1. (a) Prove that 0 is a regular value of the function \(f : \mathbb{R}^2 \to \mathbb{R} \) defined by
\[
f(x, y) = y^2 - x(x + 1)(x + 2).
\]
Conclude that the curve \(y^2 = x(x + 1)(x + 2) \) in \(\mathbb{R}^2 \) is a smooth 1-dimensional manifold. Sketch this curve.

(b) Is 0 a regular value of the function \(g : \mathbb{R}^2 \to \mathbb{R} \) defined by \(g(x, y) = y^2 - x^2(x + 1) \)? Why or why not? Sketch the curve \(y^2 = x^2(x + 1) \).

NOTE: (a) is an example of a “nonsingular elliptic curve”, while (b) is a “singular elliptic curve”.

2. Let \(f : M \to N \) denote a smooth map between manifolds and suppose \(g : M \to M \) is a diffeomorphism which satisfies \(f \circ g = f \). Given a point \(x \in M \), prove that \(x \) is a regular point of \(f \) if and only if \(g(x) \) is a regular point of \(f \).

For the following problems, define the following terms: \(M_{n \times n}(\mathbb{R}) \) denotes the set of \(n \times n \) matrices with real entries. \(A' \) denotes the transpose of a square matrix \(A \).

3. Define \(O(n, \mathbb{R}) = \{ A \in M_{n \times n}(\mathbb{R}) : A'A = I_n \} \). Prove \(O(n, \mathbb{R}) \) is a smooth manifold, and find its dimension. Hint: Let \(S_n(\mathbb{R}) \) denote the set of \(n \times n \) symmetric matrices. Define \(f : M_{n \times n}(\mathbb{R}) \to S_n(\mathbb{R}) \) by \(f(A) = A'A \). First, prove that \(I \) is a regular point of \(f \). To do this, I would recommend calculating \(df_I(V) \) for an arbitrary matrix \(V \). Then show directly that \(df_I \) is onto. Now let \(A \) be an arbitrary element of \(O(n, \mathbb{R}) \). Show that \(L_A : M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R}) \) defined by \(L_A(X) = AX \) is a diffeomorphism. Now use the result of 2.

NOTE: The result of 3. gives a space that is a manifold and a group at the same time (and in which the functions \((g, h) \mapsto gh \) and \(g \mapsto g^{-1} \) are smooth). Such spaces are called Lie groups and are extremely important in geometry and topology.

4. As many of you know, a covering map is a continuous surjective map \(f : X \to Y \), where \(X \) and \(Y \) are topological spaces, with the following property: For each \(y \in Y \), there exists an open neighborhood \(V \) of \(y \) in \(Y \) such that
\[
f^{-1}(V) = \bigcup_{\alpha \in A} U_\alpha,
\]
where the sets \(U_\alpha \) are pairwise disjoint open sets, and for each \(\alpha \in A \), the restriction \(f : U_\alpha \to V \) is a homeomorphism. Prove that if \(M \) and \(N \) are smooth manifolds of the same dimension, and \(M \) is compact and nonempty, and \(N \) is connected, and \(f : M \to N \) is a smooth map for which every \(x \in M \) is a regular point, then \(f : M \to N \) is a covering map. Give a counterexample showing that you cannot drop the hypothesis that \(M \) is compact.