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 TRANSACTIONS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 296, Number 1, July 1986

 A CRITICAL SET WITH NONNULL IMAGE

 HAS LARGE HAUSDORFF DIMENSION

 ALEC NORTON

 ABSTRACT. The question of how complicated a critical set must be to have a
 nonnull image is answered by relating its Hausdorff dimension to the (Holder)

 differentiability of the map. This leads to a new extension of the Morse-Sard

 Theorem. The main tool is an extended version of Morse's Lemma.

 1. Introduction. In 1935 H. Whitney [W] published his celebrated example
 of a Cl function f: R2 -- R not constant on a connected critical set A. The
 conditions allowing such an example to occur (or, more generally, the conditions
 under which images of critical sets can have positive measure) were at that time
 poorly understood.

 The partial results then known were noted by Whitney in the same paper: such
 an example cannot occur if either

 (1) every pair of points in A is connected by a rectifiable arc lying in A (a result
 of W. M. Whyburn), or

 (2) f is sufficiently differentiable (a result of M. Morse and A. Sard).
 During the ensuing decade a more complete picture was provided by results in the

 direction of (2), first with A. P. Morse's work [M] improving "sufficiently differen-
 tiable" in this case to C2, and then by A. Sard [Si], who extended this result to the
 vector-valued case with the Morse-Sard Theorem. Since then, Sard [S4], Federer
 [F], and lately Yomdin [Y] have further generalized the now classical Morse-Sard
 Theorem to obtain a sharp estimate of the size (suitably measured by Hausdorff or
 entropy dimension) of the image of a set of rank r points in terms of the (Holder)
 differentiability class of f and the dimension of the domain.

 Relatively less has been done to follow up (1) of Whyburn. The question Why-
 burn's work posed was in fact asked by Whitney in the same paper [W]:

 Given a function f, how far from rectifiable must a closed connected set be to be
 a critical set for f on which f is not constant?

 The purpose of this paper is to give a satisfactory answer to this question (Corol-
 laries 2 and 3), by using Hausdorff dimension to measure the "distance" of a set
 from rectifiability. Namely, (a) if f: Rm - R is of class Ck+/3, then such a set must
 have Hausdorff dimension at least k + 13, and (b) such a set must have a pair of
 points which do not both lie in any connected subset with Hausdorff dimension less
 than k + 3. In the course of finding this answer we also provide a further general-
 ization of the Morse-Sard Theorem (Theorem 1), and extract Whyburn's result (1)
 as a corollary.
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 368 ALEC NORTON

 A partial answer to Whitney's question was given in 1958 by Sard [S3] who
 provided effectively the answer (a) above for the case of integer differentiability
 classes Ck. This paper provides an extension of Sard's results to more arbitrary
 differentiability classes and thus illuminates more clearly the sensitive relation be-
 tween the (real-valued) Hausdorff dimension of a critical set and the (real-valued)
 differentiability class of the corresponding function.

 We first found these results for real-valued functions by using entropy dimension
 to analyze critical sets. The improvement to Hausdorff dimension was inspired by
 [S3], which also provided Federer's key ingredient in the proof of the vector-valued
 case. Our main improvement is the proof of the key Morse Lemma, on which Sard
 and Federer both rely, in the case of more general differentiability classes.

 In ?2 we give the necessary definitions, state the theorems in ?3, prove a general-
 ized version of Morse's Lemma in ?4, and provide the proofs of the main theorem,
 Theorem 1, in ?5. ?6 gives some examples showing that the hypotheses of Theorems
 1 and 2 cannot be weakened.

 ACKNOWLEDGEMENTS. I thank J. Harrison for providing, with her work on
 Denjoy fractals [H], the inspiration that Holder differentiability and Hausdorff di-
 mension are related. Thanks are also due to C. Pugh for his lectures on the Morse
 Lemma and for useful comments.

 2. Definitions. Given a metric space X, for each positive real number s there
 is a corresponding s-dimensional Hausdorff measure )P9 defined as follows. Let
 B C X be an arbitrary set. For a > 0, let

 '(B) = inf [diam(Bi)]",

 where the infimum is taken over all countable decompositions {Bi} of B such that
 diam(Bi) < a for each i. ({Bi} is a decomposition of B if U Bi = B.) Then )18(B)
 is defined to be the (possibly infinite) limit of )L (B) as a tends to zero from above.
 (The limit exists because )1, (B) is nondecreasing as a decreases.)

 We say (after Sard [S3]) that B is s-null if )18(B) = 0, s-finite if )18(B) < 00,
 and s-sigmafinite if B is a countable union of s-finite sets.

 In Rn, when there is no danger of confusion, null will mean n-null, and this
 coincides with n-dimensional Lebesgue measure zero [S2].

 A set B has Hausdorff dimension s, denoted HD(B) = s, iff )r(B) = 0 for all

 r > s and XT(B) = 00 for all r < s. (X8(B) itself may be 0, finite, or infinite.)
 Note [HW]: XT(B) < Xo implies )18(B) = 0 for s > r, and )r(B) > 0 implies

 , (B) = oo for s < r.
 For m,n,k c Z+, a function f:Rm -* Rn is of class Ck (f E Ck(Rm, Rn)) if

 f together with all its partial derivatives of order < k are defined and continuous
 on Rm. For 0 <? < 1, f is of class Ck+/3 if f is Ck and the kth derivative
 Dkf satisfies a :-Holder condition: for every compact neighborhood U there is an
 M > 0 such that

 (1) IDkf(x) - Dkf(y)l < MIx _ yl for all x,y E U.
 f is of class Ck+Lip if f E Ck and f satisfies (1) with : = 1.
 f is of class Ck+/3+ if f E Ck and Dkf satisfies a strong :-Holder condition:

 for every compact neighborhood U there is a continuous nonnegative monotone
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 A CRITICAL SET WITH NONNULL IMAGE 369

 function e: R -- R with e(0) = 0 and

 IDkf(x) - Dkf(y)I < e(Jx - yJ)Ix - yll for all x, y E U.

 Note now that Ck+Q+ = Ck = Ck+O, and U,, 3' Ck+/3' C Ck+/3+ C Ck+,3.
 A is a set of rank r for f if the rank of Dfx is at most r for every x E A. A is a

 critical set for f if it is a set of rank n - 1.

 3. Theorems. In all that follows, m, n and k denote positive integers, r is a
 nonnegative integer, and A E [0,1).

 THEOREM 1. Let f: Rm -- Rn and A be a set of rank r for f, with r < n.
 (i) If fE Ck+'+ and A is ((k + /)(n - r) + r)-sigmafinite, then f(A) is null (=

 n-null).

 (ii) If f E Ck+/3 and A is ((k + f)(n - r) + r)-null, then f(A) is null.
 (iii) If f E Ck+LiP and A is ((k + 1)(n - r) + r)-null, then f(A) is null.

 Setting r = n - 1 yields our central

 THEOREM 2. Let f: Rm -+ Rn and A be a critical set for f.
 (i) If f E Ck+/3+ and A is (k + d + n - 1)-sigmafinite, then f(A) is null.
 (ii) If f E Ck+O and A is (k + d + n - 1)-null, then f(A) is null.
 (iii) Iff E Ck+Lip and A is (k + n)-null, then f(A) is null.

 REMARKS. (a) Theorem 1 is dual to Federer's theorem [F, ?3.4.4] (also [Y]): If
 f E Ck (Rm, Y) (Y any normed vector space), and A has rank r for f, then f(A)
 is (r + (m - r)/k)-null. Instead of asking how small the image is of an arbitrary
 (m-sigmafinite) rank r set, we are asking how small the rank r set must be to have
 an image of fixed size (n-null). Accordingly, m does not appear in the statement of
 Theorem 1, while n does not appear in Federer's statement. However, we are not
 dually free to replace the domain Rm in Theorem 1 by an arbitrary Banach space
 Y since our proof depends strongly on the finite dimensionality of the domain.

 A generalization of both theorems, with the aim of eliminating mention of both
 m and n might be: If A has rank r for f E Ck+,3 and is s-null, then f(A) is
 (r + (s - r)/(k + /))-null. However, the proof of such a theorem using our methods
 seems to be blocked by the absence of a Fubini theorem for arbitrary Hausdorff
 measures. (Federer has given a Fubini counterexample, quoted in [S4].)

 (b) Theorem 1(iii) is a strengthening of (ii) in the case /3 = 0 and k > 2; it
 follows (see below) from the proof of (ii) with d = 1. The presence of this case here
 and in the sequel is required by the ambiguity in the meaning of Ck+fl when d = 1.
 The notation Ck,fl would have removed this ambiguity by distinguishing Ck+1,0
 from Ck,1, but the additive notation is firmly in place in the literature and partly
 justified by these theorems themselves (and ultimately by Taylor's Theorem).

 COROLLARY 1 (MORSE- SARD THEOREM) . Iff E Ck (Rm, Rn), A is a crit-
 ical set for f and k = max{1, m - n + 1}, then f(A) is null (= n-null).

 PROOF. Set / = 0 in Theorem 2(i) and note that any subset of Rm is m-
 sigmafinite.
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 370 ALEC NORTON

 From the definition of Hausdorff dimension and Theorem 2(ii) with n = 1, we
 obtain

 COROLLARY 2. If f E Ck+fl(Rn, R), A is critical for f, and HD(A) < k + 3,
 then f (A) is null.

 Hence if A is connected, then f is constant on A.

 PROOF. If A is connected, so is f(A). Hence f(A) is an interval. But a
 (nonempty) null interval is a point.

 An even better answer to Whitney's question is now easily obtained:

 COROLLARY 3. Iff EE Ck+f (Rm, R), A is a connected critical set for f, and if
 for every x, y c A there is a connected set S C A with x, y E S and HD(S) < k + ,
 then f is constant on A.

 PROOF. For x, y C A, choose such a set S. By Corollary 2, f is constant on S.
 Hence f(x) = f(y).

 Almost a special case of Corollary 3 is

 COROLLARY 4 (WHYBURN). If f: Rm -- R is C' and A is a critical set for
 f which is arcwise connected by rectifiable arcs, then f is constant on A.

 PROOF. If ^- is a rectifiable arc, it is easy to check that it is 1-finite. If it connects
 x to y in A, then by Theorem 2(i), f(^-) is null. Hence f is constant on ^- (as in the
 proof of Corollary 2), so f(x) = f(y).

 We remark here that such a set A might itself have quite large Hausdorff di-
 mension. For example, A might be an open ball, or a cone in Rm over a large set
 in Rm-1 x 0. The important requirement for Corollaries 3 and 4 is that pairs of
 points in A be connected by subsets of small dimension.

 4. Generalized Morse Theorem.

 THEOREM 3. (For the ordinary Morse theorem see [M] or [St].) Let m, k be
 positive integers and : E [0, 1). Let A be a subset of Rm.

 (i) There are subsets Ai, i = 0, 1, 2,..., of A with A = U Ai such that A0 is
 countable and any f c Ck+/+ (Rm, R) critical on A satisfies, for each i:

 If(x) - f(y)l < Ei(Ix - y)Ix - yjk+3 for all x,y E Ai,

 where Ei > 0 is some monotone continuous function R -+ R such that Ei(0) = 0.
 (ii) There are subsets AX, i = 0, 1, 2 ... , of A with A = U X such that A' is

 countable and any f c Ck+f(Rm, R) critical on A satisfies, for each i,

 If(x) - f(y)l < MIX ylk+/3 for all x, y c Ai, and some Mi > .

 (iii) There are subsets AX', i = 0,1, 2 ... , of A with A = UA'' such that A'o is
 countable and any f c Ck+LiP(Rm, R) critical on A satisfies, for each i,

 If(x) - f(y)l < MIX _ y1k+l for all x,y E A', and some Mi > .

 Such a decomposition of A is called a Morse decomposition, and depends on m,
 k, and 3, but not on the function f.

 PROOF. We prove (i); the proofs of (ii) and (iii) are similar.
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 The proof depends on

 THE GENERALIZED MORSE VANISHING LEMMA. Let m be a positive integer,
 k a nonnegative integer, and /3 c [0, 1). Then any set A in Rm can be decom-
 posed into a countable union A = U Ai (i = 0,1, 2,...) where Ao is countable,
 and Ai C Bi, a Cl-embedded compact disk of dimension < m, such that every
 f c C'+-+ (R', R) vanishing on A satisfies, for each i,

 If(x) - f(y)I < Ei(Ix - yI)Ix - ylk+ for all y E Ai and x C Bi,

 where Ei > 0 is some monotone continuous function R -- R such that Ei(O) = 0.

 PROOF. Fix d. The proof is by induction on m and k. Let (m, k) stand for
 the statement of the theorem for R' and Ck+)3+. We will prove (n, 0) for all n,
 (1, k) for all k, and ((n - 1, k) & (n, k - 1) =d (n, k)) to establish the theorem for
 all n > 1 k > 0.

 (a) Proof of (n, 0) for all n. Iff c C3+(R', R), then by definition there is
 a monotone nonnegative continuous function 6i: R -- R such that 5i(O) = 0 and

 If(x) - f(y) ? < xi(Ix - y ) |x - y on the closed ball B(O, i) of radius i centered at
 the origin. Now let Ao = 0 and Ai = A n B(0, i) for each i. Then Ei = 6, are the
 required functions.

 (b) Proof of (1, k) for any k. Let A* be the set of condensation points of A
 (x C A is a condensation point if every neighborhood of x meets A in uncountably
 many points). Let Ao = A\A* (a countable set), and Ai = A* n (-i, i). From
 Taylor's theorem,

 f(x) = f(y)?f(y)(x y) +... + f (k-1)(y)(X _ y)k-1 /(k- 1)!

 + (X _y)kf(k)(y+O(X-y))/k! for some 0 E [0,1]

 when x is near y c Ai. Since f = 0 on Ai and Ai has no isolated points, f' = 0 on
 Ai. Similarly, f/ = f(3) -=*--- f(k) - 0 on Ai. Hence

 f(X) = f(y) + (X - Y)kf(k) (y + 0(X - y))/k!.

 It will suffice to show that If(x) - f(y) / x - y k+/3 tends to zero as x - y tends
 to zero for x c Bi = [-i, i] and y c Ai. Now

 If(x) f(y)| _ If(k)(y + 0(Xy-))I If(k)(y + 0(X-y))- f(k)(y)l

 ix _ ylk+fl k!Ix - ylO k!Ix - y1Y
 ad If (k)(y + 0(X - y)) - f(k)(y)I
 k! I(y+0(X-y))- yl,3

 as Ix - yl -* 0, from the definition of Ck+3+.
 (c) Induction Step. Suppose (n, k - 1) and (n - 1, k) are true for k > 1, n > 2.

 Let f C Ck+f+(RnI R). Let

 U = {x c A: every g C Ck+fl+(Rn, R) vanishing on A is critical at x} and
 V = A\U.
 We prove the result separately for U and V.
 On U: Since f vanishes on A, f is critical on U, so for each j = 1,... ,n,

 Djf = 9f/9x3 vanishes on U, and these functions are all of class Ck-1+3+. Hence
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 372 ALEC NORTON

 by the (n, k - 1) hypothesis there is a Morse decomposition U = U Ui with Ui
 contained in a C'-embedded compact disk UP, and

 IDjf(x) - Djf(y)l < ?i*(Ix - yI)Ix - ylk-l+

 for all y E Ui, x E U4#, all j. Since Djf(y) is zero for y E Ui, this yields an estimate
 for the derivative of f on U#. Hence we may integrate Df along a path ^y in Ui*
 from x to y to obtain

 (2) If(x)-f(y)I < n6iZ(lx-yI)Ix-ylkl1+31l
 for x E Of, y E Ui, where 1-y denotes the length of -y, 6i*(t) = Ck-1+%6i(Ct), and
 C is the constant given in the following

 PROPOSITION. For any C'-embedded compact disk B, there is a constant C > 0
 such that for all x, y c B, there is a C' path in B from x to y with length less than
 Clx - Y.

 This is a consequence of the following inequalities: Let p: D -- Rn be the
 embedding associated to B, where D is the closed unit ball in RP, p = dim B.
 Then there exist r, s > 0 with

 rla - bl < Ip(a) - p(b)I < sla - bl for all a, b E D.

 The second inequality is immediate since Dp is bounded on D; the first inequality
 follows by a straightforward argument, using the fact that p is a one-to-one im-
 mersion on a compact set. Now it is easy to establish the proposition, taking C to
 be s/r.

 In view of (2) and this proposition, we may take Ei = nC&i* to complete the
 argument.

 On V: Some g E Ck+/3+ vanishing on A is not critical at x E V. By the
 Ck+?+ Inverse Function Theorem (see Appendix), g-1(0) is locally a Ck+3+ (n -
 1)-submanifold containing V in a neighborhood of x. f restricted to this local
 submanifold satisfies the hypotheses of (n - 1, k), and so we obtain the required
 Morse decomposition locally at x E V. This gives the result, since the union of
 countably many Morse decompositions is again a Morse decomposition.

 Proof of the Generalized Morse Theorem (i). For each j = 1,..., m, Djf is of
 class Ck- +O+ and vanishes on A since f is critical on A. Applying the Vanishing
 Lemma we obtain

 IDjf(x) I< E.(Ix - yl)Ix _ ylk-l+f for all y E Ai, x E Bi, all j.

 As before, integrating along a path from x to y in Bi yields

 If(x) - f(y)I < ?Ei(x _ yI) xI ylk+? for all y E Ai and x E Bi,

 where Ei is a suitable multiple of &Z. Hence this is true in particular for all x, y E Ai.

 5. Proof of Theorem 1. For the proof we need a lemma.

 LEMMA 1. (i) Iff E Ck+fl+(Rm, Rn), Df has rank 0 on A, and A is (k?+/)n-
 sigmafinite, then f (A) is n-null.

 (ii) If f E Ck+f (Rm , Rn), Df has rank 0 on A, and A is (k + 3)n-null, then
 f (A) is n-null.
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 A CRITICAL SET WITH NONNULL IMAGE 373

 (iii) If f E Ck+LiP(Rm, Rn), Df has rank 0 on A, and A is (k + 1)n-null, then
 f(A) is n-null.

 PROOF (i). Since the countable union of null sets is null, we may assume that
 A is (k + /)n-finite. Let fi be the ith component of f. since fl, f2,.. ., fn are all
 critical on A, the conclusion of the Generalized Morse Theorem applies for each fi,
 hence for f, with respect to a Morse decomposition A = U Ai. f(Ao) is countable,
 hence null. We show that f(Aj) is null for each j, from which the conclusion follows
 since f (A) = U f (Ai).

 Fix j. Let A3 = B for convenience of notation. By Theorem 3(i),

 (2) If(x) - f(y)l < E(IX _ YI)IX _ yIk+0 for all x,y E B.
 We wish to show that )1n(f(B)) -- 0 as a -+ 0.

 Choose 0 > 0 so that E(0) < 1. Then let r1 = min(0, al/(k+/)). Note that r7 has
 the property that if E C B and diam(E) < 71, then diamf(E) < E(71)71k+O < a,
 using (3).

 Now

 ' n (f (B) ) = inf E [diam(Ci )] ,

 where the infimum is taken over all countable decompositions {Ci} of f(B) with
 diam(Ci) < a,

 < inf E [diam f (Bi )]n

 where the infimum is taken over all countable decompositions {Bi} of B with
 diam(Bi) < r1. (The inequality holds because every decomposition {f(Bi)} of
 f(B) with diam(Bi) < q is a decomposition of the form {Ci} above.)

 < inf E[E(diam Bi)(diam Bi)k+f]n from (3)

 ? [E(rq)]nlA/(k+f)nf(B) by monotonicity of E

 < [E(rq)]fnlX(k+fl)nf(B) -4 0

 as q (hence ol) tends to zero, since B is (k + /)n-finite.
 (ii) Let A = U Ai be a Morse decomposition for A. Fix j and let B = Aj. We

 show that f(B) is n-null. Since every component of f satisfies Theorem 3(ii), so
 does f; i.e.,

 (4) If(x) - f(y)I < MIx y_kIk+? for all x,y E B, some M > 0.
 Given a > 0, let 7 = (Ce/M)1/(k+?). Now

 n (f (gB)) = inf E[diam(Ci)]n,

 where the infimum is taken over all countable decompositions {Cj} of f(B) with
 diam(Ci) < a,

 < inf E [diam f (Bi) ]n,

 where the infimum is taken over all countable decompositions {Bi} of B with
 diam(Bi) < 1,

 < inf E [M(diam Bi )k+?]n by (4)

 < Mn94(k+?)n(B) -, 0 as 1 -) 0 (hence as a -- 0)

 since B is (k + /)n-null.
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 374 ALEC NORTON

 (iii) Repeat the proof of (ii) with / = 1, using Theorem 3(iii).

 PROOF OF THEOREM 1(i). We can assume that A is ((k +? )(n - r) + r)-finite.
 Let R, = {x E A:rankDf: = i}, i = 0,1,... ,r. We show that each set f(Ri) is
 n-null. f(Ro) is null by Lemma 1(i) since (k + /)(n - r) + r < (k + /)n.

 Consider p E Rj. It will suffice to find a neighborhood U of p such that f (Rj n u)
 is n-null. By the Ck+3+ Inverse Function Theorem, there are coordinates in some

 neighborhood U of p so that f(x1, . . ., xm) = (x1,.. xj, gx(x,.. ., xm)), where
 g E Ck+f+ (Rm, Rn-j). In these coordinates

 Dfy= (I D(glxj. ...

 where y = (Xi ... , xm) and gxi,... , xj: Rmi Rn-R is defined by

 g]xi,..., *xj(xj+31, . I Xm) = g(x1, * X XM).

 Note that D(glx1,. .., Xj) has rank zero for all y E Rj.
 For C c Rm and (x1,... ,xj) E Ri, denote by C[xi, .. ., x] the set of points

 (xj+i,...,xm) in Rm-i such that (xi,... ,xm) E C. (This is the "cross section
 of C at (x1,...,xj)".) Then glx1,...,xj maps the rank 0 set (U nRj)[xi,...,xj]
 onto (f (U nOR))[xi,I . .

 Claim. For amost every (Xi, ... ,xi), the cross section (U U Rj)[(xi, . x. ,x;)] is
 ((k + 3)(n - r) + r - j)-finite, and hence (k + /)(n - j)-finite.

 Assuming the claim, then by Lemma 1(i) applied to gi xi,.. .,x, almost every

 cross section of f(U U Rj) is (n - j)-null in Rn-3. Hence by Fubini's theorem
 applied to Ri x Rn-j, f (U n Rj) is n-null.

 To prove the claim, we refer to Federer [Fl] (see [S3]), who has shown that for
 an arbitrary set B in Rm, if B is s-finite then almost all cross sections B [x,... , x;]
 are (s - j)-finite.

 PROOF OF THEOREM 1(ii). Repeat the proof of Theorem 1(i) with "/" replac-
 ing "/3+", "null" replacing "finite", and "Lemma 1(ii)" replacing "Lemma 1(i)".

 (iii) Same as (ii), with / = 1 and Ck+Lip instead of Ck+i.

 6. Examples. The hypotheses of Theorems 1 and 2 cannot be weakened. In
 the simplest case in which k = 1, n = 1, and m = 2, Whitney's original example
 f is, remarkably, already best possible: for /= log3 4 - 1, f is C1+' and has a
 critical set A which is (1 + /)-finite, but f(A) is not null. (By Theorem 2, f could
 not be C'+O+, nor could A be (1 + /)-null.)

 To see this, note that the curve A (see [W]) contains a self-similar Cantor set C.
 Scaling by a factor of three yields four copies of C, so its self-similarity dimension
 is log3 4 (see, e.g., [Ma or Fa] for a discussion of self-similarity dimension). This
 coincides as usual [Fa] with HD(C). In fact, all of A is (log3 4)-finite, as the reader
 can show by considering a sequence of disk covers of A with diameters tending to
 zero and bounded (log3 4)-measure.

 From the construction of f it is easy to show that there is a constant K > 0 such

 that If(x) - f(y)l < Klx - yj1g3 4 for all x, y E A. From this and a Ck+3 version
 of the Whitney Extension Theorem (see [N]) it follows that f is of class C0og3 4

 We can obtain such an example for any other / E [0,1) by modifying the ratio
 of the size of any square to that of the next smaller square. Similarly, Whitney's
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 higher-dimensional examples, mentioned in [W], will provide sharp counterexam-
 ples for k = m -1 > 1 as well.

 Further examples can be constructed using the (n - r)-fold Cartesian product
 of f with itself to show the following: for every 0 > (k + ,B)(n - r) + r and m >
 (k + 1)(n - r) + r there is a function g E Ck+fl(Rm, Rn) and a set B c Rm of rank
 r such that B is 0-null and g(B) is not n-null. The details are in [N].

 Finally, we mention the following result from [N], which shows that Whitney-
 type examples are in fact in great abundance. Call a topological arc -y a quasi-arc
 if there is a K > 0 such that for all x, y E -y, the curve between x and y is contained
 in a ball of radius Klx - yl. Then any quasi-arc -y with HD(-y) = s > 1, if s is
 not an integer, is critical for some function f E C8 (Rn, R) not constant on -y. In
 particular, the same is true for any self-similar arc.

 7. Comment. An even more delicate version of Theorem 2 relates the modulus
 of continuity h(x) of Dkf to a Hausdorff measure defined by using the gauge func-
 tion xk+n-lh(x) rather than xk+f+n-1 (see Rogers [R] for a discussion of these
 more general measures).

 THEOREM. If

 (i) f E Ck (Rm, Rn) and for each compact neighborhood U in Rm there is an
 M > 0 such that IDkf(x) - Dkf(y)I < Mh(lx - yl) for all x,y E U, where h is
 monotone, continuous, and h(O) = 0, and

 (ii) A is a critical set for f which is [xk+n-1h(x)]-null, then f(A) is null.

 IDEA OF PROOF. Imitate the proof of Theorem 2 from the beginning, using
 appropriate versions of the Inverse Function Theorem and the Morse Vanishing
 Lemma.

 Appendix. The Ck+i3+ Inverse Function Theorem.

 THEOREM. Iff E Ck+fl+(Rn,Rn), k > 1, ,B E [0,1), and Df: is a linear
 isomorphism, then f is invertible in a neighborhood of x and f1 is of class Ck+3+.

 PROOF. The proof that f-1 exists near f(x) and is Ck is the usual one (see,
 e.g., [L]). The derivative satisfies

 D(f-1)(y) = [Df(f'-1(y))]'-; i.e., D(f-1) = Inv o Df o f
 where Inv is the inverse map on GL(n). Since Inv is COO, Df is Ck-1+3+, and f-
 is Ck, we may deduce that the composition is Ck-1+3+ from the

 LEMMA. For k > 1, the composition of a Ck-1+0+ map F with a Ck map G is
 Ck-1+l+*

 PROOF. By induction on k. The case k = 1 is easy. For k > 1, DF o G is
 Ck-2+?+ by the induction hypothesis, while DG is Ck-1. Hence DF o GC DG =
 D(F o G) is Ck-2+f+, and we are done.
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