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Abstract
We estimate covariance matrices that are tailored to portfolio optimisation con-
straints. We rely on a generalised version of James–Stein for eigenvectors (JSE),
a data-driven operator that reduces estimation error in the leading sample eigen-
vector by shrinking towards a target subspace determined by constraint gradients.
Unchecked, this error gives rise to excess volatility for optimised portfolios. Our
results include a formula for the asymptotic improvement of JSE over the leading
sample eigenvector as an estimate of ground truth, and provide improved optimal
portfolio estimates when variance is to be minimised subject to finitely many linear
constraints.

Keywords Eigenvector estimation · High dimension · Portfolio optimisation ·
James–Stein
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1 Introduction

In 1952, Harry Markowitz launched modern finance by framing portfolio construc-
tion as a tradeoff between risk, which he characterised as variance, and expected or
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mean return. A standard tool for asset allocation, for constructing quantitative ex-
change traded funds, mutual funds and active strategies, and for customising sepa-
rately managed accounts, Markowitz’s optimisation remains the workhorse of finan-
cial services today. Mean–variance optimised portfolios are efficient in the sense that
they minimise variance subject to a return target and constraints, and they are industry
standard for asset allocation and the construction of exchange traded funds, mutual
funds and some indexes.

In his early work, Markowitz considered practical challenges to implementing
mean–variance optimisation, including the lack of reliable algorithms, the complex-
ity of inequality constraints required to preclude short positions, and the impact of
data limitations on estimated inputs. Evidently concerned that classical statistical
methods alone would not yield estimates suitable for mean–variance optimisation,
Markowitz [51] wrote in 1952:

Perhaps there are ways, by combining statistical techniques and the judgment
of experts, to form reasonable probability beliefs (μi , σij ).

This query preceded works by Eugene Wigner, Charles Stein, Volodymyr Marchenko
and Leonid Pastur that launched statistical estimation in high dimensions and random
matrix theory.

Since 1952, the problem of estimating suitable inputs to mean–variance optimisa-
tion has been an active area of research. Prescriptions for estimates of means and co-
variances vary, and the nature of their errors and their impact on optimised portfolios
can be obscure.

Almost universally, scholars and practitioners use factor models to reduce the
number of parameters required to estimate large covariance matrices. This is con-
sistent with empirically observed correlations in financial returns and generates esti-
mated covariance matrices that are conditioned well enough for use in optimisation.
Principal component analysis (PCA) can be used to identify factors that explain cor-
relation, for example in the arbitrage pricing theory developed by Ross [61] in 1976.
The factor loadings are sample eigenvectors, linear combinations of security returns
that maximise in-sample variance. When securities are numerous and observations
are scant, however, sample eigenvectors are poor estimates of their population coun-
terparts. As building blocks of covariance matrices intended for optimisation, sample
eigenvectors lead to estimated optimised portfolios with variances that tend to be
larger than the true optimum.

We address this problem in the context of a single-factor model, which incorpo-
rates the most salient features of equity markets in simplest form. In this setting,
we develop high-dimensional covariance matrix estimates that generate low-variance
optimised portfolios. Extending recent research that sheds light on how estimation er-
ror is transmitted via optimisation, we apply a form of James–Stein shrinkage to the
leading sample eigenvector, yielding a James–Stein for eigenvectors (JSE) estimate
for the leading population eigenvector.

We advance the literature in four ways. First, we provide novel, explicit and easy-
to-code formulas for factor-based covariance matrices that are tailored to specific
quadratic optimisation problems with multiple linear constraints. By neutralising the
component of estimation error that is amplifed in optimisation, our methods produce
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relatively low-variance instances of portfolios satisfying optimisation constraints.
This distinguishes our work from much of the literature, which focuses almost exclu-
sively on the fully-invested (single-constraint) minimum-variance portfolio. While
that simple case is instructive, it fails to cover subtle and important issues that arise
when multiple constraints are specified, as they are in all practical settings. Consider
for example the minimum-variance exchange-traded fund USMV, which in 2024 ac-
counted for more than $24 billion in assets. That robust minimum-variance portfolio
includes benchmark-relative sector constraints, position limits and long-only con-
straints, in addition to the simple fully-invested constraint on which the literature is
largely based. The single-constraint minimum-variance portfolio featured in the liter-
ature is rarely used because it is extremely sensitive to small changes in the covariance
matrix and in particular exhibits highly variable leverage.

In practice, virtually all quantitatively constructed investable portfolios include
numerous constraints, which stabilise the behaviour over time. These constraints may
impose strategy considerations such as a return target or factor tilt, but they also take
account of realistic considerations such as leverage, turnover and transaction costs.
This fact underscores the importance of one of the central premises of our paper: it is
important to go beyond the global minimum-variance portfolio.

The second advancement is a new asymptotic formula for improvement of JSE
over the leading sample eigenvector that depends only on limiting ratios of sample
eigenvalues and the angle between the leading population eigenvector and the con-
straint subspace. This novel formula characterises JSE’s asymptotic stochastic domi-
nance over PCA and opens the way to a rate-of-convergence analysis that determines
the utility of JSE in practical applications.

The third advancement concerns the target of JSE shrinkage. In previous studies,
JSE shrinkage is towards a known fixed direction. To account for multiple constraints,
we generalise the theory to accommodate a stochastic, data-dependent shrinkage
target vector lying in the constraint subspace.

The fourth advancement is to extend the analysis to the more realistic case of a
factor model with heterogeneous specific variances, and further to the “approximate
factor model” setting in which specific returns are allowed to be correlated.

A distinguishing feature of this article and the works on which we build is an
analysis of how estimation error is transmitted by optimisation. In cases of practical
importance, errors in eigenvectors substantially distort optimised portfolios, while
errors in eigenvalues may be less important.

For the problems considered in this article, we show that the ideal shrinkage target
vector is the orthogonal projection of the leading population eigenvector, which is
unobservable, onto the target subspace. We show that a data-driven shrinkage target
obtained by projecting the leading sample eigenvector onto the constraint subspace
is sufficient to guarantee reduced variance of the optimised portfolio. Beyond a fi-
nite fourth moment, none of our theoretical results rely on parametric distributional
assumptions on the underlying data.

In Sect. 2, we review some background and literature relevant to our results. In
Sect. 3, we set up the problem of finding a low-variance solution to mean–variance
optimisation with linear constraints when the covariance matrix is estimated. Readers
interested in the bottom-line formulas for implementation will find them summarised
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in Sect. 3.2, while Sect. 4 provides a detailed mathematical discussion of the con-
struction and describes its asymptotic properties. Numerical experiments illustrating
our results are in Sect. 5, and Sect. 6 contains concluding thoughts. Mathematical
proofs are in the Appendix.

2 Financial and statistical context

The use of covariance matrices in portfolio construction dates back to
Markowitz [51], [52, Chap. 5] in the 1950s. Effective estimation of the
high-dimensional covariance matrices required by Markowitz’s mean–variance
optimisation rests on an extensive mathematical literature and is informed by
empirical and practical guidance from finance professionals. Here we review aspects
of the literature that are relevant to our results. Topics include factor models, random
matrix theory, statistical consistency and James–Stein shrinkage.

2.1 Factor models

Introduced in 1904 by Spearman [67], factor models provide a framework for
analysing high-dimensional data that is parsimonious and in some cases interpretable.
When calibrated to equity markets, factor-based covariance matrices are gener-
ally well conditioned and, paradoxically, are both sufficiently stable over time and
sufficiently responsive to changing market conditions for practical purposes.

In 1963, Sharpe [63] developed the one-factor or “single index” market model
whose covariance matrix is expressed as a sum of rank one and diagonal matri-
ces. Empirical evidence of the importance of non-market factors along with issues
of market non-stationarity led to Rosenberg and McKibben [60] and [59], which de-
velop multi-factor models based on cross-sectional regressions and form the basis of
Barra’s industry standard fundamental factor models. A statistical approach to fac-
tor models with roots in the arbitrage pricing theory pioneered by Ross [61] and
developed in Chamberlain and Rothschild [10], Connor [12] and Connor and Ko-
rajczyk [14, 16] is an antecedent of the material in this article. The strengths and
weaknesses of statistical and fundamental factor models are complementary. The for-
mer respond dynamically to changing markets, but can mistake noise for signal and
can rely on factors that are hard to interpret. The latter are based on interpretable
factors, but require explicit re-architecting to incorporate new factors. Connor [13]
and Connor and Korajczyk [15] review roles of different types of factor models in
finance.

The results in this paper are framed in terms of a latent, single-factor model, which
allows heterogeneous specific variance and even mild correlations across specific re-
turns. The focus on the single factor allows us to showcase novel estimation meth-
ods in a simple setting, while allowing heterogeneous variances and correlations for
specific returns expands the scope of applicability of the model.

2.2 Regimes of random matrix theory

A set of methods used to contend with the scarcity of security return data comes from
random matrix theory, which originated in the 1950s with the work of Wigner [73, 74]
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and Stein [68]. In the 1960s, Marchenko and Pastur [50] characterised distributions of
the eigenvalues of covariance matrices of standard Gaussian variables as the number n

of observations and the number p of parameters tend to infinity in proportion. This
work spawned a large literature identifying and correcting biases in high-dimensional
eigenvalues when p and n tend to infinity. We denote this asymptotic setting by HH
for “high dimension high sample size” and refer to Bai [3], Edelman and Rao [19],
Bai and Silverstein [4, Chap. 3], Tao [70, Chap. 2] and Paul [58] for more information.

In the 2000s, Hall et al. [36] and Ahn et al. [1] explored a different asymptotic
framework in which p tends to infinity while n stays fixed. This asymptotic regime,
which we denote by HL for “high dimension low sample size”, is surveyed in the
2018 article by Aoshima et al. [2] and is the setting for the present article. It is rel-
evant to practical problems where data are limited by experimental constraints or
non-stationarity of time series.

Random matrix theory overlaps with classical statistics, where asymptotic guid-
ance is obtained by letting n tend to infinity as p stays fixed, the LH regime. Results
on random matrices can be organised around LH, HH and HL, as discussed for exam-
ple in Jung and Marron [42] and Goldberg and Kercheval [30]. Since any particular
problem involves some specific n and p, it can be a matter of judgment or experimen-
tation to decide which asymptotic regime provides the best guidance. The choice can
be consequential since HL offers novel methods for correction of eigenvector biases,
which demonstrably affect optimised quantities in simulations calibrated to financial
markets.

2.3 Consistency

Sample eigenvalues and eigenvectors are used throughout the sciences to reduce the
dimension of complex problems and distinguish signal from noise. The basis for this
is the classical fact that sample estimates are consistent in the sense that they converge
to their population counterparts as the number of independent observations tends to
infinity, as long as the total dimension is fixed.

In high-dimensional asymptotic regimes, the situation is more nuanced. For the
HH regime where both p and n tend to infinity, consistency of sample eigenval-
ues or eigenvectors can depend on the limit of λ2n/p, where λ2 is a sample eigen-
value. Wang and Fan [71] show that if data are assumed sub-Gaussian, then a sample
eigenvalue–eigenvector pair (λ2, v) is a consistent estimator of its population coun-
terpart if and only if λ2n/p tends to infinity as p → ∞. For example, in the case
that p/n tends to a positive constant and the leading eigenvalue λ2 is bounded in p,
sample eigenvectors are inconsistent. This occurs in the spiked models discussed in
2001 by Johnstone [40] and further studied by Johnstone and Lu [41] and Donoho et
al. [18]. For more analyses of consistency of sample eigenvalues and eigenvectors in
high dimension, see Paul’s 2007 article [57], the 2013 article by Fan et al. [25] and
the 2016 article by Shen et al. [64].

In our HL factor model setting, we have λ2n/p tending to a finite limit due to the
prevalence condition on beta discussed below after Assumption 4.1, 3), so that λ2n/p

is bounded. In this setting, a bounded sample size n prevents consistency because the
sampling error cannot be averaged out. So long as n remains bounded, there is a need
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for asymptotic correction of the sample eigenvector (see Theorem 4.4 below). This is
the JSE correction, which makes use of laws of large numbers and concentration of
measure (see Ball [5]).

2.4 James–Stein shrinkage for averages and for eigenvectors

Shrinkage operators dampen the effects of extreme observations in data sets, which
occur routinely in finance. The concept of shrinkage dates back at least to Stein [68]
and James and Stein [38] in the 1950s and 1960s. They show that in dimension 3
or greater, the sample average is inadmissible: there is another estimator with lower
mean-squared error. That superior estimator is known as James–Stein, and it is ob-
tained by shrinking sample averages towards their collective average. This work was
extended by replacing the collective average with arbitrary initial guesses in Efron
and Morris [20], and popularised by Efron [21]. An overview of James–Stein type
shrinkage estimation is in Foudrinier et al. [26, Chap. 2].

Recent literature, including Shkolnik [65] and Goldberg et al. [30], develops
James–Stein for eigenvectors (JSE). Structurally identical to James–Stein for aver-
ages, JSE improves almost surely on the leading sample eigenvector as an estimate of
ground truth when data follow a one-factor spiked model. The theory rests on laws of
large numbers and therefore is free of special distributional assumptions other than
boundedness of fourth moments.

2.5 Covariance matrices, extreme factors, estimation error, shrinkage and
portfolio optimisation

Our work has roots in two streams of literature that explain how attributes of a covari-
ance matrix are propagated by optimisation. The first considers how estimation error
in a covariance matrix leads to optimised portfolios that are suboptimal. A manifesta-
tion is excess variance in an optimised portfolio; see for example Klein and Bawa [43],
Jobson and Korkie [39], Michaud [56] and Bianchi et al. [6]. In her 2010 and 2013 ar-
ticles [22] and [23], El Karoui documents how risk of optimised portfolios is under-
forecast by covariance matrices estimated using methods from the HH regime.

The second stream begins with Green and Hollifield’s 1992 article [34], which ex-
plains how dispersion in exposures of a dominant factor can generate concentration in
an optimised portfolio. In 2003, Jagannathan and Ma [37] show that this type of con-
centration is mitigated by imposing no-short-sale constraints, which effectively act as
a shrinkage operator on a covariance matrix. In 2011, Clarke et al. [11] give insightful,
useful formulas for weights of long-short and long-only minimum-variance portfo-
lios when returns follow a one-factor model. While estimation error is not the focus
of these papers—Green and Hollifield [34] argue that estimation error is not the cause
of the concentration in optimised portfolios—, they are nevertheless foundational to
a large literature that attempts to mitigate estimation error with shrinkage.

Ledoit and Wolf develop schemes for constructing well-conditioned security re-
turn covariance matrices suitable for use in optimisation. In 2003 and 2004, they
published three articles that impose structure and conditioning on an estimated co-
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variance matrix by expressing it as a weighted sum of a sample covariance matrix
and either (a) a single index matrix [44], (b) a constant correlation matrix [46] or
(c) a scalar matrix [45]. In 2012, relying on guidance from the HH regime, Ledoit
and Wolf [47] show that shrinkage of a sample covariance matrix towards a scalar
amounts to linear shrinkage of sample eigenvalues towards their grand mean while
preserving sample eigenvectors. They apply nonlinear shrinkage to sample eigenval-
ues and combine the result with sample eigenvectors to generate estimated covariance
matrices, which they evaluate with matrix norms. Also in 2012, Menchero et al. [55]
use guidance from the HH-regime to adjust sample eigenvalues of a covariance ma-
trix with simulation. In their 2017 article, Ledoit and Wolf [48], like many other
researchers, compare realised variance and information ratios of single-constraint
minimum-variance portfolios constructed with different covariance matrices, some
based on the nonlinear shrinkage of eigenvalues from [47]. In a lucid 2024 discussion
of out-of-sample tests of covariance matrices developed for optimisation, Menchero
and Lazanas [54] argue that volatility is an appropriate out-of-sample metric, but not
information ratio.

Much of the literature on high-dimensional covariance matrices of financial re-
turns relies on an empirically observed spiked structure: data suggest that one or
several leading eigenvalues grow roughly in proportion to the number of securities in
the pool, while the other eigenvalues stay bounded. Covariance matrix estimation for
spiked models is further developed in 2011 and 2013 by Fan et al. [24, 25], in 2017
by Wang and Fan [71], and in 2021 by Ding et al. [17]. In their 2018 article, Bodnar
et al. [8] apply shrinkage to the weights of a minimum-variance portfolio optimised
with a sample covariance matrix. In 2021, the results are extended by Bodnar et al. [7]
to include estimates of security means.

Recent works, including those above, share several common themes. First, they
attempt to correct estimated eigenvalues, but still use the sample eigenvectors. In the
language of [18], these covariance matrix estimates are “orthogonally-equivariant.”
Ledoit and Wolf call them “rotationally equivariant.” With the exception of [71],
these articles rely on the HH regime. In all cases, these models are tested on single-
constraint, fully-invested minimum-variance portfolios.

By contrast, with their use of James–Stein for eigenvectors, the covariance matrix
estimates discussed in the present article rely on distribution-free eigenvector shrink-
age in the HL regime, and can be customised to any quadratic minimisation with lin-
ear constraints. James–Stein for eigenvectors was developed in Goldberg et al. [32],
Goldberg et al. [31] and Gurdogan and Kercheval [35] for the purpose of improving
optimised minimum-variance portfolios. The development rests on a novel analysis
of the way estimation error in a spiked covariance model is transmitted via mean–
variance analysis. Those articles show that estimation errors in the leading sample
eigenvector contribute material errors in estimated minimum variance and its risk
forecasts, and that JSE reduces those errors in the HL regime. In the present article,
we show that the original results are a special case of a more general phenomenon.
A constrained optimisation exacerbates estimation error in the leading sample eigen-
vector in the direction of the subspace spanned by constraint vectors. By shrinking
the leading sample eigenvector towards that subspace, we correct the leading eigen-
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vector in a way that is tailored to the constrained optimisation problem, leading to
improved results.

2.6 Constraints, risk factors and estimation error

There is an extensive literature that looks at the interaction between constraints
and risk factors in an optimised portfolio without considering estimation error. In
their 2003 article, Jagannathan and Ma [37] show an equivalence between a fully-
invested, long-only, position-limited quadratic optimisation and an optimisation with
a shrunken covariance matrix subject only to the full-investment constraint. This re-
sult foreshadows the “robustification” of the simplest Markowitz optimisation prob-
lems, a topic that is explored in generality in the 2024 paper [9] by Boyd, Jo-
hansson, Kahn, Schiele and Schmelzer. The 2008 article by Lee and Stefek [49]
and the 2012 article by Saxena and Stubbs [62], with insightful commentary by
Markowitz [53], look at problems associated with the misalignment of alpha con-
straints and risk factors. In contrast, Garvey et al. [29] argue in their 2017 article for
the benefits of complete misalignment: alpha constraints that are orthogonal to fac-
tors. Consider this against the backdrop of Ross’s 1976 paper [61] showing that in
an idealised setting, alpha orthogonal to factors must asymptotically imply arbitrage
opportunities.

Robust optimisation takes account of uncertainty around inputs. In a 2007 article
that is widely cited by academics and also used in industry, Garlappi et al. [28] take
account of uncertainty around expected returns in an optimised Markowitz portfolio.
See the 2020 article by Xidonas et al. [75] for a survey of some of the applications of
robust optimisation to portfolio construction. In a 2024 article, Shkolnik et al. [66] be-
gin to analyse the interaction between estimation errors in constraints and risk factors
using James–Stein type shrinkage methods, as in the present article.

3 The optimisation problem and a JSE prescription

3.1 Constrained optimisation

We specify the central problem addressed in this article: finding low-variance solutions
to variance-minimising optimisation when inputs are corrupted by estimation error.

In a universe of p securities, we specify a portfolio by a p-vector of weights w.
The entries of w are the fractions of portfolio value invested in the different securi-
ties. Alternatively, we can think of w in an active framework as the difference be-
tween portfolio weight and benchmark weight. The second perspective reduces to
the first when the benchmark is cash. Here, we explore a widely used framework for
quantitative portfolio construction.
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Let Σ denote the p×p covariance matrix of security returns, assumed nonsingular.
Consider an optimisation problem with k > 0 linear constraints, namely

min
w

1

2
w�Σw (3.1)

subject to C�
1 w = a1,

C�
2 w = a2,

...

C�
k w = ak,

where the j th constraint coefficient vector Cj is a p-vector and the j th constraint
target value aj is a scalar. Typical constraints demand full investment, total and active
return targets, and factor tilts, and in general are chosen to reflect an investor’s specific
investment strategy.

A simple, explicit formula provides the unique solution to (3.1) when the inputs
to the problem are known. In finance, however, the covariance matrix Σ is never
known. In what follows, we illuminate the mechanism by which estimation error in a
covariance matrix corrupts optimised portfolios and provide estimates of Σ tailored
to instances of (3.1) leading to optimised portfolios that have relatively low variance.

We work in a setting where the number p of securities is larger than the number n

of observations, which is commonplace for investors. In this situation, the sample
covariance matrix S is singular. As a synthesis of information from data, however, S

can serve as a source of spare parts for estimated empirically reasonable covariance
matrices that can be used in optimisation.

3.2 A JSE prescription for a customised, optimisation-friendly estimate of 𝚺

This section contains a brief summary of our prescribed estimate of the return co-
variance matrix Σ that is tailored to mitigate estimation error in the optimisation
problem (3.1). The centerpiece of the prescription is an estimate of Σ’s leading eigen-
vector, which is obtained by applying James–Stein shrinkage to the leading sample
eigenvector. Shrinkage improves on the leading sample eigenvector as an estimate of
ground truth by an amount that we make explicit.

In this section, we consider first the simplified situation in which returns have
identical specific risk. In Sect. 4, we discuss the more general one-factor case and
provide more complete mathematical details.

3.2.1 Structure from a factor model

The persistent, substantial correlations observed across financial returns have led re-
searchers to use factor models to estimate return covariance matrices. In the simplest
example of a one-factor model with homogeneous specific risk, the true (population)
covariance matrix has the structure

Σ = η2bb� + δ2I, (3.2)

where b is a leading unit eigenvector of Σ with eigenvalue η2 + δ2.
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We do not observe Σ, but see instead a time series of n realised values of the
returns p-vector r , which determine a sample p × p covariance matrix S of rank at
most n < p. We estimate the parameters of Σ, the two variances η2 and δ2 and the
unit vector b of factor loadings, with functions of eigenvalues and eigenvectors of S

in a way that leads to a relatively low-variance solution to (3.1). We show in Sect. 4
that the last of these three estimates is the most consequential.

3.2.2 A strategy-specific estimate of the vector of factor loadings

For our minimum-variance problem, a strategy refers to the choice of constraint vec-
tors C1, C2, . . . , Ck and constraint values a1, a2, . . . , ak . With tr(S) denoting the
trace of the sample covariance matrix S and λ2 denoting its leading eigenvalue, define

�2 = tr(S) − λ2

n − 1
,

the average of the nonzero eigenvalues of S that are less than λ2, and

φ2 = λ2 − �2

�2
,

a measure of the average relative leading eigengap.
Let C denote the span of the constraint vectors C1, C2, . . . , Ck from (3.1) and hC

the orthogonal projection of the leading sample eigenvector h onto the subspace C.
Now define the JSE shrinkage constant

cJSE = �2

λ2(1 − |hC |2) (3.3)

and define

H JSE = cJSEhC + (1 − cJSE)h. (3.4)

The James–Stein for eigenvectors (JSE) estimate of the true eigenvector b is the unit
vector

hJSE = H JSE/|H JSE|. (3.5)

The James–Stein estimate hJSE is a better approximation to the true leading eigen-
vector b than the principal component estimate h = hPCA. Let θ JSE and θPCA denote
the angles from b to hJSE and to hPCA, and Θ the angle between b and the subspace C.
Then asymptotically as p tends to infinity, we have

cos2 θ JSE − cos2 θPCA = 1

φ2 + 1

cos2 Θ

φ2 sin2 Θ + 1
> 0 (3.6)

in the context of the portfolio construction problems studied in this article, where
Θ < π/2.
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Formula (3.4) is equivalent to Goldberg and Kercheval [30, formula (6)]. That
article and Shkolnik [65] expose the parallel between JSE and classical James–Stein.
Formulas (3.3)–(3.5) are identical to formulas (4.8)–(4.10) in Sect. 4.1.4.

The asymptotic context in which formula (3.6) holds is described precisely in
Theorem 4.5. Here, the quantities θ JSE, θPCA, Θ, φ refer to their asymptotic limits.

3.2.3 A strategy-specific estimate of the covariance matrix

Setting λ2−�2 and (n/p)�2 as estimates of factor variance η2 and specific variance δ2,
and with hJSE and an estimate of b, an estimate of (3.2) is given by

ΣJSE = (λ2 − �2)hJSE(hJSE)� + (n/p)�2I. (3.7)

Formula (3.7) is the one-factor covariance matrix designed for use in the quadratic op-
timisation (3.1). Note that the dependence of ΣJSE on C is through the factor loadings
hJSE and not through the estimates of factor and specific variance.

We shall see that under the assumptions described in Sect. 4, |hC |2 is strictly less
than 1 for large p, so that cJSE is well defined, and cJSE is strictly between 0 and 1 for
large p, so that H JSE is a proper convex combination of h and hC .

3.3 The true variance of an optimised portfolio

The benefits of this construction are realised in the portfolio wJSE generated by (3.1)
when Σ is set to ΣJSE. Let ΣPCA be the covariance matrix obtained by replacing hJSE

with the leading sample eigenvector h in (3.7), and wPCA the portfolio generated
by (3.1) when Σ is set to ΣPCA. Theorem 4.9 below shows that the ratio of the true
variances of wJSE and wPCA,

Var[wJSE]
Var[wPCA] ,

tends to zero as the number of assets grows. When returns to securities in a suf-
ficiently large investment universe are governed by a one-factor model, wJSE is an
improvement on wPCA by an arbitrarily large factor as measured by the true variance.

4 JSE stochastically dominates PCA

The formulas in Sect. 3.2 prescribe the construction of a strategy-specific covariance
matrix based on JSE for use in portfolio construction. Here, we describe in more
precise detail the theory asymptotically guaranteeing that JSE improves eigenvector
estimates and lowers the variance of optimised portfolios, relative to PCA.

In our asymptotic analysis, we consider n fixed and p tending to infinity. Therefore
we need to consider a sequence of models of increasing dimension. The variables in
question may have a superscript (p) to emphasise the presence of the asymptotic
parameter p.

In Sect. 4.1, we show that the JSE estimator asymptotically dominates the PCA
estimator in our one-factor setting in the sense that it is strictly closer, almost surely,
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to the true unknown leading eigenvector. We provide a formula for the angular im-
provement. In Sect. 4.2, we apply these results to estimating the variance of a port-
folio obtained by minimising the variance under finitely many linear constraints. We
obtain an asymptotic formula for the true variance of the portfolio obtained using an
estimated covariance matrix and show that the JSE estimator strongly dominates the
PCA estimator for almost all choices of the constraint values.

4.1 JSE theorem for high-dimensional targets

We develop the JSE family of corrections of a leading sample eigenvector and provide
a formula for their improvement as estimates of the ground truth b when the data
follow a one-factor model. An estimate hJSE is obtained by shrinking the leading
sample eigenvector towards an observable linear subspace, the shrinkage target C, by
a specified optimal amount. The estimate depends on the choice of shrinkage target.
In the one-factor context, the improvement due to a JSE correction depends only on
two quantities:

– the angle between the leading population eigenvector b and the shrinkage
target C, and

– the relative gap between the leading sample eigenvalue and the average of the
lesser, nonzero sample eigenvalues.

A smaller angle and a larger relative gap translate to greater effectiveness of
the JSE correction.

4.1.1 A one-factor model of returns, and standing assumptions

For p > 1, we develop an estimated p×p covariance matrix assuming returns follow
a latent one-factor model

r = μ + βf + z,

where r = r(p) is a random p-vector that is the sole observable, μ = μ(p) is a mean
returns vector, β = β(p) is a p-vector of factor loadings, the random scalar f is
a mean-zero common factor through which the observable variables are correlated,
and z = z(p) is a mean-zero random p-vector of variable-specific effects that are not
necessarily small, but are uncorrelated with f .

For the problems we consider in this article, returns are used only to estimate
a sample covariance matrix. In practice, this involves subtracting expected return
estimates from the observations, and it introduces expected return estimation noise
into the sample covariance matrix. To focus on correlation estimation error that is not
related to expected return, we assume mean zero, μ = 0, and study the model

r = βf + z. (4.1)

Replacing r with r − μ does not affect the covariance matrix and amounts to the
strong assumption that expected returns μ are known and only the variances and
correlations need to be estimated.
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For the asymptotic theory, we need to define a sequence of models of increasing
dimension. If we imagine that increasing the dimension corresponds to adding new
assets to the model, this can be described by a nested sequence

r(p) = β(p)f + z(p), p = 1, 2, 3, . . .

The nestedness property means that the models are defined by an infinite se-
quence (βi) of scalars and an infinite sequence (zi) of random variables such that
truncation at p forms the p-vectors β(p) and z(p), respectively. (The nestedness prop-
erty is not required for our results if we accept a bound on higher moments, but it
simplifies the discussion.)

We list below our standing assumptions on the factor model (4.1).

Assumption 4.1 1) The random variable f representing factor returns is nonzero
almost surely, and has mean zero and variance σ 2 > 0.

2) (a) The random variables (zi)i∈N representing security-specific returns have
mean zero, are uncorrelated with f and have uniformly bounded second moments
with variances Var[zi] = δ2

i tending on average to a limit δ2 > 0, i.e.,

lim
p→∞

1

p

p∑

i=1

δ2
i = δ2 > 0.

(b) In addition, we assume either
i) the variables (zi) are mutually independent, or
ii) the variables (zi) have uniformly bounded fourth moments and satisfy the

correlation decay conditions

1

p2

p∑

i,j=1

Cov(zi, zj )
2 −→ 0 and

1

p2

p∑

i,j=1

Cov(z2
i , z

2
j )

2 −→ 0

as p → ∞.
3) The sequence (βi)i∈N of security exposures to the factor is bounded and the

average of the squared entries tends to a positive limit as p → ∞, i.e.,

lim
p→∞

1

p

p∑

i=1

β2
i = B2 > 0,

or, equivalently, |β(p)|2/p → B2 as p → ∞.

In particular, if b(p) = β(p)/|β(p)|, Assumption 4.1, 3) implies that the set
{p(b

(p)
i )2 : p > 1, i = 1, 2, 3, . . . , p} is bounded.

Importantly, we make no parametric assumptions, Gaussian, sub-Gaussian or oth-
erwise, on the distributions of f or z. The finite-moment assumptions on f and the zi

allow heavy-tailed distributions.
The assumption that the random variable f representing factor returns and the

random variables zi representing security-specific returns have finite variances is
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standard in the financial literature, and estimating those variances is central to fi-
nancial practice. The optional assumption of finite fourth moments is common in
the literature, but its empirical justification for returns to public equities is weak.
Security returns in public equity markets exhibit heavy tails, with power law coef-
ficients estimated, in some studies, to be below 4; see for example Gabaix [27] and
Warusawitharana [72].

The assumption that factor returns f and specific returns are uncorrelated embod-
ies the essence of a “factor model” and implies that the covariance matrix decomposes
as a sum Σ = η2bb� + Ω of factor and specific covariance components. Assump-
tions on the joint distribution of specific returns have deeper implications, as they are
needed for our application of laws of large numbers to prove asymptotic results.

The condition in Assumptions 4.1, 2) and 3) that the sequences (δ2
i ) and (β2

i ) have
positive limiting averages (called pervasiveness in Fan et al. [25]) means that a non-
negligible fraction of the entries are nonvanishing. This is a basic and mild asymptotic
nondegeneracy condition on our sequence of models. It means that a nonnegligible
fraction of extra assets added to increase the model dimension have nonnegligible
exposure to the factor, and a nonnegligible fraction have nonnegligible specific risk.
(The existence of the limit is a matter of convenience, since otherwise we could pass
to subsequences.)

For the factor model (4.1), under our assumptions, the population covariance
matrix of returns takes the form

Σ = σ 2ββ� + Ω,

where Ω is the covariance matrix of the specific returns zi , which by Assump-
tion 4.1, 2) has bounded eigenvalues.

Assumption 4.1, 2)(b)i) implies that Ω is diagonal and we have a strict factor
model. The alternative Assumption 4.1, 2)(b)ii) allows the specific returns to be cor-
related, so that we are in the setting of an approximate factor model in the sense of
Chamberlain and Rothschild [10]. This allows the presence of additional weak fac-
tors, provided their corresponding eigenvalues are bounded. The correlation decay
conditions are satisfied if for example each specific return is correlated with only a
uniformly bounded number of other specific returns.

If we strengthen Assumption 4.1, 2) to

2∗) The random variables zi satisfy Assumption 4.1, 2)(a) and in addition are
mutually independent and have uniformly bounded fourth moments,

then the limiting theorems in this paper hold almost surely instead of in probability.
Note: In this article, what follows is a series of limit theorems as p → ∞.

All results assume that our standing Assumptions 4.1, 1)–3) hold. All limits of
random variables are in the sense of convergence in probability. In addition,
when Assumption 4.1, 2∗) also holds, the limits hold almost surely.

Because β and f appear in the model (4.1) only as a product βf , their respective
scales |β| and σ cannot be separately identified from observations of r . Therefore we
introduce a single combined scale parameter

η = ηp = σ |β(p)|
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and rescaled model parameters b = β/|β|, a unit vector, and x = f/σ , a random
variable with mean zero and unit variance, and rewrite the factor model as

r = ηbx + z. (4.2)

With this formulation, Assumption 4.1, 3) tells us that η2
p/p tends to a positive

limit σ 2B2 as p → ∞. The population covariance matrix is then a sum of a factor
component η2bb� and a specific component Ω, i.e.,

Σ = η2bb� + Ω. (4.3)

4.1.2 The leading sample eigenvector as an estimate of the leading population
eigenvector

Fix n ≥ 2, assume p > n and consider a sequence of n independent observations
r1, r2, . . . , rn of the p-vector r of security returns with factor structure (4.2) and
hence covariance matrix Σ given by (4.3). Denote by Y the resulting p × n ma-
trix whose columns are the observations ri . The p × p sample covariance matrix
S = YY�/n has a spectral decomposition given by

S = λ2hh� + λ2
2v2v

�
2 + λ2

3v3v
�
3 + · · · + λ2

pvpv�
p

in terms of nonnegative eigenvalues

λ2 > λ2
2 ≥ · · · ≥ λ2

n > λ2
n+1 = · · · = λ2

p = 0

and orthonormal eigenvectors h, v2, . . . , vp of S. We assume the generic conditions
that the leading eigenvalue λ2 has multiplicity one and S has rank n. Our interest
is in the leading sample eigenvalue λ2 and its corresponding leading unit eigenvec-
tor h, with sign chosen, when needed, so that the inner product 〈h, b〉 is positive. Let
∠(h, b) denote the angle between the vectors h and b.

In our context, natural for portfolio theory, we have fixed n and λ2/p bounded
as p → ∞. The following result states that h stays away from b with high probability
when p 
 n. Recall

�2 = tr(S) − λ2

n − 1

and

ψ2
p = λ2 − �2

λ2
.

Proposition 4.2 The limits

θPCA = lim
p→∞∠(h, b) and ψ2∞ = lim

p→∞ ψ2
p

exist, and

cos θPCA = ψ∞ ∈ (0, 1).
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These limits hold in probability under Assumptions 4.1, 1)–3), and hold almost surely
if Assumption 4.1, 2) is replaced by Assumption 4.1, 2∗).

This means there is a positive limiting angle between h and b.
The random variable ψ∞ can be expressed in terms of the relationship between

the relative eigengap and the parameters of the factor model (4.2). Decomposing
from (4.2) the p×n data matrix of returns Y into a sum of unobservable components,
we have

Y = ηbX� + Z, (4.4)

where X = (X1, X2, . . . , Xn)
� is the n-vector of independent realisations of x, and

Z is the p×n matrix whose columns are the n independent realisations of the random
vector z. Since x is a mean-zero random variable with unit variance and finite fourth
moment, |X|2 is a noisy estimate of n. The following result is a simple consequence
of Lemma A.7 stated later.

Proposition 4.3 The relative eigengap ψ∞ is related to the parameters of the factor
model by

ψ2∞ = lim
p→∞ ψ2

p = lim
p→∞

λ2 − �2

λ2
= σ 2B2|X|2

σ 2B2|X|2 + δ2
≈ pσ 2B2

pσ 2B2 + pδ2/n
. (4.5)

These limits hold in probability under Assumptions 4.1, 1)–3), and hold almost surely
if Assumption 4.1, 2) is replaced by Assumption 4.1, 2∗).

The term ψ2∞, asymptotically equal to the square of the inner product 〈h, b〉, is
a measure of the asymptotic PCA estimation error when using h to estimate b. It
is random because |X|2 is random, but does not depend on the random matrix Z.
The approximation symbol ≈ in (4.5) is justified by the fact that E[|X|2/n] = 1
and |X|2/n → 1 almost surely as n → ∞. (Although we do not assume the model
factor x is normal, if it were, the quantity |X|2 would be chi-square distributed with n

degrees of freedom.)
The term pσ 2B2 appears in the numerator and denominator on the right-hand side

of (4.5). It is the asymptotic trace of the factor component of the population covari-
ance matrix Σ specified in (4.3) and can be viewed as the variance in the system
attributable to the factor. The term pδ2 is the asymptotic trace of the specific com-
ponent of Σ and can be viewed as the variance in the system attributable to specific
effects.

If we think of factor variance as signal and specific variance as noise, then Propo-
sition 4.3 says that the relative eigengap ψ2∞ is approximated by a ratio of signal to
signal plus (1/n)-scaled noise. The ratio on the right-hand side of (4.5) cannot be
observed, but it can be estimated in terms of the relative eigengap of S.

A consequence of Proposition 4.3 is that after first taking the limit p → ∞ and
then allowing n → ∞, the term ψ2∞ tends to 1. Therefore,

lim
n→∞ lim

p→∞ |h − b| = 0. (4.6)
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As a result, the defect in the PCA estimate h in applications where p 
 n can be
viewed as arising from limitations on the size of n. As n grows, the need for correction
diminishes. Measured in radians, the asymptotic angle θPCA between h and b is for
large n approximately

θPCA ≈ 1√
n

δ

σB
.

For a typical value δ/(σB) = 4, this means that the angular error θPCA will remain
significant even for n as large as 1’000 or more, well above the typical values seen in
portfolio optimisation.

We note that Wang and Fan [71] provide an HH version of (4.6) under the ad-
ditional assumption that the population variables are all sub-Gaussian: in our factor
model context, if n and p both tend to infinity in any manner, then

lim
n,p→∞ |h − b| = 0.

Central to the ideas underlying Propositions 4.2 and 4.3 is a duality between the
p×n problem and an n×p problem in which the roles of p and n are interchanged. If
we consider the p×p sample covariance matrix S = YY�/n, there is a corresponding
dual (or “Gram”) n × n matrix S∗ = Y�Y/p. Making use of (4.4),

S∗ = η2

p
XX� + 1

p
Z�Z + η√

p

(
X

b�Z√
p

+ Z�b√
p

X�
)

,

and with arguments that appear in the proofs of the propositions, we can show that

lim
p→∞ S∗ = σ 2B2XX� + δ2In.

This limit takes place for fixed dimension n and helps us evaluate the limiting be-
haviour of our p-dimensional problem as the dimension p tends to infinity. We note
that in our setting, the n × p problem does not correspond to a simple LH regime
limit because the p dual “observations” are not independent due to the common fac-
tor connecting the returns of different assets. Considerations of independence aside,
the leading eigenvector of S∗ is a consistent estimator of the unobserved factor re-
turns vector X, while the leading eigenvector of S is, as shown in Proposition 4.2, not
a consistent estimator of the population factor exposure vector β. This last fact is a
central theme of this work.

4.1.3 Insight about the relationship between h and b from the perspective of an
external reference subspace

Fix k ≥ 1. For each p > k, let C = C(p) be a p×k matrix of rank k. When there is no
risk of confusion, we use C to denote either the matrix or its k-dimensional column
space in R

p. We use subscripts to denote the orthogonal projection of a vector onto a
linear subspace; so hC is the orthogonal projection of h onto C.
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For any nonzero vectors x, y ∈ R
p, we denote the smallest angle between the sub-

spaces span(x) and span(y) by ∠(x, y), with 0 ≤ ∠(x, y) ≤ π/2. The angle ∠(x, C)

between a vector x and a subspace C is equal to ∠(x, xC).

Theorem 4.4 Suppose the angle ∠(b, C) between b and C tends to a limit

Θ = lim
p→∞∠(b, C).

Then the limit

Θh = lim
p→∞∠(h, C)

exists, and

cos Θh = cos θPCA cos Θ = ψ∞ cos Θ. (4.7)

In particular, if 0 < Θ < π/2, then

0 < cos Θh < cos θPCA

and

0 < cos Θh < cos Θ.

These limits hold in probability under Assumptions 4.1, 1)–3), and hold almost surely
if Assumption 4.1, 2) is replaced by Assumption 4.1, 2∗).

This theorem is a generalisation of Goldberg et al. [32, Theorem 3.1]. It implies,
asymptotically almost surely, that h is not orthogonal to C if b is not, but the an-
gle ∠(h, C) is greater than both ∠(b, C) and ∠(h, b). Intuitively, this suggests that
shrinking h towards C might bring it closer to b. This turns out to be correct, as
described next.

The k-dimensional target space C may arise in different ways. If chosen at ran-
dom independently of b, we expect C to be asymptotically orthogonal to b as the
dimension p tends to infinity (see for example Hall et al. [36] and Ahn et al. [1]). The
condition Θ < π/2 thus has a Bayesian interpretation in which C represents some
mild prior information about the direction of b.

In our context, the condition Θ < π/2 arises naturally in financial applications
when C enters as the span of k constraint vectors. An often used constraint is the full-
investment condition w�e = 1, where e = (1, 1, 1, . . . , 1)�. Since stock betas tend
to be positive, β will typically have positive mean in equity applications, we obtain

cos∠(b, C) ≥ 〈b, e/|e|〉 = 1

|β|√p

p∑

i=1

βi =
√

p

|β|
1

p

p∑

i=1

βi > 0

asymptotically, and so we can expect that Θ < π/2 in typical financial settings.
The assumption that limp→∞ ∠(b, C) exists is a matter of convenience. It could

be replaced by assuming that lim supp→∞ ∠(b, C) < π/2, and then the subsequent
discussion would apply to any convergent subsequence.
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4.1.4 Shrinkage improves on the leading sample eigenvector h as an estimate of the
leading population eigenvector b

We use the notation h = hPCA when emphasising the contrast between PCA
and JSE estimates. Next, we explore the properties of hJSE, which stochastically
dominates hPCA as an estimate of ground truth in the limit as p → ∞ under
Assumptions 4.1, 1)–3).

Recall the JSE shrinkage constant cJSE and estimator hJSE defined by

cJSE = �2

λ2(1 − |hC |2) , (4.8)

H JSE = cJSEhC + (1 − cJSE)h, (4.9)

hJSE = H JSE/|H JSE|. (4.10)

Formulas (4.8)–(4.10) are identical to formulas (3.3)–(3.5) in Sect. 3.2.2. We can
show that

lim
p→∞ cJSE = 1 − ψ2∞

1 − ψ2∞ cos2 Θ
= δ2

σ 2B2|X|2 sin2 Θ + δ2
.

(If now n is taken to infinity, then by (4.6) and since |X|2 tends to infinity, we have
that cJSE tends to zero and both h and hJSE converge to b.)

We normalise hJSE solely for convenience; all that matters is the one-dimensional
subspace it spans, as an estimate of the eigenspace span(b). The angle between these
subspaces is our measure of error.

Define

φ2∞ := ψ2∞
1 − ψ2∞

= σ 2B2|X|2
δ2

= lim
p→∞

λ2 − �2

�2
, (4.11)

and recall that the angle between two vectors is by definition always nonnegative.

Theorem 4.5 Suppose the limit

Θ = lim
p→∞∠(b, C)

exists. Then under Assumptions 4.1, 1)–3), the limits

θ JSE = lim
p→∞∠(hJSE, β) and θPCA = lim

p→∞∠(hPCA, β)

exist in probability, and hold almost surely under the additional Assumption 4.1, 2∗).
The asymptotic improvement of hJSE over hPCA as an estimate of the leading popula-
tion eigenvector is

cos2 θ JSE − cos2 θPCA = 1

φ2∞ + 1

cos2 Θ

φ2∞ sin2 Θ + 1
. (4.12)
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In particular, JSE is never worse asymptotically than PCA, and
– if Θ < π/2, then θ JSE < θPCA;
– if Θ = 0, then hJSE converges to b and JSE is a consistent estimator;
– if Θ = π/2, then hJSE converges to hPCA and θ JSE = θPCA.

The right-hand side of (4.11) is the ratio of the factor variance and the specific vari-
ance in (4.2). The formula highlights the relationship between the relative eigengap
and the factor model parameters. Taken together, (4.5) and (4.11) imply that

ψ2∞ = φ2∞
1 + φ2∞

.

One consequence of Theorem 4.5 is that the angle between hJSE and h is strictly
positive in the limit when Θ < π/2. Notice also that this theorem is independent of
any optimisation problem.

The true asymptotic improvement cos2 θ JSE−cos2 θPCA cannot be computed from
finite data because it depends via θ on the unobservable vector b. An observable
indicator I is

I
(
∠(h, C), φ2

p

) = cos2 ∠(h, C)

(φ4
p + φ2

p) sin2 ∠(h, C)
.

It follows from (4.7) and (4.12) that

lim
p→∞ I

(
∠(h, C), φ2

p

) = cos2 θ JSE − cos2 θPCA almost surely.

4.2 Estimating the constrained minimum variance

We return to the optimisation problem (3.1) introduced in Sect. 3.1, namely

min
w

1

2
w�Σw (4.13)

subject to C�w = a,

where we have now written the constraints in matrix notation. The columns of the
p × k matrix C are the k constraint vectors C1, . . . , Ck , and a = (a1, . . . , ak) ∈ R

k

is the nonzero vector of constraint values, fixed for all p. As before, the symbol
w = w(p) ∈ R

p is a vector of weights defining the portfolio holdings.
We apply the results in Sect. 4.1 to estimate a p × p covariance matrix Σ = ΣJSE

for use in (4.13). The matrix ΣJSE depends on the constraint matrix C; its core is hJSE,
the leading eigenvector of the sample covariance matrix, shrunk by a prescribed
amount in the direction of C. To avoid visual clutter, we suppress the dependence
of ΣJSE and hJSE on C when possible, but the dependence of ΣJSE on C is a central
idea of this section.
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4.2.1 Constraints

We assume without loss of generality that the constraint matrix C has full rank and
the entries of a are nonnegative, with at least one positive entry.

We are interested in asymptotic estimation of the constrained minimum variance
as p tends to infinity with the number k of constraints fixed. When it is required for
clarity, dependence on p is indicated with a superscript. To engage the theory of the
previous sections, we impose Assumptions 4.1, 1)–3) on the underlying factor model
described there. In addition, we wish to avoid degeneracy of the constraints C�w = a

in the limit; so from now on, we add to Assumption 4.1 the following two natural
standing assumptions:

4) For each j = 1, . . . , k, the columns C
(p)
j of C(p) ∈ R

p×k satisfy

a) supp≥1 |C(p)
j |∞ < ∞, where | · |∞ denotes the maximum norm;

b) the sequence (|C(p)
j |2/p)p∈N tends to a positive finite limit as p → ∞.

5) The constraint matrix C does not become singular in the high-dimensional
limit, i.e.,

lim inf
p→∞ det(C�C)/pk > 0.

Assumption 4.1, 4) is similar to Assumption 4.1, 3); it says that the average
squared entry of the columns does not tend to zero or infinity with p. Assump-
tions 4.1, 4) and 5) imply that the angle between any two columns of C is bounded
away from zero as p tends to infinity and the singular values of C are bounded above
and below by positive constants times p.

The simplest example is the case of the fully-invested portfolio where k = 1, there
is a single constraint e�w = 1, where e = (1, . . . , 1)� and C is the p × 1 matrix
whose only column is e. Since |e|2 = p, Assumption 4.1, 4) is satisfied, and C�C is
equal to the 1 × 1 matrix with determinant p so that Assumption 4.1, 5) is satisfied.

4.2.2 Estimating 𝚺JSE

The constraint matrix C and the vector a of constraint values in the optimisation
problem (4.13) are known to the user, but the covariance matrix Σ must be estimated.
When data follow the one-factor model (4.1), the population covariance matrix Σ

takes the form specified in (4.3), namely

Σ = η2bb� + Ω.

As a consequence of this structure, an estimate of Σ amounts to estimates of a positive
scalar η2, a unit-length p-vector b, and the diagonal entries of Ω. The estimates we
develop are in terms of the sample covariance matrix S of n observed returns for p se-
curities. We build our estimates from the trace tr(S) of S, the leading eigenvalue λ2

of S and its corresponding leading eigenvector h.
Under our spiked model assumptions, it turns out that for minimum-variance esti-

mation, it suffices to estimate Ω with a multiple of the identity converging to δ2I . Our
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Table 1 Parameters of a
covariance matrix in a
one-factor model

True parameter Estimate(s)

η2 λ2 − �2

δ2 n�2/p

b v, h, hJSE

estimates of η2 and δ2 are guided, under our standing assumptions, by the relation-
ships between the eigenvalues of S and the factor model structure in the HL regime.
As described in Lemma A.7 below, they are summarised by the limits

lim
p→∞(λ2 − �2)/p = σ 2B2|X|2/n

and

lim
p→∞ �2/p = δ2/n. (4.14)

Recall from Assumption 4.1, 3) that η2/p → σ 2B2 as p → ∞, and while X itself
is not observed, we know E[|X|2/n] = 1. Therefore we estimate η2 with λ2 − �2.
Noting (4.14), we estimate δ2 with n�2/p. Both λ2 and �2 are observable from
the eigenvalues of the sample covariance matrix S. We therefore have an estimated
covariance matrix, depending on the choice of unit vector v, of the form

Σv = (λ2 − �2)vv� + (n/p)�2I.

It remains to specify an estimator v of the unit vector b. We examine two competing
estimates of Σv , namely ΣPCA and ΣJSE, obtained by setting v to h and hJSE, re-
spectively. These estimates differ only in the leading eigenvector. A summary of our
parameter estimates is in Table 1.

4.2.3 Variance and the optimisation bias

For any choice of principal unit eigenvector v, let wv denote the unique minimiser
of w�Σvw subject to the known constraint C�w = a. We are interested in the true
variance Vv = (wv)�Σwv of the optimised portfolio wv .

The unique solution wv is obtained via the first order conditions for the Lagrangian

L(w,Λ) = (1/2)w�Σvw + (a� − w�C)Λ,

where Λ ∈ R
k is the vector of Lagrange multipliers (“shadow prices”). We have

Λv = (
C�(Σv)−1C

)−1
a,

wv = (Σv)−1CΛv = (Σv)−1C
(
C�(Σv)−1C

)−1
a.

We use the notation ∠(v, C) to denote the angle between v and col(C), cos(v, C) to
denote the cosine of that angle, and similarly for other trigonometric functions of the
angle.
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Because C has rank k, the k × k matrix C�C is invertible; so we may define
the k × p pseudo-inverse C† by (C†)� = C(C�C)−1, also of full rank. Therefore
(C†)�a is nonzero whenever a ∈ R

k is nonzero.

Definition 4.6 For any nonzero a ∈ R
k and unit vector v ∈ R

p satisfying

|vC | = cos(v, C) < 1,

define the unit vector

α := (C†)�a

|(C†)�a| ,

and define the optimisation bias associated to v, C and a by

Ep(v, C, a) := 〈b, α〉 (1 − |vC |2) − 〈b, v − vC〉 〈v, α〉
1 − |vC |2 ,

where as usual, b denotes the leading population unit eigenvector.

The optimisation bias does not depend on the magnitude of a, but only on α and
the subspace col(C), and is equal to zero when v = b, i.e.,

E(b, C, a) = 0.

As described below, the optimisation bias represents a measure of the variance error
when v is used in place of the true principal eigenvector b.

In the simplest example of the fully-invested portfolio, k = 1, a = 1 and C is the
column vector e of ones, so that e�w = 1. If we choose v = h, the leading sample
eigenvector, a computation shows that

Ep(h, e, 1) = 〈b, e/|e|〉 − 〈b, h〉 〈h, e/|e|〉
1 − 〈h, e/|e|〉2

,

which agrees with the optimisation bias originally introduced for this case in Gold-
berg et al. [32].

The limits in the following two results hold in probability under Assump-
tions 4.1, 1)–3), and almost surely if Assumption 4.1, 2∗) is added.

Proposition 4.7 Let C, h be as above and let hC denote the orthogonal projection
of h onto C. If 0 < Θ < π/2, then

lim sup
p→∞

|hC | < 1

and

lim sup
p→∞

|(hJSE)C | < 1.
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Theorem 4.8 Let v ∈ R
p be a unit vector for each p and satisfying

lim sup
p→∞

|vC | < 1.

Then for n, k fixed,

0 < lim sup
p→∞

η2|(C†)�a|2 < ∞,

and the true variance V(wv) of the estimated portfolio wv is

V(wv) := (wv)�Σwv = η2|(C†)�a|2Ep(v, C, a)2 + O(1/p)

as p → ∞.

Because of Proposition 4.7, Theorem 4.8 applies to both v = h and v = hJSE.
When v = b, the optimisation bias is zero and the true minimum variance is asymp-
totically O(1/p). Otherwise, the limiting value of the optimisation bias E2

p controls
the large-p variance of the estimated portfolio.

The next result states that ΣJSE dominates ΣPCA as measured by the value of the
true variance of the estimated portfolios wJSE and wPCA.

Theorem 4.9 Suppose the angle between b and col(C) tends, as p → ∞, to a limit
between 0 and π/2. In addition, assume (by passing to a subsequence if needed) that

lim
p→∞ cos∠

(
b, (C†)�a

) = lim
p→∞ 〈b, α〉 =: 〈b, α〉∞ exists.

Then

lim
p→∞ Ep(hJSE, C, a)2 = 0.

Moreover, if 〈b, α〉2∞ > 0, then

lim
p→∞ Ep(h, C, a)2 > 0.

Consequently, if 〈b, α〉2∞ > 0, the true variance ratio

V(wJSE)

V(wPCA)

tends to zero as p → ∞. The limits are in probability under Assumptions 4.1, 1)–3),
and hold almost surely if Assumption 4.1, 2∗) is added.

The previous two theorems tell us that V(wb) and V(wJSE) tend to zero as
p → ∞, but V(wPCA) usually has a positive limit. This means the variance of wPCA

is an arbitrarily large factor greater than the optimal variance as p grows. The fol-
lowing result shows that the condition 〈b, α〉∞ �= 0 typically is satisfied when the
vector a is unrelated to the other problem parameters.
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Lemma 4.10 Impose Assumptions 4.1, 1)–5) and suppose the limiting angle Θ is less
than π/2. Suppose (passing to a subsequence if needed) that a does not belong to the
orthogonal complement of the unit vector

lim
p→∞

C†b

|C†b| ∈ R
k.

Then 〈b, α〉∞ is not zero.

5 Numerical examples

In this section, we describe the results of simulation experiments supporting the re-
sults above. First, we illustrate (4.12), which asserts the stochastic dominance of the
improvement of hJSE over hPCA as an estimate of the leading population eigenvec-
tor. Then we illustrate the assertion that the ratio of variances of the portfolios wJSE

and wPCA tends to zero almost surely.
These experiments serve two purposes. The first is to show that the asymptotic

properties described in the theorems, such as (4.12), are approximately realised when
the dimension p has realistic values much less than infinity. The results reported here
are for p = 3’000, but we have observed similar outcomes for p as low as 40.

Second, the variance experiments described in Sect. 5.3 illustrate the observed
strength of the effect of JSE on the variance ratio for this particular choice of param-
eters. Since we do not have theoretical results about the rate of convergence of the
true variance ratio, these experiments confirm that JSE can be of material use in at
least some reasonable circumstances for a realistic choice of dimension.

5.1 Calibration

We specify the parameters of the return generating process (4.1), repeated here for
convenience,

r = βf + z,

the p × k matrix C of constraint vectors and the k-vector a of constraint targets.
We construct β so that the angle θ with e = (1, . . . , 1)� is a prescribed value

and |β|2/p = 1. First draw the components of a vector β∗ from the normal distribu-
tion N (cos θ, sin2 θ). Let m = m(β∗) be the realised mean of the entries of β∗ and
s = s(β∗) the realised standard deviation. Define

c1 = sin θ

s
and c2 = cos θ − sin θ

s
m,

and let

β = c1β
∗ + c2e.

Making use of the identity

|β|2 = p
(
m(β)2 + s(β)2),
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Table 2 Simulation parameters

Parameter Value(s) Description

cos θ 0.969, 0.707, 0.174 cosine of the angle between β and e = (1, . . . , 1)�
β∗ N (cos θ, sin2 θ) factor loadings

σ 0.16 annualised factor volatility

δ 0.60 annualised specific volatility

f N (0, σ 2) factor return

z mean 0, std dev δ specific return

cos Θ 0.97, 0.75, 0.49 cosine of the angle between β and C

p 3’000 number of securities

n 24 number of observations

k 2 number of constraints

μ 0.01
(
β + N (0.5, 2)

)
3’000-vector of expected returns

C (e, μ) 3’000 × 2 matrix of constraint vectors

m 0.01 monthly expected target return

a (1, m)� constraint target vector

a calculation shows that |β|2/p = 1 and the angle between β and e is exactly θ .
Even though the factor loadings β are deterministic in our model, we specify them
by drawing from a normal distribution as described next. The calibration of the factor
model generating returns is completed by setting the factor return f to be normally
distributed with mean 0 and annualised standard deviation σ to be 16%, and specific
return z to be normally distributed with mean 0 and annualised standard deviation δ to
be 60%. The observed qualitative results do not depend on the choice of normal dis-
tribution for specific returns; we observe similar outcomes for heavier-tailed specific
returns, including double exponential and Student-t distributions.

Next, we construct an expect return vector μ so that

μi = βi + εi,

where εi is drawn from a normal distribution N (0.5, 2.0) with mean 0.5 and vari-
ance 2.0. Thus securities with higher betas tend to have higher expected returns. The
target expected return is m = 0.01.

The two-dimensional shrinkage target C is the span of the p-vectors μ and e. The
angle Θ between β and C is determined by the specification of β and μ. The 2-vector
of constraints targets is a = (1,m)�.

The simulation parameters are listed in Table 2.

5.2 Stochastic dominance of hJSE over hPCA

Under Assumptions 4.1, 1)–3), (4.12) provides an exact expression for the difference
between the squared cosines of θPCA and θ JSE, namely

cos2 θ JSE − cos2 θPCA = 1

φ2∞ + 1

cos2 Θ

φ2∞ sin2 Θ + 1
.
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Fig. 1 Box plots for p = 3’000 of 10’000 simulations of the difference between cos2 ∠(hPCA, b) and
cos2 ∠(hJSE, b) (finite approximation), the limit of this difference (magic formula) as well as the path-by-
path difference between the finite approximation and the magic formula (difference). The small, medium
and large panels correspond to cos Θ = 0.969, 0.707 and 0.174. Return data follow (4.1) with parameters
specified in Table 2

This magic formula for the limiting difference between the two angles ∠(β, hPCA)

and ∠(β, hJSE) as p → ∞ is positive almost surely when Θ < π/2. It is expressed
in terms of two quantities: the angle Θ = ∠(β, C) between the leading eigenvector
and the shrinkage target, and the relative eigengap φ2.

How well does the asymptotic guidance provided by the magic formula work for
finite p? For p = 3’000, we report

cos2 ∠(hJSE, b) − cos2 ∠(hPCA, b)

as well as the limit of that difference as p tends to infinity, given by the magic formula.
The results of 10’000 simulations are shown in Fig. 1 for small, medium and large
angles, cos Θ = 0.969, 0.707 and 0.174.

In all 10’000 simulations, the improvement was positive, and it declined as the
angle Θ increased. This is consistent with the asymptotic guidance given by the magic
formula, which is decreasing in Θ.

5.3 Stochastic dominance of wJSE over wPCA

We report ratios of variances of portfolios wPCA, wJSE and wTRUE, optimised
with (3.1), where Σ is set to ΣPCA, ΣJSE and ΣTRUE = Σ, the true (population)
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Fig. 2 Box plots for 10’000 simulations of ratios of variances of optimised and optimal portfolios, wPCA,
wJSE and wTRUE, for p = 3’000. The small, medium and large panels correspond to cos Θ = 0.969, 0.707
and 0.174. The expected return target is m = 0.01. Return data follow (4.1) with parameters specified in
Table 2

covariance matrix. The portfolio wTRUE and covariance matrix ΣTRUE and fixed and
known in the simulation independent of the simulation samples.

The blue and red box plots in Fig. 2 illustrate the variance comparison of PCA and
JSE portfolios: those estimated using ΣJSE have substantially lower true variance
for small and medium angles between b and C. As expected, the improvement is
best when the angle between b and C is small, and declines as this angle increases
towards π/2. (In the limit where b is orthogonal to C, we expect no improvement.)

These results are displayed for p = 3’000; they are consistent with the asymptotic
guarantees that V(wJSE)/V(wPCA) and V(wTRUE)/V(wPCA) tend to 0 almost surely
as p tends to infinity.

The asymptotic behaviour of V(wTRUE)/V(wJSE) is not known theoretically, but
related experiments suggest it may be close to 1 when the angle Θ between b and C

is small.

6 Conclusion

In this paper, we extend the literature on James–Stein for eigenvectors (JSE), a data-
driven method for improving the accuracy of a high-dimensional, noisy leading sam-
ple eigenvector. For a spiked factor model, prior work guarantees that JSE shrinkage
towards a one-dimensional target improves on the leading sample eigenvector as an
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estimate of ground truth. We show that those guarantees persist when we shrink to-
wards a target of dimension greater than one. This generalisation greatly enlarges
the range of applications of JSE, which can now be used to build strategy-specific
covariance matrices suitable for quadratic optimisation with any number of linear
constraints. We provide easy-to-code formulas for these covariance matrices as well
as a theoretical guarantee that they lead to relatively low-variance solutions to the
optimisation. The connection between JSE and the variance of optimised portfolios
is via the optimisation bias, which was formulated for minimum variance in earlier
work and extended to take account of an arbitrary number of linear constraints in
this article. The optimisation bias asymptotically controls the variance of optimised
portfolios, and it tends to zero as the number of securities tends to infinity under
JSE optimisation.

Also new in this article is a formula for the degree of improvement of JSE over
the leading sample eigenvector. The formula depends only on sample eigenvalues
and the angle between the leading population eigenvector and the target subspace.
Simulations suggest that the asymptotic guarantees apply in situations of practical
relevance.

Our research opens a range of intriguing possibilities and questions. These in-
clude the use of JSE to generate low-variance solutions to quadratic optimisation in a
multi-factor setting, which has been shown to be effective in numerical experiments.
Another direction forward is to pursue the theoretical connections between JSE and
concentration of measure in high-dimensional spheres, an understanding of which
may provide new, deeper perspectives on these powerful and often counter-intuitive
results.

Appendix: Proofs

A.1 Lemmas

We begin with some preliminary results needed for the subsequent proofs. The first
lemma is the triangular strong law of large numbers (see Tao [69]).

Lemma A.1 Let (Xi,p)i,p∈N,i≤p be a triangular array of scalar random variables
such that for each p, the row X1,p, . . . , Xp,p is a collection of independent random
variables. For each p, define the partial sum Sp = X1,p +· · ·+Xp,p. Assume that all
the Xi,p have mean μ. If supi,p E[|Xi,p|4] < ∞, then Sp/p converges almost surely
to μ.

The next lemma is known as the Kolmogorov strong law of large numbers.

Lemma A.2 Suppose X1, X2, . . . is a sequence of independent mean-zero random
variables with finite variance and such that

∞∑

i=1

Var[Xi]
i2

< ∞,
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and for each p, define the partial sum Sp = X1 + · · · + Xp. Then Sp/p converges
almost surely to zero.

Lemma A.3 Let (zi)i∈N be a sequence of independent mean-zero random variables
with uniformly bounded fourth moments and (bi,p)i=1,...,p,p∈N a collection of scalars
satisfying supi,p p|bi,p|2 < ∞. Then

1√
p

p∑

i=1

bi,pzi −→ 0 almost surely as p → ∞.

Proof Let Xi,p = √
pbizi and Sp = X1,p +· · ·+Xp,p. By the assumptions, the Xi,p

have mean zero and uniformly bounded fourth moments. By Lemma A.1 with μ = 0,

1√
p

p∑

i=1

bizi = 1

p
Sp

converges to zero almost surely. □

Lemma A.4 Let (zi)i∈N be a sequence of independent mean-zero random variables
with uniformly bounded fourth moments. Suppose

lim
p→∞

1

p

p∑

i=1

E[z2
i ] = δ2.

Then almost surely,

lim
p→∞

1

p

p∑

i=1

z2
i = δ2.

Proof Let Xi = z2
i − E[z2

i ]; it suffices to prove that (1/p)
∑

Xi → 0 as p → ∞.
The Xi have uniformly bounded variance because the zi have uniformly bounded
fourth moment. Hence

∞∑

i=1

Var[Xi]
i2

< ∞

and the result follows by Lemma A.2. □

Lemma A.5 Recall our p × n data matrix of returns

Y = βX� + Z.

Let Zk ∈ R
p, k = 1, . . . , n, denote the kth column (observation) of Z. Then we have

in probability the limits

lim
p→∞

1√
p

bT Zk = 0
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and

lim
p→∞

1

p
ZT Z = δ2In.

These limits hold in probability under Assumptions 4.1, 1)–3), and hold almost surely
if Assumption 4.1, 2) is replaced by Assumption 4.1, 2∗).

Proof The limits in probability follow from straightforward calculation using As-
sumption 4.1, 2) and Markov’s inequality. The almost sure limits follow from As-
sumptions 4.1, 2∗) and 4.1, 3) and Lemmas A.3 and A.4. □

The following is a version of Gurdogan and Kercheval [35, Proposition 5.2], which
remains true with a similar proof under our slightly adapted hypotheses.

Proposition A.6 Under Assumptions 4.1, 1)–3), let L = (Lp)p∈N with Lp ⊆ R
p

be a sequence of linear subspaces with constant dimension and independent of the
random variables z. Then:

1) lim
p→∞(〈h, hL〉 − 〈h, b〉2 〈b, bL〉) = 0.

2) lim
p→∞(〈b, hL〉 − 〈h, b〉 〈b, bL〉) = 0.

3) lim
p→∞ |hL − 〈h, b〉 bL| = 0.

In particular, 3) implies that ∠(hL, bL) → 0 as p → ∞.

A.2 Proof of Proposition 4.2

Proposition 4.2 Under Assumptions 4.1, 1)–3), the limits

θPCA = lim
p→∞∠(h, b) and ψ2∞ = lim

p→∞ ψ2
p

exist, and

cos θPCA = ψ∞ ∈ (0, 1).

Proof Recall that we have the sample covariance matrix S = YY�/n with unit lead-
ing eigenvector h, choosing the sign so that 〈h, b〉 > 0, and leading eigenvalue λ2.
Define χ = χp ∈ R

n such that h and χ are the left and right singular vectors
of Y/

√
n, respectively, with singular value λ > 0. We take |χ | = 1 and specify

the sign of χ so that (χ,X) > 0. The vector X ∈ R
n does not depend on p, and for

simplicity in the notation, we suppress the dependence of h, b, λ, χ , Z, Y on p.
Since h, χ and Y are related by

λh = Yχ/
√

n,

we have by (4.4) that

λh = ηbX�χ + Zχ√
n

.
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Taking the scalar product of both sides with b and λh/p yields the identities

〈h, b〉 = ηX�χ

λ
√

n
+ b�Z√

p

χ
√

p

λ
√

n
,

λ2

p
= η2(X�χ)2

np
+ χ�Z�Zχ

np
+ 2(X�χ)

b�Z√
p

ηχ

n
√

p
.

Applying Lemma A.5, we deduce that Z�Z/p tends to δ2I and b�Z/
√

p to zero
as p → ∞. This means that λ2/p is eventually bounded between zero and infinity,
and

〈h, b〉∞ = lim
p→∞

ηX�χ

λ
√

n
, (A.1)

provided the limit in (A.1) exists.
Recall that �2

p is the average of the nonzero sample eigenvalues less than λ2. The
proof of the following result is essentially identical to the proof of Goldberg et al. [32,
Lemma A.2].

Lemma A.7 Under Assumptions 4.1, 1)–3) and with the notation as above, we have
the limits

lim
p→∞ λ2/p = σ 2B2|X|2/n + δ2/n,

lim
p→∞ χp = X/|X|,

lim
p→∞ �2

p/p = δ2/n.

Applying Lemma A.7 to (A.1), we obtain

〈h, b〉∞ = lim
p→∞

ηXT χ

λ
√

n
= lim

p→∞
η√
p

√
p

λ

X�χ√
n

= σB
1√

σ 2B2|X|2/n + δ2/n

|X|√
n

=
√

σ 2B2|X|2
σ 2B2|X|2 + δ2

∈ (0, 1).

By Lemma A.7,

ψ2
p = λ2 − �2

p

λ2

converges to

ψ2∞ = σ 2B2|X|2
σ 2B2|X|2 + δ2

and hence 〈h, b〉∞ = ψ∞. This completes the proof of Proposition 4.2. □
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A.3 Proof of Theorem 4.4

Theorem 4.4 Suppose the angle ∠(b, C) between b and C tends to a limit

Θ = lim
p→∞∠(b, C).

Then the limit

Θh = lim
p→∞∠(h, C)

exists, and

cos Θh = cos θPCA cos Θ = ψ∞ cos Θ. (A.2)

In particular, if 0 < Θ < π/2, then

0 < cos Θh < cos θPCA

and

0 < cos Θh < cos Θ.

Proof We apply Proposition A.6, 1) with L = C, noting that 〈h, hC〉 = cos∠(h, C)

and 〈b, bC〉 = cos∠(b, C). Because we have 〈h, b〉 → ψ∞ from Proposition 4.2 and
cos∠(b, C) → cos Θ by hypothesis, (A.2) follows immediately. □

A.4 Proof of Theorem 4.5

Theorem 4.5 With the notation as above, suppose the limit

Θ = lim
p→∞∠(b, C)

exists. Then the limits

θ JSE = lim
p→∞∠(hJSE, β) and θPCA = lim

p→∞∠(hPCA, β)

exist, and the asymptotic improvement of hJSE over hPCA as an estimate of the leading
population eigenvector is

cos2 θ JSE − cos2 θPCA = 1

φ2∞ + 1

cos2 Θ

φ2∞ sin2 Θ + 1
.

If Θ = π/2, then hJSE converges to hPCA, θ JSE = θPCA and there is no improvement,
while if Θ = 0, then hJSE converges to b. In other cases, θ JSE < θPCA almost surely,
with the improvement given by (4.12).
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Proof The existence of the limit θPCA has already been established in Proposition 4.2.
The JSE estimator hJSE relative to the subspace C is an example of the “MAPS”
estimator defined and studied in Gurdogan and Kercheval [35]. We make further use
of some results in that paper, first defining for each p the oracle estimator ho = ho(C)

as follows. Let

U = span(h, C)

and define the unit vector

ho = bU

|bU | .

The oracle ho is the normalised orthogonal projection of b onto the linear subspace
spanned by h and C. We use the name “oracle” because unlike hJSE, it is not observ-
able from the data, but requires knowledge of b, precisely the quantity we are trying
to estimate.

The proof of the following result is a simpler version of Gurdogan and
Kercheval [35, proof of Theorem 5.1], for slightly adjusted assumptions.

Proposition A.8 We have

lim
p→∞ |ho − hJSE| = 0.

Next, let

u = h − hC

|h − hC | .

Then U = span(h, C) = span(u, C) and u is a unit vector orthogonal to C (assuming
that h does not belong to C, otherwise set u = 0). Hence

bU = bC + 〈b, u〉 u,

and so

〈ho, b〉2 =
〈

bU

|bU | , b
〉2

= |bU |2 = |bC |2 + 〈u, b〉2 = |bC |2 + (〈h, b〉 − 〈hC, b〉)2

1 − |hC |2 .

All the terms on the right-hand side have previously been shown to have limits
as p → ∞, namely

|bC |2 −→ cos2 Θ,

|hC |2 −→ ψ2∞ cos2 Θ,

〈h, b〉 −→ ψ∞ = cos θPCA,

〈hC, b〉 −→ ψ∞ cos2 Θ.
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Therefore limp→∞ 〈ho, b〉2 exists, and by Proposition A.8,

lim
p→∞〈ho, b〉2 = lim

p→∞〈hJSE, b〉2 = cos2 θ JSE.

Writing ψ2∞ = ψ2 and φ2∞ = φ2 for the remainder of this proof only, and recalling

ψ2 = φ2

1 + φ2
,

we obtain in the limit that

cos2 θ JSE − cos2 θPCA = cos2 Θ + ψ2(1 − cos2 Θ)2

1 − ψ2 cos2 Θ
− ψ2

= (1 − ψ2)2 cos2 Θ

1 − ψ2 cos2 Θ

= 1

φ2 + 1

cos2 Θ

φ2 sin2 Θ + 1
. (A.3)

This is positive when Θ < π/2. In case Θ = π/2, Theorem 4.4 implies that hC tends
to zero and hJSE to h = hPCA; so θ JSE = θPCA and JSE provides no improvement
over PCA. If Θ = 0, it follows from (A.3) that θ JSE = 0, and so hJSE tends to b

itself. □

A.5 Proof of Proposition 4.7

Proposition 4.7 Let C, h be as above and hC denote the orthogonal projection of h

onto C. If 0 < Θ < π/2, then

lim sup
p→∞

|hC | < 1

and

lim sup
p→∞

|(hJSE)C | < 1.

Proof From Proposition A.6, 3) with L = C, we have, in the limit as p → ∞,

|hC |2 = 〈h, b〉2∞ |bC |2 = ψ2∞|bC |2. (A.4)

This establishes the first statement. For the second, it suffices to show that the
angle ∠(hJSE, C) is positive in the limit. We can write

hJSE = Γph + hC

|Γph + hC | ,

where

Γp = ψ2
p − |hC |2
1 − ψ2

p

.
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Since ∠(hJSE, C) = ∠(hJSE, hC), it suffices to show that

lim inf
p→∞ Γp > 0.

This follows from (A.4) and the assumption that the angle between b and C is
asymptotically strictly between 0 and π/2. □

A.6 Proof of Theorem 4.8

Theorem 4.8 Let v ∈ R
p be a unit vector for each p and satisfying

lim sup
p→∞

|vC | < 1.

Recall that wv denotes the unique vector in R
p minimising w�Σvw subject to

the constraint C�w = a. Then for n, k fixed, the true variance of the estimated
portfolio wv is

V(wv) := (wv)�Σwv = η2|(C†)�a|2Ep(v, C, a)2 + O(1/p) (A.5)

as p → ∞. Furthermore,

0 < lim sup
p→∞

η2|(C†)�a|2 < ∞.

Proof Recall that

Σv = (λ2 − �2)vv� + (n�2/p)I

and define

κ2 = n�2/p

λ2 − �2
,

noting that κ2 = O(1/p). A computation making use of the Woodbury identity (see
Golub and Van Loan [33, Sect. 2.1.3]) shows that

wv =
(

I + (vC − v)v�

1 + κ2 − |vC |2
)

(C†)�a. (A.6)

Let C = UZV be the singular value decomposition of C, where V is k×k orthogonal,
Z is a k × k diagonal matrix with entries equal to the singular values of C, and
U is a p × k matrix with orthonormal columns. This means (C†)� = UZ−1V .
Assumptions 4.1, 4) and 5) imply that the squared singular values of C are bounded
above and below by a constant times p. Therefore the singular values of C† are
bounded above and below by a constant times 1/

√
p. Since η2 = O(p), this implies

0 < lim sup
p→∞

η2|(C†)�a|2 < ∞,

which establishes the last assertion of the theorem.
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To obtain an expression for the true variance, first notice that

V(wv) = (wv)�Σwv = η2〈wv, b〉2 + δ2|wv|2.
For the second term, it follows from Assumption 4.1, 4) and C�wv = a that

|wv|2 ≤ O(1/p).

It remains to analyse the first term. Making use of (A.6) and recalling

α = (C†)�a/|(C†)�a|, lim sup
p→∞

|vC | < 1, κ2 = O(1/p),

we have

η2〈wv, b〉2 = η2|(C†)�a|2
(

〈b, α〉 − 〈b, v − vC〉 〈v, α〉
1 + κ2 − |vC |2

)2

= η2|(C†)�a|2
( 〈b, α〉 (1 − |vC |2) − 〈b, v − vC〉 〈v, α〉

1 − |vC |2
)2

+ O(1/p)

= η2|(C†)�a|2Ep(v, C, a)2 + O(1/p). □

A.7 Proof of Theorem 4.9

Theorem 4.9 Suppose that the angle between b and col(C) is asymptotically be-
tween 0 and π/2. In addition, assume (by passing to a subsequence if needed)
that

lim
p→∞ cos∠(b, (C†)�a) = lim

p→∞ 〈b, α〉 =: 〈b, α〉∞ exists.

Then

lim
p→∞ Ep(hJSE, C, a)2 = 0. (A.7)

Moreover, if 〈b, α〉2∞ > 0, then

lim
p→∞ Ep(h, C, a)2 > 0. (A.8)

Consequently, if 〈b, α〉2∞ > 0, the true variance ratio

V(wJSE)

V(wPCA)

tends to zero as p → ∞.

Proof By Proposition 4.7, we know that

lim sup |vC | < 1
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for both v = h and v = hJSE. Hence the denominator of

Ep(v, C, a) = 〈b, α〉 (1 − |vC |2) − 〈b, v − vC〉 〈v, α〉
1 − |vC |2

stays away from zero in both cases. For (A.7), it then suffices to show that the
numerator

〈b, α〉 (
1 − |(hJSE)C |2) − 〈b, hJSE − (hJSE)C〉〈hJSE, α〉

vanishes asymptotically. In light of Proposition A.8, it suffices to show that

Ep(ho, C, a) = 0

for the oracle ho = bU/|bU | defined previously, where U = span(h, C). This is a
consequence of the fact that 〈bC, α〉 = 〈b, α〉 and the straightforward identities

〈b, ho − (ho)C〉 = |bU | − |bC |2
|bU | ,

〈(ho)C, α〉 = 〈b, α〉
|bU | ,

|(ho)C |2 = |bC |2
|bU |2 .

Turning to (A.8), note that Proposition A.6 applied to the subspace L = span(α)

implies that asymptotically, 〈h, α〉 = 〈h, b〉 〈b, α〉, where we omit the subscripts on
〈h, α〉∞, etc., to unclutter the notation. Also, setting L = C in the same proposition
yields the asymptotic equalities |hC |2 = 〈h, b〉2 |bC |2 and 〈b, hC〉 = 〈h, b〉 〈b, bC〉.
Making use of these facts and simplifying leads to

lim
p→∞ Ep(h, C, a) = 〈b, α〉 (1 − 〈h, b〉2)

1 − 〈h, b〉2 |bC |2 = 〈b, α〉 (1 − ψ2∞)

1 − ψ2∞|bC |2 .

When E(h, C, a) is positive but E(hJSE, C, a) tends to zero, (A.5) implies that
V(wPCA) remains bounded above zero while V(wJSE) tends to zero. This establishes
the last claim. □

A.8 Proof of Lemma 4.10

Lemma 4.10 Assume that the limiting angle Θ is less than π/2. Suppose a does not
belong to the orthogonal complement of the unit vector

lim
p→∞

C†b

|C†b| ∈ R
k.

Then 〈b, α〉∞ is not zero.
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Proof We express the singular value decomposition of C as

C(p) = U(p)Z(p)V (p),

where Z = Z(p) is a k × k diagonal matrix with diagonal entries equal to the positive
singular values s1, s2, . . . , sk of C, V = V (p) is k × k orthogonal, and U = U(p) is
p × k orthonormal. Note that (C†)� = UZ−1V .

Assumptions 4.1, 4) and 5) imply for each j that s2
j /p is bounded away from zero

and infinity. By taking subsequences if necessary, we may assume that (1/
√

p)Z(p)

and V (p) tend to k × k limits Z∞ and V∞, respectively, where V∞ is orthogo-
nal and Z∞ is diagonal with positive diagonal entries. By taking a further subse-
quence if needed, we can assume that the inner product U�b tends to a nonzero limit
(U�b)∞ ∈ R

k as p → ∞. A short calculation shows that

|(C†)�a|2 = 〈Z−2V a, V a〉
and

〈b, (C†)�a〉 = 〈C†b, a〉 = 〈Z−1U�b, V a〉.
Hence

〈b, (C†)�a〉
|(C†)�a| = 〈Z−1U�b, V a〉√〈Z−2V a, V a〉 −→ 〈Z−1∞ (U�b)∞, V∞a〉√

〈Z−2∞ V∞a, V∞a〉
.

This limit is nonzero whenever a does not belong to the orthogonal complement of
the nonzero vector V �∞Z−1∞ (U�b)∞. □
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