure has the516

benefit of demonstrating improvement of a quantity of direct interest to practitioners, with517

the drawback of focusing on a single type of portfolio. The ℓ2 error is not a familiar financial518

quantity, but is an ingredient in the optimization bias above, and also in estimating tracking519

error, as we describe next.520

We turn to a third important measure of covariance estimation quality: the tracking error521

for the minimum variance portfolio, which is controlled in part by the ℓ2 error of h. Tracking522

error is a term conventionally used in the finance industry as a measure of the distance between523

a portfolio and its benchmark. Here, we adopt the same idea to measure the distance between524

an estimated minimum variance portfolio and the true portfolio, as follows.525

Recall that w denotes the true minimum variance portfolio using Σ, and ŵ is the minimum526

variance portfolio using the estimated covariance matrix Σ̂.527

Definition 3.1. The (true) tracking error T (h) associated to ŵ is defined by528

(3.1) T 2(h) = (ŵ − w)TΣ(ŵ − w).529

Definition 3.2. Given the notation above, define the eigenvector bias D(h) associated to a530

unit leading eigenvector estimate h as531

D(h) =
(h, q)2(1− (h, b)2)

(1− (h, q)2)(1− (b, q)2)
=

(h, q)2||h− b||2

||h− q||2||b− q||2
.532

Theorem 3.1. Let h be an estimator of b such that E(h) → 0 as p→ ∞ (such as a GPS or533

MAPS estimator). Then the tracking error of h is asymptotically (neglecting terms of higher534

order in 1/p) given by535

(3.2) T 2(h) = ηE2(h) +
δ2

p
D(h) +

C

p
E(h),536

where537

C =
2

ξ(1 + d2∞(β))
(δ2 +

η

η̂
δ̂2)538

and ξ > 0 is a constant depending only on ψ∞, µ∞(β), and d∞(β).539

We consider what this theorem means for various estimators h. For the PCA estimate, it540

was already shown in [14] that E(hPCA) is asymptotically bounded below, and hence so is the541

tracking error.542

On the other hand, E(hGPS) tends to zero as p→ ∞. In addition [14] shows that543

lim sup
p→∞

p E2(hGPS) = ∞544

almost surely, while [17] shows545

lim sup
p→∞

p E2(hGPS)

log log p
<∞,546

and we conjecture the same is true for the more general estimator hMAPS .547
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This implies the leading terms, asymptotically, are548

T 2(hMAPS) ≤ ηE2(hMAPS) + (δ2/p)D(hMAPS)549

Note here the estimated parameters η̂ and δ̂ have dropped out, with the tracking error550

asymptotically controlled by the eigenvector estimate h alone.551

Theorem 3.1 helps justify our interest in the ℓ2 error results of Theorems 2.3 and 2.4.552

Reducing the ℓ2 error ||h−b|| of the h estimate controls the second term D(h) of the asymptotic553

estimate for tracking error. We therefore expect to see improved total tracking error when554

we are able to make an informed choice of additional anchor points in forming the MAPS555

estimator. This is borne out in our numerical experiments described in Section 4.556

Proof of Theorem 3.1557

Lemma 3.2. There exists ξ > 0, depending only on ψ∞, µ∞(β), and d∞(β), such that for558

any p sufficiently large, and any linear subspace L of Rp that contains q,559

||hL − q||2 > ξ > 0,560

where hL is the MAPS estimator determined by L.561

The Lemma follows from the fact that (hL, q) ≤ (hGPS , q), and is proved for the case hGPS562

using the definitions and the known limits563

(hPCA, q)∞ = (b, q)∞(hPCA, b)∞(3.3)564

(b, q)2∞ =
1

1 + d2∞(β)
∈ (0, 1)(3.4)565

(hPCA, b)∞ = ψ∞ > 0.(3.5)566

From the Lemma and equation (3.4), we may assume without loss of generality that ξ > 0567

is an asymptotic lower bound for both ||hL − q||2 = 1− (hL, q)
2 and ||b− q||2 = 1− (b, q)2.568

Next, we recall it is straightforward to find explicit formulas for the minimum variance569

portfolios w and ŵ:570

(3.6) w =
1
√
p

ρq − b

ρ− (b, q)
, where ρ =

1 + k2

(b, q)
, k2 =

δ2

pη
571

and572

(3.7) ŵ =
1
√
p

ρ̂q − h

ρ̂− (h, q)
, where ρ̂ =

1 + k̂2

(h, q)
, k̂2 =

δ̂2

pη̂
.573

We may use these expressions to obtain an explicit formula for the tracking error:574

T 2(h) = (ŵ − w)TΣ(ŵ − w) = (ŵ − w)T (pηbbT + δ2I)(ŵ − w)575

= pη(ŵ − w, b)2 + δ2||ŵ − w||2.576
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We now estimate the two terms on the right hand side separately.577

(1) For the first term pη(ŵ − w, b)2, it is convenient to introduce the notation578

Γ =
k2

1 + k2 − (b, q)2
and Γ̂ =

k̂2

1 + k̂2 − (h, q)2
,579

and since580

Γ ≤ k2

ξ
and Γ̂ ≤ k̂2

ξ
581

both Γ and Γ̂ are of order 1/p.582

A straightforward computation verifies that583

(w, b) =
1
√
p
Γ(b, q)(3.8)584

(ŵ, b) =
1
√
p

(
E(h) + Γ̂[(b, q)− E(h)]

)
.(3.9)585

We then obtain586

p(ŵ − w, b)2 = p[(ŵ, b)− (w, b)]2(3.10)587

= E(h)2 + 2E(h)G+G2,(3.11)588

where G = Γ̂((b, q)− E(h))− Γ(b, q).589

Since asymptotically (b, q) is bounded below and E(h) → 0, the third term G2 is of order590

1/p2 and can be dropped. We thus obtain the asymptotic estimate591

p(ŵ − w, b)2 ≤ E2 + 2E(h)(Γ̂− Γ)(b, q).592

Multiplying by η and using the bounds on Γ, Γ̂ and the limit of (b, q), we obtain593

pη(ŵ − w, b)2 ≤ E2 +
C

p
E(h),594

where C is the constant defined in the statement of the theorem.595

(2) We now turn to the second term ||ŵ − w||2 = ||ŵ||2 + ||w||2 − 2(ŵ, w).596

Using the definitions of ŵ and w and the fact that k2, k̂2 are of order 1/p, after a calculation597

we obtain, to lowest order in 1/p,598

(3.12) p||ŵ − w||2 = (h, q)2[1− (h, b)2]

(1− (h, q)2)(1− (b, q)2)
+

1− (h, q)2

1− (b, q)2
E2(h).599

Since E(h) → 0, we may neglect the second term, and putting (1) and (2) together yields600

T 2(h) ≤ E2 +
C

p
E(h) + δ2

p
D(h).601
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4. Simulation Experiments. To illustrate the previous theorems and test whether the602

MAPS estimators can be successful for realistic finite values of p, we present the results of two603

numerical experiments. In section 4.1, we draw two correlated random vectors β1 and β2 in604

Rp, p = 500, with a variable correlation that we control. Returns are generated using β1 for a605

first block of observations, then using β2 for a second block of equal length. These are used to606

test whether the dynamic MAPS estimator of Theorem 2.4 is successful against GPS (which607

assumes β1 = β2). In addition, since we know the exact ordering of the beta components,608

we can compare results with a MAPS estimator defined with a beta-ordered partition as in609

Theorem 2.3.610

In section 4.2, we turn to the use of historical CAPM betas for stocks in the S&P500,611

rather than simulated betas. This allows us to test a MAPS estimator defined by a partition612

determined by the 11 sectors of the familiar Global Industry Classification Standard of MSCI613

and S&P. Under the hypothesis that betas for stocks in the same industry sector tend to614

have similar magnitudes, classification by sector represents a potential approximation to a615

true (but usually not observable) beta-ordered partition. We test this data-driven MAPS616

estimator against PCA, GPS, and the consistent MAPS estimator defined with a true beta-617

ordered partition.618

These simple experiments are only proof-of-concept examples illustrating the potential619

for success. We have not attempted the worthwhile project of systematically studying the620

possible choices of history length or sector divisions in order to optimize outcomes in real621

markets.622

The Python code used to run these experiments and create the figures is available at623

https://github.com/hugurdog/MAPS NumericalExperiments.624

4.1. Simulated betas with correlation. To model the possibility that the true betas may625

vary slowly during the time window used for estimation, and as a test for Theorems 2.3 and626

2.4, we create a simple two-block simulation model with p = 500 stocks in which the true627

betas are held constant with value β1 ∈ Rp during one block of time, and then shift to a628

second but correlated value β2 for a subsequent block of time.629

Each block has n = 25 observations, so the total observation window is of size 2n = 50630

for each of our p = 500 stocks. The p×n returns matrix for the first block is denoted R1 and631

for the second R2, and632

(4.1) Rt = βtXt + Zt, t = 1, 2,633

whereXt ∈ Rn is a vector of the n unobserved common factor returns in block t, and Zt ∈ Rp×n634

is the matrix of specific returns in block t.635

We generate the p × n matrices R1 and R2 from Equation (4.1) by randomly generating636

β,X, and Z:637

• the market returns Xt(j), j = 1, . . . , n, are an iid random sample drawn from a normal638

distribution with mean 0 and variance σ2 = 0.16,639

• all components of the asset specific returns {Zt(i, j), i = 1, . . . , p; j = 1, . . . , n} are640

i.i.d. normal with mean 0 and variance δ2 = (.5)2, and641

• the p-vectors β1 and β2 are defined by drawing β, η ∈ Rp independently from a Normal
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distribution with mean 1 and variance (.5)2Ip×p, and setting

β1 = β and β2 = ρβ +
√

1− ρ2η,

where the correlation ρ ranges through values in {0, 0.3, 0.6, 1.0}.642

With this simulated returns data, we compare performance for the following four choices643

of h:644

1. the PCA estimator on the double block R = [R1, R2] (PCA)645

2. the GPS estimator on the double block R = [R1, R2] (GPS)646

3. the dynamic MAPS estimator defined on the double block R = [R1, R2] by equation647

(2.15) (Dynamic MAPS)648

4. the MAPS estimator on the single block R2 incorporating knowledge of a beta ordered649

partition P as in Theorem 2.3. The partition is constructed by rank ordering the betas650

and then grouping them into 7 ordered groups of 71, and a small eighth group of the651

lowest three. (Beta Ordered MAPS)652

We report the performance of each of these estimators according to the following two653

metrics:654

• The ℓ2 error ||b − h|| between the true normalized beta b = β
|β| of the current data655

block R2 and the estimated unit vector h.656

• The tracking error between the true and estimated minimum variance portfolios w657

and ŵ:658

(4.2) T 2(ŵ) = (ŵ − w)TΣ(ŵ − w).659

In our double-block context, this tracking error is specified as follows. Σ in (4.2) is the660

true covariance matrix of the most recent data block R2:661

(4.3) Σ = σ2β2β2
T + δ2I,662

which then also determines the true fully invested minimum variance portfolio w. The esti-663

mated minimum variance portfolio ŵ is determined by the estimated covariance matrix664

(4.4) Σ̂ = σ̂2β̂β̂T + δ̂2I = (σ̂2|β̂|2)hhT + δ̂2I.665

For our comparison, and following the lead of [14], we fix the asymptotically correct values666

(4.5) σ̂2|β̂|2 = s2p − l2p and δ̂2 =
n

p
l2p667

(notation as in equation 2.7) across each of the four cases, and vary only the estimator668

h = β̂/|β̂| as described above. The motivation for this choice is that in our simulation669

the parameters σ2 and δ2 remain constant across the double time window. Hence the best670

data-driven estimates for σ̂2 and δ̂2 will be obtained by using s2p and l2p computed from the671

full double block of data R. This puts all the methods compared on the same footing and672

isolates h as the sole variable in the experiment.673
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Results of the comparison are displayed below. For each choice of ρ, the experiment was674

run 100 times, resulting in 100 ℓ2 error and tracking error values each. These values are675

summarized using standard box-and-whisker plots generated in Python using the package676

matplotlib.pyplot.boxplot.677

Figure 1 shows the squared ℓ2 error ||h− b||2 for different estimators h (in the same order,678

left to right, as listed above) for the cases ρ = 0, 0.3, 0.6, 1.0. Throughout the range, the679

dynamical MAPS estimator outperforms the other two data-driven estimators, but the beta-680

ordered MAPS estimator remains in the lead. The case ρ = 0 could be compared to the case681

of a Bayesian estimator where the additional anchor point is providing information only about682

the distribution of the components of β. As the correlation ρ tends toward one, the GPS and683

Dynamic MAPS errors become equal. At ρ = 1, β1 = β2 and the GPS assumption of constant684

β over the 2n period is satisfied.685

Figure 2 displays the scaled tracking error pT 2(h) outcomes across a range of correlation686

values ρ(β1, β2). Dynamic MAPS does best among all data-driven methods, and beta ordered687

MAPS is significantly better than all others. As before, the Dynamic MAPS lead disappears688

as ρ tends to 1, when β1 = β2.689

4.2. Simulations with historical betas. In this section we use historical rather than ran-690

domly generated betas to test the quality of MAPS estimators defined using a sector partition691

and a beta-ordered partition. We use 24 historical monthly CAPM betas for each of the692

p = 488 S&P500 firms provided by WRDS4 between the dates 01/01/2018 and 11/30/2020.693

We denote these betas by β1, . . . , β24 ∈ Rp.694

The WRDS beta suite estimates beta each month from the prior 12 monthly returns.695

Therefore in this experiment we set n = 12 months, and using these betas simulate 24 different696

sets of monthly asset returns Rt ∈ Rp×n, each for n = 12 months.697

For each t = 1, . . . , 24, we generate the returns matrix Rt according to698

(4.6) Rt = βtXt + Zt,699

where the unobserved market return Xt ∈ Rn and the asset specific return Zt ∈ Rp×n are700

generated using the same settings as in the previous section.701

For each t we also form partitions Ptrue
t and Psector

t of the beta indices {1, 2, . . . , p}. Ptrue
t702

is a true beta-ordered partition with 11 atoms constructed from the true rank ordering of703

βt. Psector
t is a partition defined by the 11 industry sectors5, which we adopt as a possible704

data-driven proxy for Ptrue
t .705

For each t, we then compute the following four estimators of bt = βt/|βt|:706

1. The PCA estimator. (PCA)707

2. The GPS estimator. (GPS)708

3. The MAPS estimator defined as in Theorem 2.3 using the partition Psector
t . (Sector709

Separated)710

4. The MAPS estimator defined using Ptrue
t . (Beta Ordered)711

4Wharton Research Data Services, wrds-www.wharton.upenn.edu
5The 11 sectors of the Global Industry Classification Standard are: Information Technology, Health Care,

Financials, Consumer Discretionary, Communication Services, Industrials, Consumer Staples, Energy, Utilities,
Real Estate, and Materials.
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(a) ρ = 0 (b) ρ = 0.3

(c) ρ = 0.6 (d) ρ = 1

Figure 1: Results of simulation experiments measuring ℓ2 error for different estimators: PCA,
GPS, Dynamic MAPS, and Beta Ordered, and varying correlation ρ between betas in the
two different time blocks. When beta correlation between time blocks is low, dynamic MAPS
outperforms GPS. The non-empirical beta-ordered MAPS outperforms all others.

For each of these four choices of estimator ht, we examine three different measures of712

error: the squared ℓ2 error ||ht − bt||2, the scaled squared tracking error pT 2(ht), and the713

scaled optimization bias pE2
p (ht).714

Since we are interested in expected outcomes, we repeat the above experiment 100 times,715

and take the average of the errors as a monte carlo estimate of the expectations716

E[||ht − bt||2], E[pT 2(ht)], E[pE2
p (ht)],717

once for each t. We then display box plots in Figure 3 for the resulting distribution of 24718

expected errors of each type, corresponding to the 24 historical betas. Outcomes are similar719

to the simulated beta experiments, where PCA has the poorest performance, Beta Ordered720

MAPS the best, and in between are the GPS and empirical MAPS.721

Using sectors to partition the stocks evidently has some value, as the sector separated722

MAPS estimator outperforms GPS by a small but significant amount in both ℓ2 and tracking723
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(a) ρ = 0 (b) ρ = 0.3

(c) ρ = 0.6 (d) ρ = 1

Figure 2: Tracking error results of simulation experiments for different estimators PCA, GPS,
Dynamic MAPS, and Beta Ordered. The pointwise correlation ρ is the correlation between
betas in the two different time blocks. Results are similar to the ℓ2 error plots.

error. Its success is owed to the tendency for betas of stocks in a common sector to be closer724

to each other than to betas in other sectors. The Sector Separated MAPS estimator does not725

require any information not easily available to the practitioner, and so represents a costless726

improvement on the GPS estimation method.727

We also note that further experiments are reported in [17] and [18], in which a dynamic728

double-block experiment using the historical betas is also carried out, with similar results.729

5. Proofs of the Main Theorems. The proofs of the main theorems proceed by means730

of some intermediate results involving an “oracle estimator”, defined in terms of the unob-731

servable b but equal to the MAPS estimator in the asymptotic limit (Theorem 5.1 below).732

Several technical supporting propositions and lemmas are needed; to save space their proofs733

are collected in a separate document, [18], available online.734

5.1. Oracle Theorems. A key tool in the proofs is the oracle estimator hL, which is a735

version of ĥL but defined in terms of b, our estimation target.736
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(a) ℓ2 error (b) tracking error (c) optimization bias

Figure 3: Box plots summarizing the distribution of 24 monte carlo-estimated expected errors
for the PCA, GPS, Sector Separated, and Beta Ordered estimators (left to right in each
figure). The experiment is conducted over 488 S&P 500 companies. This experiment reveals
that the Sector Separated estimator is able to capture some of the ordering information and
therefore outperforms the GPS estimator. The Beta Ordered estimator performs best.

Given a subspace L = Lp of Rp, we define737

(5.1) hL =

proj
<h,L>

(b)

|| proj
<h,L>

(b)||
.738

Here < h,L > denotes the span of h and L, and note that if L = {0} we get hL = h,739

the PCA estimator. A nontrivial example for the selection would be Lp =< q >, which740

generates hq, the oracle version of the GPS estimator in [14]. The following theorem says that741

asymptotically the oracle estimator (5.1) converges to the MAPS estimator (2.6).742

Theorem 5.1. Let the assumptions 1,2,3 and 4 hold. Suppose {Lp} be any sequence of743

random linear subspaces that is independent of the entries of Z, such that dim(Lp) is a square744

root dominated sequence. Then745

(5.2) lim
p→∞

||ĥL − hL|| = 0.746

The proof of Theorem 5.1 requires the following proposition, proved in [18].747

Proposition 5.2. Under the assumptions of Theorem 5.1, let h = hPCA be the PCA esti-748

mator, equal to the unit leading eigenvector of the sample covariance matrix. Then, almost749

surely:750

1. lim
p→∞

(
(h,proj

L
(h))− (h, b)2(b,proj

L
(b))

)
= 0,751

2. lim
p→∞

(
(b,proj

L
(h))− (h, b)(b,proj

L
(b)))

)
= 0, and752

3. lim
p→∞

||proj
L

(h)− (h, b)proj
L

(b)|| = 0.753

In particular,
proj
L

(h)

||proj
L

(h)|| converges asymptotically to
proj
L

(b)

||proj
L

(b)|| .754
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Proof of the Theorem 5.1:. Recall from (2.6) that,755

ĥL =

τph+ proj
L

(h)

||τph+ proj
L

(h)||
where τp =

ψ2
p − ||proj

L
(h)||2

1− ψ2
p

.756

By Lemma 2.1, ψp has an almost sure limit ψ∞ = (h, b)∞ ∈ (0, 1), and hence τp is bounded757

in p almost surely.758

Let Ω1 ⊂ Ω be the almost sure set for which the conclusions of Proposition 5.2 hold.759

Define the notation760

ap(ω) = ||ĥLp − hLp ||761

and762

γp =

(h, b)− (b,proj
L

(h))

1− ||proj
L

(h)||2
.763

The proof will follow steps 1-4 below:764

1. For every ω ∈ Ω1 and sub-sequence {pk}∞k=1 ⊂ {p}∞1 satisfying

lim sup
k→∞

||proj
Lpk

(b)||(ω) < 1

we prove765

0 < lim inf
k→∞

γpk(ω) ≤ lim sup
k→∞

γpk(ω) <∞766

and767

0 < lim inf
k→∞

τpk(ω) ≤ lim sup
k→∞

τpk(ω) <∞.768

2. For every ω ∈ Ω1 and sub-sequence {pk}∞k=1 ⊂ {p}∞1 satisfying

lim sup
k→∞

||proj
Lpk

(b)||(ω) < 1

we use step 1 to prove lim
k→∞

apk(w)=0769

3. Set Ω0 = {ω ∈ Ω
∣∣ lim sup

p→∞
||proj

Lp

(b)||2 = 1}. Fix ω ∈ Ω0 ∩ Ω1 and prove using step 2 that770

lim
p→∞

ap(ω) = 0771

4. Finish the proof by applying step 2 for all ω ∈ Ωc
0 ∩ Ω1 when {pk} is set to {p}.772

Step 1: Since ω ∈ Ω1 we have the following immediate implications of Proposition 5.2,773

(5.3) lim sup
k→∞

||proj
Lpk

(h)||2 = (h, b)2∞ lim sup
k→∞

||proj
Lpk

(b)||2.774
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775

(5.4) lim sup
k→∞

(b,proj
Lpk

(h)) = (h, b)∞ lim sup
k→∞

||proj
Lpk

(b)||2.776

Using the assumption lim sup
k→∞

||proj
Lpk

(b)||2 < 1, we update (5.3) and (5.4) as,777

(5.5) lim sup
k→∞

||proj
Lpk

(h)||2 < (h, b)2∞ < 1778

779

(5.6) lim sup
k→∞

(b,proj
Lpk

(h)) < (h, b)∞780

for the given ω ∈ Ω1. We can use (5.5) on the numerator of τpk to show,781

lim inf
k→∞

(
ψ2
pk

− ||proj
Lpk

(h)||
)
≥ lim inf

k→∞
ψ2
pk

− lim sup
k→∞

||proj
Lpk

(h)||2782

= (h, b)2∞ − lim sup
k→∞

||proj
Lpk

(h)||2 > 0.783

784

That together with the fact that the denominator of τpk has a limit in (0,∞) implies,785

(5.7) 0 < lim inf
k→∞

τpk(ω) ≤ lim sup
k→∞

τpk(ω) <∞786

Similarly we can use (5.6) on the numerator of γpk as,787

(5.8) lim inf
k→∞

(
(h, b)− (b,proj

Lpk

(h))
)
≥ (h, b)∞ − lim sup

k→∞
(b,proj

Lpk

(h)) > 0.788

Also (5.5) can be used on the denominator of γpk as,789

(5.9) lim inf
k→∞

1− ||proj
Lpk

(h)||2 > 1− lim sup
k→∞

||proj
Lpk

(h)||2 > 0790

Using (5.8) and (5.9) we get,791

(5.10) 0 < lim inf
k→∞

γpk(ω) ≤ lim sup
k→∞

γpk(ω) <∞792

for the given ω ∈ Ω1. This completes the step 1.793

794

Step 2: We have the following initial observation,795

(5.11) 1 ≥ || proj
<h,Lpk

>
(b)|| ≥ ||proj

<h>
(b)|| = (h, b)796

and using that we get

1 ≥ lim sup
p→

|| proj
<h,Lpk

>
(b)|| ≥ lim inf

p→
|| proj
<h,Lpk

>
(b)|| ≥ (h, b)∞ > 0.
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Given that, in order to show lim
k→∞

apk(ω) = 0, it suffices to show τpkh + proj
Lpk

(h) converges797

to a scalar multiple of proj
<h,Lpk

>
(b) since that scalar clears after normalizing the vectors. To798

motivate that lets re-write proj
<h,Lpk

>
(b) as,799

proj
<h,Lpk

>
(b) = proj

<h−proj
Lpk

(h),Lpk
>
(b)800

= proj
Lpk

(b) +

( h− proj
Lpk

(h)

||h− proj
Lpk

(h)||
, b

) h− proj
Lpk

(h)

||h− proj
Lpk

(h)||
801

= proj
Lpk

(b) + γpk(h− proj
Lpk

(h))(5.12)802

= γpk(h+
1

γpk
proj
Lpk

(b)− proj
Lpk

(h)).(5.13)803

804

We also have,805

(5.14) τpkh+ proj
Lpk

(h) = τpk(h+
1

τpk
proj
Lpk

(h)).806

Since we have τpk and γpk satisfying (5.7) and (5.10) respectively, we have the equations (5.13)807

and (5.14) well defined asymptotically, which is sufficient for our purpose. Hence, from the808

above argument it is sufficient to show the convergence of h+ 1
τpk

proj
Lpk

(h) to h+ 1
γpk

proj
Lpk

(b)−809

proj
Lpk

(h). That is equivalent to showing 1
τpk

proj
Lpk

(h) converges to 1
γpk

proj
Lpk

(b)− proj
Lpk

(h). We can810

re-write the associated quantity as,811

(5.15)
∣∣ 1

τpk
proj
Lpk

(h)−
( 1

γpk
proj
Lpk

(b)− proj
Lpk

(h)
)∣∣ = ∣∣(1 + 1

τpk
)proj
Lpk

(h)− 1

γpk
proj
Lpk

(b)
∣∣812

Using Proposition 5.2 part 3 in (5.15), it is equivalent to prove813 ∣∣(1 + 1
τpk

)(h, b)− 1
γpk

∣∣ converges to 0. We re-write it as814

|( 1

τpk
+ 1)(h, b)− 1

γpk
| =

∣∣∣∣
(h, b)(1− ||proj

Lpk

(h)||2

ψ2
pk

− ||proj
Lpk

(h)||2
−

1− ||proj
Lpk

(h)||2

(h, b)− (proj
Lpk

(h), b)

∣∣∣∣815

= |1− ||proj
Lpk

(h)||2|
∣∣∣∣ (h, b)

ψ2
pk

− ||proj
Lpk

(h)||2
− 1

(h, b)− (proj
Lpk

(h), b)

∣∣∣∣(5.16)816

817

Using parts (1) and (2) of Proposition 5.2 and the fact that ψ2
pk

converges to (h, b)2∞ shows818

that (5.16) converges to 0 for the given ω ∈ Ω1. This completes step 2.819
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Step 3: Fix ω ∈ Ω0∩Ω1. To show that limp→∞ ap(ω) = 0, it suffices to show that for any sub-820

sequence {pk}∞k=1 ⊂ {p}∞1 there exist a further sub-sequence {st}∞t=1 such that lim
t→∞

ast(ω) = 0.821

Let {pk}∞k=1 be a subsequence. We have one of the following cases,822

lim sup
k→∞

||proj
Lpk

(b)||(ω)2 < 1823

or824

lim sup
k→∞

||proj
Lpk

(b)||(ω)2 = 1825

If it is strictly less than 1, then we get from the step 2 that lim
k→∞

apk(ω) = 0. In that case826

we take the further sub-sequence of equal to {pk}.827

If it is equal to 1, then we get a further sub-sequence {st} s.t828

lim
t→∞

||proj
Lst

(b)||2 = 1. Using this and Proposition 5.2 we get the following,829

lim
t→∞

||proj
Lst

(h)||2 = (h, b)2∞ and lim
t→∞

(b,proj
Lst

(h)) = (h, b)∞830

which implies lim
t→∞

τst(ω) = lim
t→∞

γst(ω) = 0. Using this on the definition of ĥL and the831

equation (5.12) we get,832

(5.17) lim
t→∞

∣∣∣∣ĥLst
−

proj
Lst

(h)

||proj
Lst

(h)||
∣∣∣∣ = 0 and lim

t→∞

∣∣∣∣hLst
−

proj
Lst

(b)

||proj
Lst

(b)||
∣∣∣∣ = 0833

We can now decompose ast = ||ĥLst
−hLst

|| into familiar components via the triangle inequality834

as follows,835

ast = ||ĥLst
− hLst

|| ≤
∣∣∣∣ĥLst

−
proj
Lst

(h)

||proj
Lst

(h)||
∣∣∣∣+ ∣∣∣∣hLst

−
proj
Lst

(b)

||proj
Lst

(b)||
∣∣∣∣836

+
∣∣∣∣ proj

Lst

(b)

||proj
Lst

(b)||
−

proj
Lst

(h)

||proj
Lst

(h)||
∣∣∣∣837

838

Using (5.17), we know that the first and the second terms on the right hand side converge to839

0 for the given ω ∈ Ω0∩Ω1. Since we have lim
t→∞

||proj
Lst

(h)||2 = (h, b)2∞ and lim
t→∞

||proj
Lst

(b)||2 = 1,840

proving the third term on the right hand side converges to 0 is equivalent to proving841

lim
t→∞

∣∣∣∣proj
Lst

(h)− (h, b)proj
Lst

(b)
∣∣∣∣ = 0,842
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which is true by Proposition 5.2. This completes the step 3.843

844

Step 4: In step 3 we proved the theorem for every ω ∈ Ω0 ∩ Ω1. Replacing {pk} in step845

2 by the whole sequence of indices {p}, we get the theorem for every ω ∈ Ωc
0 ∩ Ω1. These846

together shows that we have,847

lim
p→∞

ap(w) = 0 for all ω ∈ Ω1848

which completes the proof of Theorem 5.1.849

5.2. Proof of Theorem 2.2. The proof of the first part of Theorem 2.2 is an immediate850

application of Theorem 5.1.851

Proof of the Theorem 2.2(2.8):. From the definitions of hL and hq, and as long as q ∈ Lp,852

we have853

||hLp − b|| ≤ ||hq − b||854

and therefore855

||ĥLp − b|| ≤ ||ĥLp − hLp ||+ ||hLp − b||856

≤ ||ĥLp − hLp ||+ ||hq − b||857

≤ ||ĥLp − hLp ||+ ||ĥq − b||858

since ||hq − b|| ≤ ||ĥq − b|| for all p. Applying Theorem 5.1 gives859

lim sup ||ĥLp − b|| ≤ lim
p→∞

||ĥq − b||.860

To prove the remainder of Theorem 2.2 we need the following intermediate result concern-861

ing uniform random subspaces, proved in [18].862

Proposition 5.3. Suppose, for each p, zp is a (possibly random) point in Sp−1 and Hp is a863

uniform random subspace of Rp that is independent of zp. Assume the sequence {dimHp} is864

square root dominated.865

Then866

lim
p→∞

||proj
Hp

(zp)||2 = 0 almost surely.867

Proof of the Theorem 2.2 (2.9 and 2.10). Theorem 5.1 is applicable. Hence, it suffices to868

prove the results for the oracle version of the MAPS estimator.869

Since the scalars clear after normalization, it suffices to prove the following assertions,870

(5.18) lim
p→∞

|| proj
<h,H>

(b)− proj
<h>

(b)||2 = 0871

and872

(5.19) lim
p→∞

|| proj
<h,q,H>

(b)− proj
<h,q>

(b)||2 = 0.873
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We first consider (5.18), rewriting the left hand side as874

lim
p→∞

||proj
H

(b) + proj
h−proj

H
(h)

(b)− proj
<h>

(b)||2875

≤ ||proj
H

(b)||2 + || proj
h−proj

H
(h)

(b)− proj
<h>

(b)||2(5.20)876

877

The first term of (5.20) converges to 0 by setting z = b in Proposition 5.3. Moreover, Propo-878

sitions 5.3 and 5.2 imply proj
H

(h) converges to the origin in the ℓ2 norm. Hence we have879

h − proj
H

(h) is converging to h in ℓ2 norm. That implies the second term in (5.20) converges880

to 0, which in turn proves (5.18).881

Next, rewrite the expression in the assertion (5.19) as,882

||proj
H

(b) + proj
<h−proj

H
(h),q−proj

H
(q)>

(b)− proj
<h,q>

(b)||883

≤ ||proj
H

(b)||+ || proj
<h−proj

H
(h),q−proj

H
(q)>

(b)− proj
<h,q>

(b)||(5.21)884

885

Similarly the first term of (5.21) converges to 0 by Proposition 5.3. Note that 5.3 also applies886

when we set z = q, and hence proj
H

(q) converges to the origin in the ℓ2 norm. Hence the basis887

elements of < h − proj
H

(h), q − proj
H

(q) > converge to the basis elements of < h, q >, which888

implies the second term of (5.21) converges to 0 as well. That completes the proof.889

5.3. Proof of Theorem 2.3. We need the following lemma.890

Lemma 5.4. Let P(p) be a sequence of uniform β-ordered partitions such that lim
p→∞

|P(p)| =891

∞. Then for Lp = L(P(p)) we have,892

(5.22) lim
p→∞

||proj
L

(b)|| = 1893

almost surely.894

Proof. To be more precise about L = L(P), set P(p) = {I1, I2, ..., Ikp} and denote the895

defining basis of the corresponding subspace Lp = L(P) by the orthonormal set {v1, v2, ..., vkp}.896

Then897
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1− ||proj
L

(b)||2 = 1− lim
p→∞

kp∑
i=1

(b, vi)
2

898

=

p∑
i=1

b2i − lim
p→∞

kp∑
i=1

(b, vi)
2

899

= lim
p→∞

1

||β||2

kp∑
i=1

(
∑
j∈Ii

β2j −
1

|Ii|
(
∑
n∈Ii

βn)
2)900

= lim
p→∞

1

||β||2

kp∑
i=1

(
∑
j∈Ii

(βj −
1

|Ii|
(
∑
n∈Ii

βn))
2)(5.23)901

902

Now define the random variables ai = max
j∈Ii

(βj), ci = min
j∈Ii

(βj) for all 1 ≤ i ≤ kp. Without903

loss of generality, ckp ≤ akp ≤ ... ≤ c1 ≤ a1. Since the sequence {P(p)} is uniform, there exists904

M > 0 such that905

(5.24) max
I∈P(p)

|I| ≤ Mp

|P(p)|
.906

Then907

lim
p→∞

1

||β||2

kp∑
i=1

(
∑
j∈Ii

(βj −
1

|Ii|
(
∑
n∈Ii

βn))
2) ≤ lim

p→∞

1

||β||2

kp∑
i=1

|Ii|(ai − ci)
2

908

≤ lim
p→∞

Mp
kp

||β||2

kp∑
i=1

(ai − ci)
2(5.25)909

= lim
p→∞

M
||β||2
p

1

kp
(a1 − ckp)

2(5.26)910

911

The term a1 − ckp appearing in (5.26) is uniformly bounded since the β’s are uniformly912

bounded. Also, ||β||2
p is finite and away from zero asymptotically. Using those together with913

the fact that lim
p→∞

kp = ∞ we get the limit in (5.26) equal to 0 for any realization of the914

random variables β. Note that this is stronger than almost sure convergence.915

Proof of the Theorem 2.3:. By an application of Theorem 5.1 it suffices to prove the the-916

orem for the oracle version of the MAPS estimator. Now917

(5.27) ||b− proj
<h,L>

(b)||2 ≤ ||b− proj
L

(b)||2 = 1− ||proj
L

(b)||2918

and note that application of Lemma 5.4 shows that ||proj
L

(b)|| converges to 1 as p tends to919

∞.920
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5.4. Proof of Theorem 2.4. The proof of Theorem 2.4 requires the following proposition,921

from which the first part (2.16) of the theorem easily follows. The proof of the proposition,922

along with the more difficult proof of the the strict inequality (2.17), appears in [18].923

Recall that h1, h2 and h are the PCA leading eigenvectors of the sample covariance matrices924

of the returns R1, R2 and R, respectively.925

Proposition 5.5. For each p there is a vector h̃ in the linear subspace L ⊂ Rp generated by926

h1 and h2 such that lim
p→∞

||h̃− h|| = 0 almost surely.927

Proof of (2.16) of Theorem 2.4. Since dim(Lp) = 2 and Lp = span(h1, q) is independent928

of the asset specific portion Z2 of the current block, Theorem 2.1 implies that ĥL converges929

to hL almost surely in ℓ2 norm. Hence it suffices to establish the result for the oracle versions930

of the MAPS and the GPS estimators.931

Note932

(5.28) (hL, b) = || proj
span(q,h1,h2)

(b)||933

934

(5.29) (hsq, b) = || proj
span(q,h2)

(b)||935

936

(5.30) (hdq , b) = || proj
span(q,h)

(b)||937

Using Proposition 5.5 we know there exist h̃ ∈ span(h1, h2) such that h̃ converges to h in l2
almost surely. Since span(q, h̃) ⊂ span(q, h1, h2),

|| proj
span(q,h1,h2)

(b)|| ≥ || proj
span(q,h̃)

(b)||.

Taking the limits of both sides we get938

(5.31) lim
p→∞

(hL, b) = lim
p→∞

|| proj
span(q,h1,h2)

(b)|| ≥ lim
p→∞

|| proj
span(q,h)

(b)|| = lim
p→∞

(hdq , b).939

Similarly, since span(q, h2) ⊂ span(q, h1, h2),940

(5.32) lim
p→∞

(hL, b) = lim
p→∞

|| proj
span(q,h1,h2)

(b)|| ≥ lim
p→∞

|| proj
span(q,h2)

(b)|| = lim
p→∞

(hsq, b).941

Inequalities (5.31) and (5.32) complete the proof.942

6. Open Questions. The MAPS approach to estimation of eigenvectors in a factor model943

setting is flexible because it allows for a general way to inject additional information, in944

the form of additional anchor points, to improve the estimate. Yet in this paper we have945

focused on a very simple setting in order to highlight the ideas: a one-factor model with946

homogeneous specific risk. Moreover, our error measures related to portfolio optimization –947

tracking error and variance forecast ratio – have focused on the performance of the minimum948

variance portfolio (motivated by [14]).949

Here are a few directions for ongoing and future research.950
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• How effective can MAPS estimators be in the context of multifactor models, and with951

variable specific risk? In that setting what are more general connections between ℓ2952

error of betas and tracking error of optimal portfolios?953

• What is the general relationship between optimal MAPS shrinkage targets and the954

linear constraints in a portfolio optimization problem?955

• What appropriate systematic empirical tests would be most useful in evaluating MAPS956

for practical implementation?957

• The MAPS approach is general and does not depend on the specific choices of anchor958

points analyzed here. Are there other useful sets of anchor points, for example possibly959

excluding the vector q? What other sources of observable information in the market960

translate into useful anchor points for a successful MAPS estimation of beta? A simple961

extension of Theorem 2.4 would involve the use of multiple past time blocks to create962

multiple anchor points, for example.963

• The experiments of Section 4.2 involving historical betas and partitions defined by964

industry sectors had the advantage that sectors define an a priori partition that doesn’t965

require unobservable information. This is only one way that a β-ordered partition966

might be approximated. Another possibility could be to use historical volatilities to967

form a rank ordering and subsequent partition and anchor points. However, since968

volatilities are correlated with historical betas, adding volatility anchor points and969

then computing ℓ2 error against historical betas would be an unfair test. Instead, a970

different experiment could be designed using some out-of-sample measure of success971

in place of the ℓ2 error.972

• The selection of a shrinkage target from observable data may be suited to a machine973

learning approach to covariance estimation. One or more anchor points could be the974

output of a trained neural network that could in principle be fed with a much larger975

universe of observable data than simply the history of returns. This could potentially976

take the eigenvector shrinkage approach into a much wider realm of applicability.977
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