DENJOY MINIMAL SETS ARE FAR FROM AFFINE

ALEC NORTON KERCHEVAL

ABSTRACT. Not every Cantor set can arise as the minimal set for a C' diffeomor-
phism of the circle. For example, D. McDuff has shown that the usual “middle thirds”
Cantor set cannot arise this way. In this note we exclude a suitable neighborhood of
the class of affine Cantor sets.

1. INTRODUCTION

In [7], D. McDuff addresses the following question (attributed to M. Herman):
for which Cantor subsets C' of the circle S' does there exist a C* diffeomorphism
of S' having minimal set C? (See below for definitions.)

To broaden the question a little, for » > 0 we will denote by C(r) the class of
C™-minimal sets; that is,

C(r) = {C c 8' : C is a minimal Cantor set for some C" diffeomorphism of S'}.

Since any two Cantor sets in S are homeomorphic by a homeomorphism of S*,
it is easy to see that C(0) includes every Cantor set. Moreover, Denjoy’s theorem,
stated below, implies that C(r) is empty for r > 2. Other cases are more subtle.
There are partial answers to Herman’s question about C(1). McDuff gives several
necessary conditions for membership in C(1), one of which implies that the usual
“middle thirds” Cantor set does not belong to C(1).

The purpose of this note is to establish that all affine and C?-nearly affine Cantor
sets are excluded from C(1). To make this precise, we need to introduce some
terminology.

Let I1,...,Ix, k > 2, be pairwise disjoint compact intervals in R, and let L be
a compact interval containing their union I =1, U---U I}.

Define 8" (11, ..., Ix, L) to be the set of C™ functions S : I — L such that |S'| > 1
on I and, for each j =1,...,k, S[[;] = L.

Any S € §"(I1,...,I, L) has a unique maximal invariant (Cantor) set

Cs={xel:S%=xz)elforallkeZ"}.

A Cantor set arising this way is called hyperbolic. If S can be chosen so that |S’|
is locally constant, the Cantor set is called affine. If |S’| is globally constant, we
say Cg is a linear Cantor set. Of course every linear Cantor set is affine, and every
affine Cantor set is hyperbolic.
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For a simple example, let £k = 2, I, = [0,1/3], I = [2/3,1], and L = [0,1].
Define S by S(z) = 3z for z € I; and S(z) = 3z — 2 for € I. Then the linear
Cantor set Cg is the familiar “middle thirds” Cantor set.

To discuss hyperbolic Cantor sets in the circle S, we take S' = R/Z, work in
coordinates [0,1), and always suppose L C [0,1). (The middle thirds Cantor set
would have to be slightly scaled down to fit.)

We now state the main results.

Theorem 1. No affine Cantor set is C'-minimal.

Theorem 2. Let I,..., I, L be compact intervals in [0,1) as above.
Then there exists € > 0 (depending only on {|I;|/|L| : j = 1,...,k}) such that if
Se 82(11, wey Ik, L) and
S'(z)

N(S) = max sup log—-% <k,
(5) j:1,...,kmiyeﬁ}j gS’(y)

then Cs is not Cl-minimal.

Remarks. 1. Theorem 1 follows immediately from Theorem 2 since V' (S) = 0 when
S is affine.

2. The C? hypothesis in the Theorem 2 can actually be replaced by C'*+1% with
the same proof. Provided one is willing to impose a uniform Hé&lder bound on S,
the smoothness hypothesis can be improved further to C*t%v9mund  Clt+bv. or any
smoothness class for which Denjoy’s Theorem (see below) holds true.

3. The reader may wonder whether the condition of Theorem 2 is the best way
to interpret the meaning of “nearly affine” Cantor set. A very natural alternative
is as follows. Let K denote the class of all Cantor sets in S'. If G is a group of
circle homeomorphisms with metric d, then G acts naturally on X and

dg(Kl,KQ) = 1nf{d(g,zd) :g € G and g(Kl) = KQ}

provides a metric on each G-orbit in X, and therefore a topology on K. However,
this kind of topology does not seem well-suited to our problem.

For example, if G is the full homeomorphism group (acting transitively on K)
with the C° metric, then the topology induced by dg is too coarse (insensitive to
geometry) and the analog of Theorem 2 is false.

If instead we take G to be the group of C! diffeomorphisms with the C! metric,
then the topology is much finer than the one indicated in Theorem 2. Moreover
the collection of C!'-minimal Cantor sets is trivially a union of full G-orbits, so the
metric gives no extra information. Such considerations should make the notion of
“nearly affine” in Theorem 2 seem more natural.

Theorems 1 and 2 leave many open questions, the most immediate one being

1. Does C(1) contain any hyperbolic Cantor sets at all?

More generally,

2. Is there a purely geometric characterization of those Cantor sets belonging to
Cc(1)?

3. What can be said for C(a), 0 < a < 2, a # 17

Some things are already known in relation to question 3. It is shown in [10] that
any 2-branched linear Cantor set in S! is the minimal set for some bi-Lipschitz
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homeomorphism. This means the “C'” of Theorem 1 cannot be weakened even to
“Lipschitz”. Also, in [9] it is shown that if C' € C(1 +¢€),0 < € < 1, then the upper
box dimension (upper Minkowski content) of C' must be at least .

A number of mathematicians, including J. Harrison, Y. Katznelson, and B. Kra,
have considered the Hausdorff dimension of C' € C(r) in relation to r. Here the
Diophantine type of the rotation number becomes highly important. This is work
in progress.

In the next two sections we will introduce some terminology and standard results.
The proof of Theorem 2 is given in Section 4. In Section 5 we state the main theorem
of McDulff to show that it does not already subsume Theorem 1.

Acknowledgment. The author thanks Brian Tandy and Charles Tresser for helpful
conversations.

2. MINIMAL SETS IN S!

If f is a homeomorphism, the set I' is a minimal set for f if I' is compact, non-
empty, invariant, and minimal (relative to inclusion) with respect to these three
properties. Equivalently, T' # §) is minimal if f(T) = T and every f-orbit in T is
dense in T'.

The simplest examples of minimal sets are fixed points or periodic orbits. Zorn’s
Lemma implies that every compact orbit closure contains some minimal set, so
every homeomorphism of a compact manifold has at least one minimal set.

For homeomorphisms of S!, Poincaré already understood all the possibilities.
Either f has a periodic orbit, in which case all its minimal sets are finite, or else f
has no periodic orbits, in which case f has a unique minimal set which is either S*
itself (the transitive case) or a Cantor set C' (the intransitive case). In the transitive
case, f is topologically conjugate to an irrational rotation. In the intransitive case,
C is the w-limit set of every point, and f is semiconjugate to an irrational rotation
R, i.e. hf = Rh where h is a continuous monotone function with h(C) = S' (a
“Cantor function”).

The intransitive case can be realized as a C' diffeomorphism (Bohl [2]), often
called a Denjoy counterexample because of Denjoy’s theorem, which states that
such a diffeomorphism cannot be too smooth:

Denjoy’s Theorem [3]. If f is a C" diffeomorphism of S' without periodic points,
and if the derivative D f has bounded variation, then f is topologically conjugate to
an irrational rotation.

(There are more recent results along these lines. Herman [5] has produced coun-
terexamples of class C'* for all @ < 1. Sullivan and Hu [6] have shown, for ex-
ample, that the bounded variation condition in Denjoy’s theorem can be replaced
with a Zygmund condition. Hall [4] has shown that there are C'*° homeomorphisms
conjugate to Denjoy counterexamples, and Yoccoz [12] proved that every real ana-
lytic homeomorphism without periodic points is conjugate to an irration rotation.
See also de Melo-van Strien [8].)

We can formulate some of the above conveniently as follows:

The Poincaré-Denjoy dichotomy. If f is a C? diffeomorphism of S' and T is
a minimal set for f, then either T is finite or T' = S!.
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3. HYPERBOLIC CANTOR SETS

If a Cantor set in [0, 1) can be realized as Cg for some S € S"(I1,..., I, L), it is
called a C™ hyperbolic Cantor set. Every Cantor set is C° hyperbolic (for S € C°
we replace the condition |S’| > 1 with the requirement that S be locally strictly
monotone). For r > 1, every C" hyperbolic Cantor set has Lebesgue measure zero.
(In this case there is already a rich literature on the structure of these sets; see for
example Bedford-Fisher [BF], or Sullivan [S].)

For simplicity, we will restrict attention in the remainder of this note to studying
S"(I,...,Ix,L) in the case when k = 2, and L is the convex hull of I; and L.
Furthermore we consider only those elements S that are everywhere increasing.
(The proof is essentially the same, but more complicated, if these assumptions are
relaxed.) Moreover, we may assume, by global change of coordinates if necessary,
that one of the complementary intervals of Cg is (1/2,1) (so that L = [0,1/2]).
Defining I; = [0,a] and I» = [b,1/2], where 0 < a < b < 1/2, the graph of S is then
as shown in the following figure.

[Figure]

The following notation will be convenient. Let ¢ : [0,1/2] — [0,a] and ¢ :
[0,1/2] — [b,1/2] be the two branches of the inverse of S.

For any choice i1,...,i; € {0,1}, write ¢(i1,...,ix) for the composition ¢;, o
-+ 0¢;, . We will call the interval ¢(i1,...,i)([0,1/2]) a k-block of C. (Then if Cj,
denotes the union of the 2* disjoint k-blocks, Cs = (] Ck.)

Let 7 denote the collection of “gap” intervals of C, that is, the collection of
connected components of [0,1/2]\ Cs. We set Iy = (a,b) € 7.

If I € Z, then for some j € Z* and i1,...,i; € {0,1}, we have

I= ¢(i17 v a/L])(IO)

We then denote by bl(I) the block ¢(i1,...,i;)([0,1/2]).
Given such I = (i1, ...,i;)(lo) and any ji,...,jn € {0,1}, let I(ji,...,Jn)
denote the interval
d)(il: - '77’./67.7.17 s 7.7n)(-[0) C bl(I)

and let bI(I)(j1,---,Jn) denote the interval

O(i1, -5k J1s---»Jn)([0,1/2]) C bI(T).

For example, bl(I)(0) is the left subblock of bl(I), and I(0) is its “middle” interval.
We conclude this section with the following standard fact.
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Bounded Distortion Lemma. Suppose S € S1P(I, I,, L) for some B € (0,1].
For every € > 0 there exists N € Z1 such that for allm > N,
if J is any m-block of Cs and x,y € J, then

Proof. Since log S" is f-Holder, we can find M > 0 so that |log S'(z) —log S'(y)| <
M|z —y|®. Also, there is a € (0,1) such that |S'| > 1/a.
For any k < m, the Mean Value Theorem implies that

[S¥+ (2) — S**1 (y)] > (1/@)|S*(2) — S* W),

and so [S*(z) — S*(y)| < a|S¥H! (z) — S (y)|.
Inductively, for k < m,

5% (z) = S*(y)| < a™7F|S™(2) — S™(y)| < @™ *.

Making use of the chain rule, the Holder condition on log S’, and this estimate,
we have

Sm_N+1)'(.’L‘)

m| = |log(S™ N1 (z) — log(S™ N 1) (y)|

|log

m—N
=| ) logS'(S(x)) —log S'(S'(y))l
=0

IA

m—N
Y M|S'(z) - S'(y)
=0

m

m—N
< Z M(a™ )P =M Z abi
=0 j

afN
1—ab’

gMiaﬁsz
j=N

and this can be made as small as desired by suitable choice of N (and we note that
N depends only on M, 3, and «).

4. PROOF OF THEOREM 2

For a diffeomorphism f : J — K between intervals J and K, we define the
nonlinearity of f to be
f'(x)
N(f) = sup log|5——=1.
z,yeJ | fl(y) |
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Lemma 1. If E, F,G are intervals and f : E — F and g : F — G are diffeomor-
phisms, then

N() =N and N(go f) SN(f) + N(g).

Proof. The proof is a simple application of the inverse function theorem and the
chain rule.

We need some further notation. For any I, J € Z, there exist unique k € Z* and
i1,...,4; € {0,1} such that S*(I) = Iy and ¢(i1,...,%;)(lo) = J. Define

@I,J = ¢(i1,...,ij) OSk.

Then ®; ;(I) = J, ®1,4(bl(I)) = bl(J), and ®; ; is as smooth as S.
For any I € Z\ {f~'((1/2,1))}, we can now define

Or=%1501)-

Lemma 2. Given I, I, and L as before, there exists € > 0 such that if S €
S%(I, I, L) and N(S) < €, then for all I € T sufficiently small,

Flenw = ®rlenbirn-

Proof. Let A be the affine, locally increasing member of S?(I1,I,,L). Let
on = max{|I1|/|L[,|L2|/|L|} € (0,1).

In particular, this means A’ > 1/a;.

Choose a and as so that a; < as < a < 1. We may now choose €y > 0 so small
that the following three conditions are satisfied:

(1) aexp(eo) < ]-a

(ii) a2 exp(eo) < a, and

(iii) a1 exp(eg) < az.

It is straightforward to verify, by virtue of (iii), that for each S € S%(Iy, I, L),
N(S) < € implies S’ > 1/as.

By the Bounded Distortion Lemma, we may find N > 1 so that N'(S™ V| ;(,,,)) <
€0/8 for all m > N and all m-blocks J(m).

Now let € = €9/4N, and fix S € §?(I1, I, L) so that A'(S) < €. For any m-block
I and n-block J, where m,n > N, we have

./V'(‘I)I,J) = N((¢zn 0---0 ¢iN+1) o (Giy 00 i) oSN OSm_N|I)

< 60/8+N(€0/4N) +N(€0/4N) +€0/8 = 360/4,

where we have used Lemma 1 for the last inequality.

Since f is C', we may choose m so large that if J is any m-block of Cg, then
N(fls) < e. Again by Lemma 1, choosing the block I small enough that f(I) is
contained in some m-block, we have

N(f'o®;) <e+3e/4< €.
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Define h : I — [0,1) by h(z) = f~1 o ®;(z). From the definition of ®;, it follows
that h(I) = I, so there is a point y € I such that h'(y) = 1. Since N'(h) < €q,

exp(—¢€o) < | (z)| < exp(eo)
for all z € I. By our choice of €y, we know a < exp(—€g), so
*) a<|h(z)] <1/a
for all z € 1.

Now choose and fix I € 7 sufficiently small that (*) holds; in particular, so that
bl(I) is an m-block for m > N as above.

Claim. If J € 7 and J C bl(I), then h(J) = J.

It follows from this Claim that h(x) = z for all z € bl(I) N Cg, and this is the
conclusion of Lemma 2.

The Claim is proved by induction on the “level” of the gaps in bl(I), as follows.

First, we have noted that h(I) = I. Next, we may suppose by induction that for
k > 0 and all choices i1,...,i € {0,1},

h(I(Zl,,lk)) :I(ily'--;ik)‘

Let J = I(41,...,1x) for some particular choice of i1,...,i.
We show that h(J(0)) = J(0). (The case J(1) is similar.)
Now, for some n, S™(J) = (a,b), so

PO, ($)(@) [olla.b)]
LRI
< (exp(N(S™]1)))as < (expleo))as < a.

Similarly,
|J(07i17 s 7il)|
|J(037:1a . 'ail—1)|

<o

for all I, iq,...,4; € {0,1}.

Case 1. h(J(0)) € bl(J(0)).

Since h(J) = J, the intermediate value theorem implies there is some interval
K =J(0,1,41,...,Js) such that h(K) = J(0). By the estimate above, K is smaller
than J(0) by at least a factor «, and this contradicts (*).

Case 2. h(J(0)) C bl(J(0)). If h(J(0)) # J(0), then |h(J(0))| < a|J(0)|, since
all other 7 intervals in bl(J(0)) are smaller than J(0) by at least this factor. This
again contradicts (*), leaving h(J(0)) = J(0) as the only remaining possibility.

Proof of Theorem 2.

Suppose for contradiction that f is a C' diffeomorphism of S' and that its
(unique) minimal set C is equal to Cs, where S is chosen with A'(S) < € as in the
proof of Lemma, 2.

We can cover C, by compactess, with finitely many small blocks bl(I) so that,
on each one,

fleanay = @rlensin-

That is, f agrees on C' with a C? function defined on a finite union of disjoint
compact intervals. Since f is monotone, this C? function can be extended to a C?
diffeomorphism g of S*.

Since g|c = f|c¢, every g-orbit in C is dense in C, so the set C' must be a minimal
set for g. This contradicts the Poincare-Denjoy dichotomy.
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5. McDUFF’S THEOREM

In this section we state the relevant theorem of [7], and show it does not imply
Theorem 1.

First we need some notation. Let Ay > Ay > .... > 0 be the lengths of the
complementary intervals of C' in S'; the set of such lengths is the length spectrum
a(C) of C.

The theorem of McDuff gives a necessary condition for membership in C(1) purely
in terms of the length spectrum of the Cantor set.

Choose any sequence of disjoint subintervals {J; = [a;,0i] : i = 1,2,3,...}
subject to the requirements that a;41 < B;41 < a; for all 4, and

O’(C) - U Jk-
k=1

Spectral Theorem [McDuff]. Suppose \;, a;j and (; are defined as above and
for each N > 0 there is n(N) > 0 such that for alln € [-N,N] and all j > N,

B

Qjtn—1 Pj
Qj

Bron > (1+n)

Then C is not C'-minimal.

Corollary. If C is C*-minimal, then the ratios \;/\i+1 are bounded and have 1
as o nontrivial limit point.

The corollary follows from the theorem by setting a; = 3; = A; for all i and
applying the case n = 1. In turn, the corollary implies that the usual middle thirds
Cantor set is not C'-minimal, because for that set the ratios \;/\;41 take only the
values 3 and 1. The same goes for any affine Cantor set as described in Figure 1 so
long as the slopes of the two branches are equal, i.e. a = 1/2 — b, or equivalently,
l=r.

However, the hypotheses on the length spectrum in the above theorem are gener-
ically not satisfied by an affine Cantor set (and so Theorem 1 does not follow from
the Spectral Theorem). This is not obvious from the statement, so we formalize
the matter in the following proposition.

First note that if I # r, then {I’+9(b—a) : i,j € ZT} C 0(C). The above claim
therefore follows from the

Proposition. Suppose z,y € (0,1) and, for allm,n € Z, 2™ # y™. Fiza > 0 and
let S = {ziyia:i,j € Zt}).

Choose any positive sequences {a;}, {Bi} such that

(i) @i = 0 and B; — 0,

(i) aip1 < Biv1 < oy for all i, and

(it)) § € U, o, Bl

Then for all ) >0 and N € Z™ there exists j > N such that

Bi

Olj _
aj

B <(1+n)

Proof. Since the conclusion is unchanged by a uniform scaling, we assume for con-
venience that a = 1 and o
S={zy!:i,j € ZT}.
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Let n > 0 and N > 0 be given. Choose m,n € Z so that r = z™y™ € (1/(1+1n),1).
Then choose k € Z*1 so that r* < z, and define p = |m|k + 1,q = |n|k + 1, and
s=axPyl e S.

By hypothesis (iii), for some j, s € [, 3;] = J. There are now two cases.

Case 1. r*s € J.

Then
,3]' S 1
ok

Q
<
<
B
»
=

On the other hand, for all i, a;/Bi+1 < 1/z. (This is because of (iii) and the fact
that z € S implies zz € S.)

Hence 1 3 3
9y << 2 <1492
Biv1 T a;

Case 2. r¥s ¢ J.
Then there is an integer [, 0 < [ < k, such that r'~!s € J but r's ¢ J. Then

-1
o; r—s 1 B
! —=-<{1+n <Q+n-=2L
41 s T a;
(]
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