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Abstract

In 1952, Harry Markowitz formulated portfolio selection as a trade-off between expected,
or mean, return and variance. This launched a massive research effort devoted to finding
suitable inputs to mean-variance optimization. The estimation problem is high dimensional
and a factor model is at the core of many attempts. A factor model can reduce the number
of parameters that need to be estimated to a manageable size, but these parameters may
incorporate substantial, hidden estimation error. Recent analysis elucidates the nature of this
error, identifies a mechanism by which it can corrupt optimization and provides a method
for its mitigation. We explore this analysis here by illustrating how to improve the volatility
ratio of large optimized portfolios, leading to superior portfolio selection.*

Keywords Mean-variance portfolio optimization - High dimensional covariance
estimation - Principal component analysis - Factor models - Volatility ratio - James-Stein
estimation - Shrinkage

1 In the beginning ...

Harry Markowitz launched modern finance when he was an economics graduate student in
the early 1950s. By framing portfolio construction as an optimization that trades off expected
return against risk, Markowitz brought mathematics, computing and data science to bear on
investing, even though computing and data science had scarcely been invented. In a seminal
article that Myron Scholes described as “the big bang,”! Markowitz (1952) introduced the
concept of an efficient portfolio, which minimizes risk for a prescribed level of expected
return, subject to constraints. Hiding in this simple formulation are two profound ideas that,
prior to Markowitz, had not been explicitly central to finance or economics. The first is a
portfolio level perspective, which leads to high dimensional analysis of statistical problems
that involve many variables. The second is a quantitative notion of risk, which Markowitz

I Scholes offered his comments at the March 2024 Journal of Investment Management conference in
Markowitz’s honor held in San Diego.
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had encountered in engineering and operations research.> Markowitz characterized risk as
variance of portfolio return, and he mused about how to construct efficient portfolios.

The name “Markowitz” is sometimes attached to a portfolio that is completely determined
by the mean-variance tradeoff under full investment. The efficient frontier, as featured in
business schools everywhere, is composed of “Markowitz portfolios,” whose weights can be
conveniently expressed with a closed-form formula. Markowitz portfolios typically have short
positions, but there were no securities lending desks in the 1950s. Harry Markowitz was more
interested in long-only portfolios, the kind that were available to investors, but the weights
of a long-only portfolio required mathematical recipes that did not exist. So, Markowitz
(1956) developed the critical line algorithm to incorporate position limits into mean-variance
optimization, a development that was roughly coincident with the introduction of Fortran.’
Well into his 90s, Markowitz wrote code.

The inputs to mean-variance optimization include a vector of expected returns and a matrix
of return covariances. These inputs are never observable. A massive research effort dedicated
to finding suitable estimates followed Markowitz’ portfolio selection article, and continues
today in industry and the academy. Why is this problem difficult? One obvious challenge
is “dimension.” As Markowitz realized early on, methods from classical statistics are not
adequate when the number of securities, or variables, is large. In a prescient comment in his
1952 paper, Markowitz’ considered alternatives:

Perhaps there are ways, by combining statistical techniques and the judgment of experts,
to form reasonable probability beliefs (1;, 0;;). ... One suggestion as to tentative (;, 0}
is to use the observed u;, o;; for some period of the past. I believe that better methods,
which take into account more information, can be found. I believe that what is needed
is essentially a “probabilistic” reformulation of security analysis. I will not pursue this
subject here, for this is “another story.” It is a story of which I have read only the first
page of the first chapter.

This query preceded works by Wigner (1955) and Marcenko and Pastur (1967), which lay
out the foundations of random matrix theory, a rich area of mathematics that informs high
dimensional covariance matrix (or, o;;) estimation. It also preceded a major development in
the work of Stein (1956) and James & Stein (1961) who convinced the statistics community
that in high dimensions, better estimators than the sample mean (or p;) provably exist. For
Markowitz, the dimension played a key role in the “law of the average covariance,” which he
often used to point out the “dos and don’ts of large portfolios” (Markowitz (1959), Chapter
5). He used many thousands of securities for his numerical illustrations. In what follows,
we use numerics to illustrate the “probabilistic” properties of large mean-variance optimized
portfolios. We also combine insights from random matrix theory and James-Stein estimation
to show how higher dimensions yield the additional “information” needed to improve the
estimates (u;, 0j;).

A complication is the dynamic and noisy nature of financial markets. Observations from a
volatile period may not be useful when the market is calm. What limited data from an irregu-
lar past should we use to forecast risk in an uncertain future? Markowitz, as a self-described
Bayesian (Markowitz, 2010), believed in the use of historical averages that are corrected

2 A discussion of how Markowitz brought ideas from engineering to finance is in MacKenzie (2006).

3 Bailey et al. (2023) describe an implementation of Markowitz’s 1956 critical line algorithm. Cottle and
Infanger (2010) provides a history of Markowitz’s contributions to quadratic programming. New algorithms
descending from the critical line algorithm are described in Boyd et al. (2024). A compendium of Markowitz’s
early ideas is in Markowitz (1959).
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for uncertainty in accordance with Bayesian principles (e.g., Markowitz and Xu (1994),
Markowitz and Usmen (1996) and Markowitz (2012)). But mean-variance optimization in
the presence of noise proved to be a challenging problem. As Markowitz concluded, even
with a Bayesian approach “the investor is still too optimistic for his or her own best interest”
(Markowitz & Usmen, 2003). This finding alludes to the now well-known observation that
estimated mean-variance optimized portfolios tend to severely underestimate the true risk.
Higher dimensions amplify the problem, and this so-called “Markowitz optimization enigma”
has led to an active area of research in the past several decades. A small sampling of this litera-
ture covering various approaches includes Klein and Bawa (1976), Jobson and Korkie (1980),
Best and Grauer (1991), Michaud & Ma (2001), Pafka & Kondor (2003), Ledoit and Wolf
(2004), Lai et al. (2011), Fan et al. (2012), Bun et al. (2017), Ledoit and Wolf (2017), Bodnar
etal. (2022) and Blanchet et al. (2022). We highlight Jobson et al. (1979) and Jorion (1986) for
their use of James-Stein estimation for Markowitz problems, and a related thread of literature
on beta adjustments, which relies on Stein-type estimators (Elton et al., 2009, Chap. 7).

In this article, we provide easy to implement “James-Stein-Markowitz" (JSM) recipes for
the estimates (u;, 0;;). They incorporate the Bayes’ rule instincts espoused by Markowitz
regarding the use of historical averages in the form of James-Stein (js) estimation. The js
estimator, which combines a vector of historical means with some shrinkage target, may
be derived by applying Bayes’ rule (e.g., Efron (1978)). In this context, a Bayesian prior is
replaced by a shrinkage target, which stands in for the “information” that Markowitz sought
to correct the historical mean. Our contribution is the realization that for mean-variance
portfolios, that shrinkage target can usually be obtained from the constraints of the Markowitz
optimization itself. We show that this allows for optimized portfolio selection that has superior
performance to portfolios that do not result from this shrinkage rule. This principle takes
firmer hold as more securities are added to the portfolio to increase the dimension.

The 1SM recipe is applied not just to the vector of historical means of the security returns,
but more importantly, to the eigenvectors of their sample covariance matrix. These sample
eigenvectors are high dimensional, and they govern security return correlations. In other
words, they are risk drivers from which a factor model may be constructed. Early develop-
ments of such models includes the market model of Sharpe (1963) and the multi-factor models
in the arbitrage pricing theory of Ross (1976). Beyond their theoretical underpinnings, factor
models facilitate the problem of estimating a high-dimensional return covariance matrix.*
They reduce the dimension to a manageable size, produce robust covariance matrices, and
conform to the empirical fact that a few factors are adequate to explain correlation in security
returns in developed public equity markets. Factor models in finance typically rely on either
principal component analysis (PCA) or the commercially successful Barra models (Rosen-
berg, 1974). Blin et al. (2022) covers many of the historical developments of multi-factor
models in finance, and the use of PCA for empirical work is grounded in the pioneering work
of Chamberlain & Rothschild (1983) and Connor and Korajczyk (1986). The latter had a large
influence on the recent advances in high dimensional factor models and PCA (e.g. Bai and Ng
(2008), Fan et al. (2013), Bai and Ng (2023) and Fan et al. (2023)). We adopt a PCA framework
in which sample eigenvectors are used as risk factors to construct Markowtitz portfolios.

In Section 2, we review the construction of Markowitz portfolios with mean-variance
optimization and introduce the volatility ratio, a measure of volatility forecasting accuracy
for an estimated portfolio. Here, we allude to the literature showing that in situations endemic
to financial markets, the volatility ratio of large portfolios optimized with PCA is low. An

4 Factor modeling originated with an inquiry into the determinants of human intelligence in Spearman (1904).
Spearman’s g factor for intelligence is equivalent from a modeling viewpoint to the market factor in finance.
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asymptotic description of the volatility ratio is provided by formula (7), which indicates,
perhaps counterintuitively, that in a large enough universe, the volatility ratio of risk forecasts
of optimized portfolios may not depend on estimates of factor or specific variances. Rather, it
is errors in means and factor exposures that distort mean-variance portfolios. The recipes for
mean and covariance estimates that correct this distortion for PCA are in Section 3. A numerical
illustration comparing PCA and JSM is in Section 4. In Section 5, we return to Markowitz
the statistician, who had a deep interest in generating the best possible inputs to mean-
variance analysis. Appendix A covers factor-model portfolio construction and summarizes
the derivation of formula (7). The calibration of a seven-factor return generating process used
in our numerical results is specified in Appendix B. Appendix C contains technical details
related to our numerical recipes.

2 The volatility ratio of Markowitz portfolios

For a universe of p securities, we estimate a p-vector © = (u;) of means and a (p x p)-
matrix ¥ = (oy;) of covariances. These two estimates determine a Markowitz portfolio w
via optimization, as the solution to

min w' T w
w

sujl_uect to: )
nw > o
elw= 1,
where e is a p-vector of ones and « is a return target. Assume u does not have identical
entries. If we knew the true means p and covariances X, the computed portfolio w would
be mean-variance optimal. But in practice, the parameters p and X are estimates, and the
resulting errors affect the accuracy of the optimized portfolio’s return and risk. As aptly stated
in Michaud (1989), mean-variance “optimizers are, in a fundamental sense, estimation-error
maximizers”.
We can characterize this mathematically in terms of volatility (or risk). The estimated
variance of w is

EV)? =w'zw )

and the square-root yields the estimated portfolio volatility EV. Its relationship to the true
volatility TV, and the true variance, (TV)? = w ' Xw, may be quantified by the volatility
ratio, denoted by V), and defined via the relation

EV =TV xV,

so that
_EV  Estimated Volatility
T TV~ True Volatility

3

Since we don’t know the true volatility, we don’t know V. But quantities such as V
are of great interest to both investors and academics, with a vast literature spanning many
disciplines; e.g, mathematical finance, physics, economics, statistics and operations research.
Ideally, V is close to 1. Not only is that unlikely in actual use, but the opposite tends to be
true in high dimensions, as we discuss in this section. Unless the estimated mean w and
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covariance X are chosen in a special way, as described below and in Appendix A, under
reasonable assumptions:

The ratio V tends to zero as the number of securities p grows to infinity.

In other words, the estimated volatility EV may be severely understated relative to the
truth for a portfolio optimized from a large universe of securities. There is a rich literature on
the cause of this phenomenon as discussed in the introduction. We explore the volatility ratio
of Markowitz portfolios when security returns follow a factor model,> the industry standard
for a security return generating process.

Suppose that security returns in excess of the riskless rate are generated by the process

r=Bf+e “

where f denotes a random k-vector of returns to k risk factors, € denotes a random p-vector
of security specific returns, and g is an unknown non-random (p x k)-matrix of sensitivities
of the securities to the factors.® We observe only the p-vector r on the left side of (4). We
seek estimates of the unknown parameter B and the covariance matrices ® and A that form
the nonrandom parameters of the latent components of return f and €.

If we assume that the entries of € are uncorrelated with f and pairwise uncorrelated with
one another, the true covariance matrix ¥ decomposes into a sum of factor and specific risk
components (see Appendix B). Assuming the same factor-structure for the estimated model,
for estimates (8, @, A) of the true parameters (8, ®, A), we let

T =8P +A. (5)

Squaring (3) and substituting the estimated and true parameters as well as the optimized
portfolio w, we obtain
5 w' B Tw+w' Aw ©)
wTB®B T w+wTAw
Under empirically reasonable assumptions, unless the estimate f is chosen so that the
optimization bias, defined below, tends to zero (e.g., per the JSM recipe in the next section),
all terms except for the factor component of the true variance, w' B®8 " w, decay as 1/p or
faster. In such cases, a first-order approximation of V obeys the proportionality,

Y M BT @
where M ,(p) is bounded between zero and infinity, and is called the optimization bias
(see Appendix A for further details and assumptions). This systematic bias is the key to
understanding the accuracy of mean-variance optimized portfolios. We emphasize that (7)
implies the volatility ratio V of the portfolio w decays to zero at rate 1/,/p. That is, as
investors grow their portfolios (perhaps with the aim of diversifying), their risk estimates
become less and less accurate. These portfolios mislead the investors into seeing much less
risk on paper than there is in reality.

The optimization bias M, () has no dependence on the estimate ®, and depends on j
only through col(f), the column space of §, or equivalently, the span of the estimated factor

5 An additional source of error in practice is mis-specification of the number k of factors. We do not address
this source of error here.

6 See Connor (1995) and Connor and Korajczyk (2010) for discussions of different factor model architectures
used in finance.
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exposures. The estimates p and A do effect the value of M ,(8) but cannot prevent V from
decaying to zero.” This turns out to imply, perhaps unexpectedly, that the optimization bias
M ,(B) may be removed only by changing the estimate 8. Errors in the column space of
can be understood in high dimensions due to the influence of the law of large numbers, in
the following way. A high dimensional noise vector will, with high probability, be nearly
orthogonal to any fixed set of reference directions. This noise may be found in an estimate
col(pB), constructed by PCA for example, in the form of an additive perturbation of the true
column space col(f). Its effect in high dimensions is to therefore push col(8) away from the
chosen reference directions. Shrinkage back toward those directions can undo this effect. A
quantitative version of this idea is described in the JSM recipes below, which leverages the
constraint vectors e and u in (1) to construct the reference directions.

New work and work in progress® investigate the behaviour of M p(B) forlarge p and iden-
tifies optimization biases caused by the interactions between quadratic programs and errors
in estimated parameters. The elimination of these biases makes use of the high dimensional
properties of random matrices to bring V closer to the ideal V = 1. In the next section, we
provide recipes for optimization bias-free inputs to mean-variance programs, yielding special
estimates 8 and  that send the optimization bias M , () to zero as p tends to infinity. They
are derived from an intricate use of mathematics and data science; the very tools Markowitz
brought to finance in the 1950s.

3 Recipes for an improved volatility ratio

We provide implementable recipes to estimate the means and covariances as inputs to the
mean-variance optimization program (1). The first recipe adopts the “usual” estimators based
on maximum likelihood (ML). Here, the estimate ;& = (uw;) for the target return constraint in
(1) is computed as the usual sample average. Similarly, a maximum likelihood estimator, in
the form of principal component analysis,” is applied to produce a factor-model covariance
estimate ¥ = (0;;). These estimates will be denoted by f,; and Xpca. The second recipe
will leverage James-Stein shrinkage to improve the usual estimators. The estimate ji,; of
the mean security return is replaced by the well-known James-Stein estimator 1;s, which
improves upon the vector of sample averages when p > 2 (see Stein (1956), James &
Stein (1961), Efron and Morris (1975) and Efron and Morris (1977)). The estimate Xpca
is replaced by a more recent Stein-type estimators that improve sample eigenvectors (i.e.,
principal component (factor) loadings -- see Shkolnik (2022) and Goldberg & Kercheval
(2023)). The new covariance estimate is denoted by Xjsy. The corresponding James-Stein-
Markowitz estimator is designed specifically to remove optimization biases from the weights
of portfolios constructed with PCA. The outputs of both recipes, first (¢ , Xpca) and second
(s, Zysm), are used in (1) to compute the portfolio weights. We test the volatility ratio of
these weights in the next section.

We begin with a (p x n) data matrix R of excess returns, the columns of which hold n
observation of the left side of equation (4). Starting with only this ingredient, our recipes
output the estimates of the means and covariances.

7 We remark that when A is a scalar matrix the dependence of M p,(B) on it vanishes in a cancellation.

8 Including Goldberg et al. (2020), Goldberg et al. (2022), Gurdogan and Kercheval (2022), Goldberg &
Kercheval (2023), Goldberg et al. (2024), and Gurdogan & Shkolnik (2024)

9 e.g., Tipping and Bishop (1999) give an interpretation of PCA as maximum likelihood for factor analysis
under suitable conditions.
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RECIPE FOR THE RETURN CONSTRAINT

. Let r be the p-vector average of the n columns of R.
. Let u = 7 for the target return constraint in (1).

N —

RECIPE FOR THE COVARIANCE MODEL
1. With 7 as above, let R be the (p x n) matrix with 7 in every column, to center the data, i.e,
Y=R-R. ®
2. For the centered sample covariance matrix S = Y'Y | /n, write its spectral decomposition as
S=Y 2o hh =HHT +N )
where the sum is over all eigenvalue/eigenvector pairs (42,h) of S, Hisa p X k matrix with every
column of the form 4/ sourced from the k largest eigenvalues s2,andN=S—HH'.

3. The specific risk estimate A in (5) sets all the off-diagonal elements of N to zero, i.e.,

A = diag(N). (10)

4. The PCA covariance matrix is Xpca = HHT +A.

Recipe 1 Principal component analysis (PCA) recipe for means and covariances.

RECIPE FOR THE RETURN CONSTRAINT
1. The James-Stein estimate pys adjusts the sample mean 7 by a shrinkage parameter,
c=1-v2J71, J=G-mTF—-m)), (11)

where v is the variance of noise and some p-vector m # r, a shrinkage target.
2. Let . = pys for the target return constraint in (1) be computed as,

mwis=rc+m(l—c). (12)
3. The noise variance v, given the § = HHT + N in the pcA recipe, is computed via

trace (N
vz— race (N)

=—7 13
P 13)
where n is the number of nonzero eigenvalues of the sample covariance S.
4. The shrinkage target m may be any p-vector, but a popular choice is the grand mean,
m:e(eTe)flfzeTf/p. (14)

Recipe 2 James-Stein-Markowitz (JSM) recipe for means.

Recipe 1 computes the sample average ), = r of the columns of R for the constraint
1 and a PCA covariance matrix Xpca given return data R as input. The estimate Xpcy =
HHT +A may now be expressed, if desired, in terms of a factor model estimate <I>,3T + A,
by finding (8, @) satisfying &'/ = H fora (p x k) matrix 8 and a (k x k) covariance matrix
® of factor returns. However, the individual terms 8 and & are separately unidentifiable, so
are not unique. However, there is no need to find separate estimates for § and ®, because
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RECIPE FOR THE COVARIANCE MODEL

1. For any estimate A (e.g., (10)), centering and weighting the data, we set
Y =A"2(R-R) (15)

where A~1/2 s diagonal with Ai_l.l/z = 1//A;; and R is the matrix in (8).
2. Recompute H following (9) but from the re-weighted sample covariance S that uses (15). Set,

H=AYV2q. (16)

3. The JSM estimator of the weighted eigenvectors H computes a (k x k)-matrix valued shrinkage
parameter,

c=1-vJ1, J=H-MmTa"YH-M), (17)

where 12 is the variance of the noise and M # H is a (p x k)-matrix shrinkage target.?
4. The JSM estimator is analogous to (12) but with matrix valued C and M.

Hisy = HC+ MU —C) (18)

5. The variance v2 is computed per (13) but with N from the reweighted sample covariance S.

6. A shrinkage target M analogous to (14) uses a (p x 2)-matrix A = (Mjs e) as
M=AMATATTATATATIA. (19)

7. The basic ISM covariance model is Xjsm = Hjsm HJEM + A.
“Here, # is in the sense that the columns spaces of the two matrices are not identical.

Recipe 2 (continued) James-Stein-Markowitz (JSM) recipe for covariances.

the optimal portfolio depends only on the sum of HH " and A. Step 2 of Recipe 1 may be
computationally expensive and we defer to Appendix C for a faster procedure to compute the
eigenvector matrix H. An improved estimate A is also stated there. An efficient computation
of the Markowitz portfolio weights, given Xpca, is described in Appendix A.

Recipe 2 uses the classic James-Stein estimator (i;s to improve the sample average [ty
in the sense of expected mean-square error when p > 2 with v known. For a discussion of
James-Stein in the asymptotic case of p growing to infinity, see Casella and Hwang (1982).
For these asymptotics, step 3 supplies a consistent estimate v? of the variance of the noise in
the vector of averages i, under reasonable assumptions. The vector of ones used in step 4
implements a shrinkage toward the grand mean (the average of averages in uy, = r) as
popularized by Efron and Morris (1977). However, this estimate alone cannot correct for the
optimization biases described in Section 2. To this end, the covariance estimate Xy applies
shrinkage to the eigenvectors H (the principal component loadings) in the estimate Xpca to
address its decay in volatility ratio V per formula (7) as p grows. For Xy, the optimization
bias M ,(B) for the Markowitz portfolio problem (1) tends to zero (see Appendix A for more
detail). Our numerical results show that the rate of decay of M, (/) is sufficiently fast so
that V remains bounded above zero when Xjgy is used. The mitigation of the optimization
bias is achieved by rotating the column space of H = AY2H to obtain Hysy, defined in (18).
This bears a striking resemblance to the classic James-Stein shrinkage formula (12). When
A is a scalar matrix, the re-weighting by A~!/2 in all steps of the recipe may be omitted. The
vector shrinkage target m used to shrink the sample mean r is replace by the matrix M to
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Table 1 Portfolio Volatility (annual %) and Volatility Ratio. OPT: True volatility of Markowitz portfolios
optimized with true parameters. TV: Average true volatility of estimated Markowitz portfolios. EV: Average
estimated volatility of estimated Markowitz portfolios. V: Average volatility ratio of estimated Markowitz
portfolios. n = 125, u = 8.5, 400 simulations

P OPT PCA TV PCA EV % ISM TV JSM EV v

500 6.33 8.66 6.71 0.77 7.93 10.0 1.26
1000 4.73 7.78 4.71 0.61 6.10 7.17 1.17
2000 3.34 6.89 3.31 0.48 4.43 4.96 1.12
3000 2.78 6.68 2.68 0.40 3.80 4.12 1.09
100000 0.50 6.29 0.47 0.07 0.81 0.83 1.02

shrink the (re-weighted) sample eigenvectors H. This M is constructed from the constraint
vectors, i = s and e, in order to address the bias M, () resulting from optimization (1).
Our earlier comments regarding PCA and the factor model estimate &S T 4 A equally apply
to the estimate Xjgy.

Prior work that applies James-Stein ideas to covariance estimation and optimized portfolio
construction includes Jobson and Korkie (1981) and Jorion (1986) as well as Ledoit and
Wolf (2003) and Ledoit and Wolf (2004). The novelty of the JSM recipes, however, lies in the
application of these ideas directly to the principal component loadings and the accompanying
theoretical analysis of the optimization bias M ,(8) and the volatility ratio V' in formula (7).

4 Numerical illustration

We look at risk, excess return and Sharpe ratio of Markowitz portfolios optimized with
PCA and JSM, when data are generated by a seven-factor instance of the return generating
process (4). The model is based on excess return to the market, two style factors and four
industry factors. A specification of the return generating process is in Appendix B.

In 400 fictional universes, we simulate six months of daily data, n = 125 observations, of
p security returns that follow the generating process detailed in Appendix B. From each data
set, we construct PCA and JSM Markowitz portfolios from (1) with target annualized expected
return 8.5%. Recipes for the construction of PCA and JSM portfolios are in Section 3. We
consider universes of size p ranging between 500 and 3,000 to shed light on problems
commonly encountered in practice and we include the unrealistic value p = 100,000 to
highlight asymptotic effects.

True and estimated volatility of Markowitz portfolios are shown in Table 1. The OPT
column shows oracle values: the true volatility of the true Markowitz portfolio optimized
with true means and covariance matrix for each p. Under empirically sound assumptions
about the calibration of the return generating process for large p, theory predicts these values
tend to zero as p tends to infinity, since factor return tends to be hedged and specific return
tends to diversify away. This limiting behavior is suggested by the volatility of 0.50% for
the optimal Markowitz portfolio estimated from a universe of p = 100,000 securities. The
oracle values serve as a benchmark against which we can assess portfolios optimized with
estimated parameters.

The remainder of Table 1 concerns true and estimated volatility of Markowitz portfolios
optimized with PCA and JSM estimates. For p = 500, PCA and JSM Markowitz portfolios have
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Table 2 Portfolio Expected Excess Return (annual %) and Distortion: OPT: True returns of Markowitz portfo-
lios optimized with true parameters. TR: Average true return of estimated Markowitz portfolios. ER: Average
estimated return of estimated Markowitz portfolios. D: Average ratios of estimated to true return for estimated
Markowitz portfolios. n = 125, u = 8.5, 400 simulations

p OPT PCA TR PCA ER D JSM TR JSM ER D

500 8.5 6.96 8.50 1.23 7.56 8.51 1.14
1000 8.5 7.04 8.50 1.21 7.59 8.51 1.13
2000 8.5 7.03 8.50 1.21 7.63 8.51 1.12
3000 8.5 6.92 8.50 1.23 7.51 8.51 1.14
100000 8.5 6.93 8.50 1.23 7.27 8.50 1.17

Table 3 Portfolio Sharpe Ratio and Distortion: OPT: True Sharpe Ratio of Markowitz portfolios optimized
with true parameters. TSR: Average true Sharpe Ratio of estimated Markowitz portfolios. ESR: Average
estimated Sharpe ratios of estimated Markowitz portfolios optimized with PCA or JSM. D: Average ratio of
estimated to true Sharpe Ratio for estimated Markowitz portfolios. n = 125, u = 8.5, 400 simulations

P OPT PCA TSR PCA ESR D JSM TSR JSM ESR D

500 1.34 0.81 1.72 2.13 0.95 1.12 1.17
1000 1.8 0.91 2.35 2.59 1.24 1.52 1.22
2000 2.54 1.03 3.33 3.25 1.73 2.21 1.28
3000 3.06 1.04 4.08 3.91 1.98 2.62 1.32
100000 16.98 1.11 22.99 20.71 8.97 12.78 1.42

similar average true volatilities of 8.66% and 7.93%. Unlike JSM, however, the estimated
volatility PCA is underforecast at an average of 6.71%, leading to an average V = 0.77. An
asset manager sees a p = 500 Markowitz portfolio estimated with PCA as 23% less risky
than it is, and less risky than the JSM analog whose volatility is overforecast. As p grows,
the average true volatility of the Markowitz portfolio estimated with JSM diminishes toward
0 as it does for the oracle, but the volatility of the PCA Markowitz portfolio does not. The
volatility ratio of PCA plummets as p grows, while that of JSM gets closer to 1.

True and estimated expected excess returns of optimized Markowitz portfolios are shown
in Table 2. For all values of p, estimated expected returns of PCA and JSM are 8.5% because
the optimizer targets that value with estimated security returns. These estimates are equal to
the expected excess return of the oracle, noted in OPT, since they are made with true returns.
The unobservable truth is higher for JSM than PCA due to the JSM return constraint detailed
in Section 3. This means that average distortion D = ER /TR is greater for PCA than for JSM.

Risk-adjusted expected excess returns or Sharpe ratios for Markowitz portfolios are shown
in Table 3. Estimated Sharpe ratio exceeds true Sharpe ratio on average for Markowitz
portfolios optimized with PCA and JsM for all values of p considered, but is close to 1 for
the latter. The Sharpe ratio distortion D = ESR/TSR explodes for PCA as p grows. There
are two sources of the discrepancy between the relatively tame distortion for JSM and the
explosion one observes with PCA. The first is that return distortion is greater for PCA than for
JSM, as shown in Table 2. The second, more potent source is the plummeting volatility ratio of
PCA volatility estimates, shown in Table 1. For an asset manager tracking their risk-adjusted
excess return, disappointment in our fictional universes is rife when Markowitz portfolios
are constructed with PCA.
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5 Harry Markowitz was a statistician

Prompted by questions posed in Markowitz (1952) we apply tools from high dimensional
statistics to estimate inputs appropriate for use in mean-variance optimization. We illustrate
how shrinkage techniques used in the James-Stein-Markowitiz recipe for means and covari-
ance matrices correct optimization biases that, left unchecked, corrupt optimized quantities.
Markowitz looked holistically at problems in a way that allowed theoreticians to build on his
work and practitioners to use it. He explored widely outside his fields of expertise. This may
help explain why he was so effective at solving big problems that require deep understanding
of many subjects.

Harry fans sometimes ask whether their hero was an economist, a computer scientist or
a mathematician. Let’s add “statistician” to the list. His early inquiries about the importance
of risk in portfolio selection and the suitability of classical statistics for estimating inputs
to mean-variance optimization launched vast bodies of research. His late-in-life crusade to
clarify the assumptions on data required for a mean-variance optimized portfolio to be the
best choice is ongoing. As we strive to develop better inputs to optimization, we are inspired
by Markowitz’s stubborn insistence on getting the right answer.

Appendix
A Factor models & Markowitz portfolios

Provided the (p x p) covariance X is invertible, the optimized (mean-variance) portfolio
solving (1) has the form,

w:yeEfle—l—yuZ*lpv (20)
a combination of a global minimum variance portfolio and the characteristic portfolio of
1, weighted by their shadow prices y. and yﬂ.]o Letting ¢ (x, y) = x' ™1y, these two
portfolios are given by ¥ "'e/¢ (e, e) and T i/ P (11, ).

When the return to the global minimum variance portfolio, wT = le/p (e, ), exceeds the
target return o,

1

Ve = ¢ (i, e)
_gs(ev e) (m ZO{) (21)
Yu =

Otherwise, the shadow prices are expressed in terms of all the inputs to (1) as follows.

o) —agle, )

e, )b (u, 1) — (e, w)? (rb(u, ©) _ a)
agle,e) —o(u,e) ¢(e,e) '

pe,e)p (i, w) — e, w)?

Formula (20) is costly to evaluate when the matrix X is very large. But given a factor-
structure, (20) may be computed efficiently via the Woodbury matrix identity. This is
accomplished by adopting a factor model for the security returns; a choice with additional
advantages (e.g., reducing the number of estimated parameters).

(]

(22)

Y =

10 Shadow prices are the values of the Lagrange multipliers of the constrained optimization problem at its
optimal solution. See Grinold and Kahn (1999) for an exposition of the algebra of efficient frontiers.
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The excess return generating process »r = 8 f + € introduced in (4) is expressed in terms
of factor returns f € RF specific returns € € R?, and (true) security sensitivities to factors
B € RP*4.In a factor model, the entries of € are uncorrelated with factor returns f and
pairwise uncorrelated with one another. Then, the covariance of r is given by

T=B808" +A (23)

where @ is the covariance matrix of the factor return f and A is a covariance matrix of the
specific return €. The matrix A is further assumed to be diagonal and invertible. Taking the
expectation of r, we obtain the decomposition

m=Bus+ps, (24)

of the (true) expected security returns u, where uy € R* and pg € R? are the expected
factor and specific returns.
The estimated covariance matrix X discards the bold lettering notation, and is written as

T =88 +A, (25)

where the estimates (8, @, A) have the same dimensions and properties as the true (popu-
lation) parameters (8, ®, A). Implicit in this is the knowledge of the true number of factors
k, which we assume is granted. Our assumptions (in particular the invertibility of A) ensure
>~ ! exists and hence the Markowitz portfolio in (20) is well-defined.

Given the factor-structure in (25) and the assumption that ® is invertible, £ ~! is computed
efficiently via the Woodbury identity as

s oAl oA g@ )7 18TA ], 0=8"A"'8, (26)

by leveraging the fact that the matrix (@ !+ Q) is a (k x k) matrix (with the number of
factors k being small or moderate) may be efficiently inverted (or, used in computations that
perform this inversion implicitly).

We analyze the asymptotic behavior of the volatility ratio V in (3) of the estimated mean-
variance portfolio in (20). The following conditions on (8, ®, A), their estimates and the
estimate p of u in (24) are required for our results.

Regularity conditions. 57 A~'8/pand BT A~' B /p (the estimate A of A used for both)
converge to invertible (limit) (k x k) matrices, and the diagonal entries of A and A remain
bounded in (0, co) as p tends to infinity. The matrix ® and its estimate ¢ do not depend on
p and are both invertible. The vector u does not vanish, e and u are not collinear and neither
e nor u belongs to the column space of A~!/2 in the limit where p diverges.'!

With these conditions in place, the sequence of portfolios (20), may be shown!? to have
w'Aw, w  Aw and w' 8 ® BT w decaying to zero at the rate 1/p as p grows, and (6) may
be simplified as follows.!3

2 T T T
_EV) w P wtw Aw :(Cp) 1 27

V2 — _ htd -
(TV)2  wTBdB Tw+wTAw p/wTpepw

for some sequence C, that is bounded in (0, 00). To analyze the remaining term w! OB w,
we define

v(B. ) =a""¢ -0 BT AT ) (¢ €RP)

T The matrix A=1/2 is diagonal with A2 = 1/ A
12 These calculations are analogous to Theorem 2.3 and Lemma A.1 of Gurdogan & Shkolnik (2024).
13 Here, we use that Xlﬂ = Al(l — li/iax/x)
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~1
and, using (26), it may be shown that our characteristic portfolios satisfy ¢Z( £ f) = C‘TI’ 1/(1’3(; ); ) +
¢ / p for some sequence ¢, bounded in R, taking ¢ = e for the global minimum variance or

¢ = . Moreover, the quantities

BTy (B, e) q BTy (B, 1)

28
Tvgeo ™M TG (&8)

are vectors in R¥ that remain bounded as p grows. These quantities are “optimization biases”
that result from mismatches between S and B and their interplay with the optimization
constraint vectors e and 4.

Now, for | - | the Euclidean norm and an o, term that vanishes as p tends to infinity,

w B @ w=10"28Tw| =@y BT () + v B V()| +0p.

Under our conditions, e = ®'/2y.eT (B, e) and r, = Ql/zyﬂ w (B, 1) are both
bounded in R¥ and the former is bounded away from zero irrespective of the cases, (21) or
(22). We arrive at M, (8, ) in (7) in the form

Bvo . BYBW
ety o) MuTyBow |

where we omit the constant argument e and leave (8, i) as the pair of estimates that are
“levers” that may be adjusted to set the optimization biases to zero. The estimates & and A
do not have this capacity on their own.

3
The term %, which appears in (29) with ¢ = e and ¢ = p, is studied in Gurdogan

& Shkolnik (20245 in terms of what they call the “quadratic optimization bias”. Each such
bias is a k-vector with each component corresponding to a risk factor in the covariance
model. Each may be set to zero by an orthogonal projection of the column space of the
(p x (k4 1))-matrix (8 ¢) onto the column space of the true factor loadings 8. Theorem 5.1
of that paper states the conditions under which this orthogonal projection may be estimated
from the observed data, and supplies the estimator that accomplishes this in the setting of
PCA, so that 8 = H per Recipe 1. Recipe 2 is an extension of that estimator that combines the
vectors ¢ = e and { = p in an orthogonal projection in (19). The resulting estimator may
then be put into the James-Stein form Hjgy in (18). These theoretical results establish that
M, (Hysm) tends to zero almost surely as p diverges provided the estimate A is either a scalar
matrix or independent of the data. The numerical results of Section 4 suggest the dependent
case of (10) has the same property. It is also remarkable that the proofs can be modified for
¢ = u, a sample mean (or the corresponding James-Stein estimator w5 of Recipe 2) that
depends on the observed data.

Mp(B. ) = |T (29)

B Security return generating process

We specify a seven-factor instance of the excess return generating process r = B f + ¢,
introduced in (4), in terms of the true mean g and true covariance X. The seven factors
include excess return to the market, two styles, which we might think of as size and value,
and membership in four industries. The dimension dependent components (8, A) of X =
B®B T + A are generated for the largest value of p (i.e., 100,000) used in the numerical results
first, and subsets of these are taken to produce returns for a smaller number of securities.
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Table 4 Volatilities of the factor returns f = (f1, ..., f) in percent annualized
Market Size Value Industry 1 Industry 2 Industry 3 Industry 4
16.0 4.0 2.0 20.0 15.0 10.0 5.0
Table 5 Correlation matrix of the factor returns f = (f, ..., fx). Blank entries omitted due to symmetry
Market Size Value Industry 1 Industry 2 Industry 3 Industry 4
1.00 0.28 —0.30 0.16 0.08 0.04 0.02
1.00 —0.11 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00
1.00 0.00 0.00
1.00 0.00

1.00

0 500 1000 1500 2000 2500

04==
1.5-
500
1.0- 3 1000
1500 2
0.5- 2000
2500
0.0 T T T
-2 0 2

Fig. 1 Left panel: Histogram of the first three columns of B (market and two style factor sensitivities).
Right panel: Industry membership visualization (i.e. entries of a matrix ). cc T where the sum is over the last
four (industry) columns of B -- white entries indicate no industry in common between two securities

The (7 x 7)-covariance matrix @ of the factor returns f = (fi, ..., f7) is specified in
terms of the factor volatilities and their correlations. The factor volatilities are calibrated
as in Bayraktar et al. (2014, Table J4) and are presented in Table 4. Table 5 presents the
correlations between the seven factor returns. The style and market factor correlations are
taken from Fama and French (2015, Table 4). The correlations between the industries and
the market are relatively small, since we think of industry factors as residual to the market
as in Menchero et al. (2011). The remaining correlations are set to zero.

The (p x 7)-matrix of § sensitivities to factors is summarized in Figure 1. Its left panel
shows histograms of the first three columns of f, the entries of which are drawn independently
from N (1,0.25%), N(0, 1) and N (0, 0.5?) respectively. The industry factor sensitivities are
generated as follows. Each security selects two (of four) industries for membership (with
replacement). Independently generating two numbers uniformly in (0, 1), we assign each as
a sensitivity to the two industries. If only one industry was selected, the sensitivity equals
their sum. An illustration of common memberships to industries for each pair of securities
is in the right panel of Figure 1.
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Table 6 Expectations g of the factor returns f = (f1, ..., f) in percent annualized
Market Size Value Industry 1 Industry 2 Industry 3 Industry 4
4.80 2.40 1.20 0.00 0.00 0.00 0.00
30 30 30
25 25 25
20 Z 20 20
£ s 2 s E s
8 S =
S0 2 10 S0
‘E < =1
ERE £ 5 5 5
o3 » aQ,
@20 & 0 20
-5 -5 -5
-10 -10 -10
5 15 25 35 45 55 65 75 5 15 25 35 45 55 65 75 5 15 25 35 45 55 65 75
Security volatility Systematic volatility Specific volatility

Fig. 2 Scatter plots of various components of return versus volatilities for a representative sample of p =
3000 securities. Left panel: Total return (p) vs. total volatility (square-roots of the diagonal entries of X).
Center panel: Systematic security return (B £) versus systematic risks (square-roots of the diagonal entries

of & ™. Right panel: Specific returns (p5) versus specific risks (square-roots of the diagonal entries of
A)

The square roots of the diagonal entries of A, the specific volatilities, are drawn from
15 4 100 x Beta(4, 16), and they range from 15% to 77% (annualized). See the third panel
of Figure 2 for illustration.

To calibrate the expected returns g = Bp 5 + pg per (24), we rely on Fama and French
(2015, Table 4) for guidance on u ¢ and following Ang (2023), we set the expected returns
on industry factors to be zero. See Table 6.

The expected specific returns are obtained by the projection

L P
bs = Jo5 (A= BB A). (30)

where B7 is the pseudo-inverse of A.!# This results in a vector us orthogonal to the risk factor
exposures (i.e., the columns of §), and such that securities with a higher specific volatility
have higher returns on average. In this way, u decomposes into a factor return component
By and a specific return wg which are orthogonal. Scatter plots of the expected returns
against the volatilities for each component of return and the sum are shown in Figure 2.

Lastly, returns to factors f are drawn from a normal distribution with mean uy and
covariance matrix ®. The specific returns € are uncorrelated with factor returns, and the
components of e are drawn from a joint normal distribution' with mean gs and covariance
matrix A. The returns are generated identically and independently over the n dates keeping
all model parameters (i s, s, ®, B, A) fixed.

14 A discussion of factor premia versus specific return alpha in the context of multiple managers is in Garvey
et al. (2017). Non-zero specific return alpha is inconsistent with the no-arbitrage conclusion in Ross (1976).

I5 N ormality of f and € is not required for the shrinkage methods described in this article to be effective.
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C Technical supplement on the recipes

Recipe 1 addresses the unidentifiability issues of factor analysis by computing orthogonal
factors (i.e., principal component loadings). In the PCA covariance model recipe we note that
HTH = 82, the (k x k) diagonal matrix of the largest k sample eigenvalues. To put HH "
into the form B ® BT as required by the estimate (25), we set

®=H H=58 (31)

and then the columns of A become orthonormal principal component loadings (i.e., 8 g is
a (k x k) identity matrix).

Moreover, in finite sample regime in which the dimension p tends to infinity, we may
perform a bias correction on the eigenvalues in (31) and formula (13). To improve the estimate
vZin(13)for S = HH' + N, we may take

2 trace (V)

2 = . (32)
ny —(L+ny/p)k

See page 1355 of Wang and Fan (2017) for this estimator. It may be used to improve the
estimate (10) by renormalizing its average to that of v2.

Letting S~2 be the inverse of S2, we may compute W2 = I — v25~2 to improve (31)
further by computing

o =5>v2, (33)

This adjusts the diagonal entries of S> downward to reduce their biases. These biases do not
impact M, (B) in (7) however. The computation of these eigenvalues/eigenvectors may be
challenging for large p. Instead, letting

L=Y"Y/p

for Y in either (8) or (15), we compute the (n x k) matrix of eigenvectors V corresponding
to the k largest eigenvalues of the (n x n)-matrix L. Then, H = YV /,/n which is highly
efficient for n much smaller than p.

Recipe 2 which computes X5y can also follow the orthogonality conventions of the PCA
estimate. Here, compute S;sy by taking for its columns the k eigenvectors of the matrix Higy
from the JSM covariance model recipe. Then,

Tism = Bisi @By + A (34)

with & in (33) is a covariance model that has improved factor variances. We use these
improved PCA and JSM models in the numerical results of Section 4. They lead to improved
results relative to the plain recipes of Section 3.

Lastly, the computation of the (k x k) shrinkage parameters matrix C in the JSM recipe
should not invert the matrix J in (17) numerically. Instead, we apply the Woodbury identity
(as in (26)) to the right side of,

J=H-M"AYH-M=8-H A"'M.
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