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Abstract. In this paper, we design and study two modifications of the first or-
der standard pressure increment projection scheme for the Stokes system. The first
scheme improves the existing schemes in the case of open boundary condition by
modifying the pressure increment boundary condition, thereby minimizing the pres-
sure boundary layer and recovering the optimal first order decay. The second scheme
allows for variable time stepping. It turns out that the straightforward modification
to variable time stepping leads to unstable schemes. The proposed scheme is not
only stable but also exhibits the optimal first order decay. Numerical computations
illustrating the theoretical estimates are provided for both new schemes.

1 Introduction

We consider the time-dependent Stokes system on a bounded domain Ω ⊂ Rd,
d = 2, 3, with Lipschitz boundary ∂Ω and over a finite time interval [0, T ]. For a
given force f : Ω × [0, T ] → Rd, the velocity u : Ω × [0, T ] → Rd and the pressure
p : Ω × [0, T ]→ R are related via the following system

ρ∂tu− 2div
(
µ∇Su

)
+∇p = f and div(u) = 0 in Ω × [0, T ], (1)

where ρ and µ are the fluid density and viscosity of the fluid assumed to be constant
(and positive) and ∇S := 1

2

(
∇+∇T

)
denotes the symmetric part of the gradient.

Relations (1) is supplemented by a boundary condition either prescribing the veloc-
ity or the force at the boundary. In order to simplify the presentation, we consider
homogeneous cases

u = 0 on ∂Ω × [0, T ] (2)

or
(2µ∇Su− p)ν = 0 on ∂Ω × [0, T ], (3)

where ν is the unit, outward pointing normal of ∂Ω. In addition, the initial velocity
u0 : Ω → Rd is prescribed, i.e. u(0, .) := u0. At this point, we note that the
extension to the Navier-Stokes system is treated similarly with the additional, but
well known, techniques used to cope with the additional nonlinearity.
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Most projection methods are based on the original ideas of Chorin [1] and
Temam [9], see also Goda [2]. We refer to [4] for an overview of projection methods.

In this work, we obtain two different results regarding the so-called incremental
pressure correction schemes studied for instance in [5–7,3]:

– The scheme proposed in [3] when the system is subject to open boundary condi-
tions, see (3), is suboptimal with respect to the time discretization parameter.
We propose and study a new scheme able to recover the optimal convergence
rate, see Figure 1.

– We analyze a new scheme allowing for variable time stepping. It turns out that
the straightforward generalization of constant time stepping to variable time
stepping is unstable, see Figure 2. To the best of our knowledge, projection
schemes with variable time stepping have not been studied in the literature.
Notice however, that no additional difficulty arises from having variable time
stepping in the non-incremental scheme setting.

Given a positive integer N , let 0 = t0 < t1 < t2 < · · · < tN = T be a subdivision
of the time interval [0, T ] and set δtn := tn − tn−1. The norm in L2(Ω) is denoted

by ‖.‖0 and we equip H1(Ω) with the norm ‖.‖1 :=
(
‖.‖20 + ‖∇.‖20

)1/2
. In addition,

given a sequence of function ϕδt := {ϕn}Nn=0, we define the following discrete (in
time) norms:

‖ϕδt‖l2(E) :=

(
N∑
n=0

δtn‖ϕn‖2E

)1/2

, ‖ϕδt‖l∞(E) := max
0≤n≤N

(‖ϕn‖E). (4)

for E := L2(Ω) or H1(Ω).

2 Optimal Incremental Projection Scheme for Open
Boundary problem

We consider the system (1) supplemented with the force condition at the bound-
ary (3) and focus on the case of uniform (constant) time steps, i.e. δt := T

N
= δtn,

n = 0, · · · , N . The case of variable time steps is discussed in Section 3. The approx-
imations of u(tn, .) and p(tn, .), n = 0, ..., N , are denoted un and pn respectively.
For clarity, we also denote by φn the pressure increment approximation, i.e.

pn = pn−1 + φn. (5)

Together with the initial condition on the velocity u0 = u0, the algorithm requires
initial pressure p(0) and we set p−1 := p0 := p(0), and so φ0 := 0. We seek
recursively the velocity un+1 and the pressure pn+1 in three steps. First, given un,
φn and pn, the velocity approximation at tn+1 is given by

ρ
un+1 − un

δt
− 2div(µ∇Sun+1) +∇(pn + φn)− α∇div

(
un+1 − un

δt

)
= f(tn+1, .),

(6)
in Ω, where α ≥ 1 is a stabilization parameter. As we shall see, the consistent
“grad-div” term is instrumental to ensure the stability of the scheme by providing
a control on ‖φn+1 − φn‖H1(Ω), i.e. the second increment of the pressure; see (13).
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Equation (6) is supplemented by the boundary condition(
2µ∇Sun+1 − (pn + φn) + αdiv

(
un+1 − un

δt

))
ν = 0 on ∂Ω. (7)

The second step consist in seeking the new pressure increment approximation φn+1

as the solution to

−δt∆φn+1 + δtφn+1 = −div(un+1) in Ω (8)

together with the boundary condition

∂

∂ν
φn+1 = 0 on ∂Ω. (9)

Finally, the new pressure approximation is then given by (5).
The novelty of this projection scheme is to impose a Neuman boundary condi-

tion on the pressure increment (and therefore on the pressure). Its aim is to reduce
the boundary layer on the pressure and improve the convergence rate. Compare
with [3] where a Dirichlet condition pn+1 = pn is proposed on the pressure. This is
at the expense of adding (i) an harmless zero order term δtφn+1 in (8) to be able
to recover the full l2(H1(Ω)) norm for the pressure and (ii) the more serious “grad-
div” stabilization term in (6), which complicates the linear algebra. Notice that
the boundary condition (9) proposed here corresponds to the standard boundary
condition when the velocity is imposed at the boundary; refer to [3].

We now briefly discuss the stability and error estimates for the scheme (6)-(9).

Theorem 1 (Velocity Stability). Set f ≡ 0 and assume α ≥ 1, then there holds

ρ‖uδt‖2l∞(L2(Ω)) + 4µ‖∇Suδt‖2l2(L2(Ω)) + α‖div(uδt)‖2l∞(L2(Ω)) + (δt)2‖pδt‖2l∞(H1(Ω))

≤ ρ‖u0‖20 + α‖div(u0)‖20 + (δt)2‖p0‖21

provided u0 ∈ L2(Ω)d, div(u0) ∈ L2(Ω) and p0 ∈ H1(Ω).

Proof. Multiplying (6) by 2δtun+1 and integrating over Ω one gets after integrating
by parts and using the boundary condition (7)

ρ
(
‖un+1‖20 + ‖un+1 − un‖20 − ‖un‖20

)
+ 4δtµ‖∇Sun+1‖20

+ α
(
‖div(un+1)‖20 + ‖div(un+1 − un)‖20 − ‖div(un)‖20

)
− 2δt

∫
Ω

(pn + φn)div(un+1)dx = 0.

(10)

The last term in the left hand side of the above relation is estimated upon multi-
plying (8) by 2δt(pn + φn) , integrating over Ω and using the boundary condition
(9)

−2δt

∫
Ω

(pn + φn)div(un+1)dx = 2(δt)2
∫
Ω

∇φn+1 · ∇(pn + φn)dx

+ 2(δt)2
∫
Ω

φn+1(pn + φn)dx.



4 A. Bonito, J.-L. Guermond, S. Lee

In view of (5), we write pn + φn = φn − φn+1 + pn+1 and realize that

−2δt

∫
Ω

(pn + φn)div(un+1)dx = (δt)2‖φn‖21 − (δt)2‖φn+1 − φn‖21

+ (δt)2‖pn+1‖21 − (δt)2‖pn‖21.
(11)

It remains to derive a bound for ‖φn+1 − φn‖1. Multiplying by φn+1 − φn the
difference of two successive relations (8) and integrating over Ω yield

δt‖φn+1 − φn‖21 = −
∫
Ω

div(un+1 − un)(φn+1 − φn)dx, (12)

after an integration by parts and taking advantage of the boundary condition (9).
Hence, we deduce that

δt‖φn+1 − φn‖1 ≤ ‖div(un+1 − un)‖0. (13)

Gathering the estimate (13), (11) and (10), we obtain

ρ
(
‖un+1‖20 + ‖un+1 − un‖20 − ‖un‖20

)
+ 4δtµ‖∇Sun+1‖20

+ α
(
‖div(un+1)‖20 − ‖div(un)‖20

)
+ (α− 1)‖div(un+1 − un)‖20

+ (δt)2
(
‖pn+1‖21 − ‖pn‖21 + ‖φn‖21

)
≤ 0.

The desired bound follows after summing for n = 0 to N − 1. ut
We emphasize that the above proof is closely related to the case where Dirichlet

boundary conditions are imposed on the velocity; refer for instance to [4,8]. The
difference resides on the fact that (13) can be circumvented using an integration
by parts in (12). Hence following the techniques developed for the Dirichlet case
together with the argumentation leading to (13) yields the optimal convergence
rates

max
n=1,...,N

‖u(tn, .)− un‖L2(Ω) +

(
N∑
n=1

δt‖∇S(u(tn, .)− un)‖2L2(Ω)

)1/2

+ α max
n=1,..,N

‖div(u(tn, .)− un)‖L2(Ω) +

(
N∑
n=1

δt‖p(tn)− pn‖2L2(Ω)

)1/2

≤ Cδt,

with a constant C independent of N and provided the exact velocity u and pressure
p satisfy the appropriate regularity conditions.

To illustrate the optimality of the proposed algorithm, we consider the exact
solution

u(t, x, y) :=

(
sin(t+ x) sin(t+ y)
cos(t+ x) cos(t+ y)

)
, p(t, x, y) = sin(t+ x− y)

defined Ω := (0, 1)2. The behavior of the errors in velocity and pressure approxi-
mations versus the time step δt used are depicted in Figure 1. Suboptimal order
of convergence O(δt1/2) is observed for the standard method while the optimal
order of convergence O(δt) is recovered using the proposed scheme. The space dis-
cretization is chosen fine enough not to interfere with the time discretization error.
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Fig. 1. Decay of different error norms versus δt for the original and modified
standard pressure correction projection method. Suboptimal order of convergence
O(δt1/2) is observed for the standard method while the optimal order of convergence
O(δt) is recovered using the proposed scheme.

3 Variable Time Stepping

We now consider variable time steps δtn satisfying

δtn ≤ δt, 1 ≤ n ≤ N,

for a positive constant δt independent of n. The incremental projection scheme
with variable time stepping reads as follow. Given un, φn and pn, the velocity
approximation at tn+1 is defined by the relation

ρ
un+1 − un

δtn+1 − 2div(µ∇Sun+1) +∇(pn +
(δt)2

δtnδtn+1 φ
n) = f(tn+1, .). in Ω (14)

For simplicity, we consider the boundary condition u = 0 on ∂Ω but the techniques
presented in Section 2 for the open boundary condition case apply in this context
as well. The pressure increment φn+1 solves

− (δt)2

δtn+1
∆φn+1 = −ρdiv(un+1) in Ω and

∂

∂ν
φn+1 = 0 on ∂Ω. (15)

Finally, the pressure is updated according to relation (5).
The standard pressure correction schemes are derived from the original velocity

prediction - projection scheme, see for instance [4]. When the same time step value is
used for the velocity prediction and correction, the factors multiplying the increment

φn in (14) and (15) becomes δtn

δtn+1 and δtn+1 instead of δt
2

δtnδtn+1 and δt
2

δtn+1 as in
the proposed scheme (14)-(15). This alternative is referred as the standard scheme
but we emphasize that there is no reason for the projection step to use the velocity
prediction time step as projection parameter. In fact, this choice turns out to be
numerically unstable as illustrated now. We consider the same setting as in Section
2 but with variable time steps given by

δtn = δt1 ×
{

1 when n is odd,
10−2 when n is even,

(16)
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for different values of δt1. In this case, we set δt := δt1. Figure 2 (left) illustrates the
unstable behavior of ‖un‖L2(Ω) for n = 0, ..., N when using the standard scheme
with δt1 = 0.025. However, the l2(H1(Ω)) and l∞(L2(Ω)) errors on the velocity
decay like δt when the proposed scheme (14) - (15) is used, see Figure 2 (right).
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Fig. 2. (Left) Evolution of ‖u(tn, .)‖L2(Ω) when using the standard scheme with
δt1 = 0.025 and δtn given by (16). (Right) Decay of the velocity and pressure
errors versus δt and with the time steps δtn given by (16) when using the proposed
scheme. The optimal order of convergence O(δt) is observed.

We now briefly discuss the stability and error estimates for the scheme (14)-(15).

Theorem 2 (Velocity Stability). Set f ≡ 0, and assume δtn ≤ δt, n = 1, .., N ,
then there holds

ρ‖uδt‖2l∞(L2(Ω))+4µ‖∇Suδt‖2l2(L2(Ω))+
1

ρ
(δt)2‖pδt‖2l∞(H1(Ω)) ≤ ρ‖u0‖20+(δt)2‖p0‖21

provided u0 ∈ L2(Ω)d and p0 ∈ H1(Ω).

Proof. Multiplying (14) by 2δtn+1un+1 and integrating over Ω one gets after inte-
grating by parts and using the boundary condition u = 0,

ρ
(
‖un+1‖20 + ‖un+1 − un‖20 − ‖un‖20

)
+ 4δtn+1µ‖∇Sun+1‖20

− 2

∫
Ω

(
δtn+1pn +

(δt)2

δtnδtn+1
φn
)

div(un+1)dx = 0.
(17)

The pressure increment relation (15) is invoked to derive a bound for the last term
in the left hand side of the above relation. More precisely, multiplying (15) by

2(δtn+1pn+ (δt)2

δtnδtn+1 φ
n) , integrating over Ω and using the boundary condition (9)

we realize that

− 2ρ

∫
Ω

(δtn+1pn +
(δt)2

δtnδtn+1
φn)div(un+1)dx

= 2(δt)2
∫
Ω

∇φn+1 · ∇pndx + 2

∫
Ω

∇
(

(δt)2

δtn+1
φn+1

)
· ∇
(

(δt)2

δtn
φn
)
dx.
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Relation (5) allows us to rewrite the right hand side of the above expression as

(δt)2
(
‖∇pn+1‖20 − ‖∇pn‖20 − ‖∇φn+1‖20

)
+

(δt)4

(δtn+1)2
‖∇φn+1‖20 +

(δt)4

(δtn)2
‖∇φn‖20 −

∣∣∣∣∣∣∣∣∇( (δt)2

δtn+1
φn+1 − (δt)2

δtn
φn
)∣∣∣∣∣∣∣∣2

0

.

Going back to (17), we get

ρ
(
‖un+1‖20 + ‖un+1 − un‖20 − ‖un‖20

)
+ 4δtn+1µ‖∇Sun+1‖20

+
1

ρ
(δt)2

(
‖∇pn+1‖20 − ‖∇pn‖20

)
+

1

ρ
(δt)2

(
(δt)2

(δtn+1)2
− 1

)
‖∇φn+1‖20

+
1

ρ

(δt)4

(δtn)2
‖∇φn‖20 =

1

ρ

∣∣∣∣∣∣∣∣∇( (δt)2

δtn+1
φn+1 − (δt)2

δtn
φn
)∣∣∣∣∣∣∣∣2

0

.

The difference of two successive relations (15) together with the boundary condition
un = un+1 = 0 on ∂Ω guarantee that∣∣∣∣∣∣∣∣∇( (δt)2

δtn+1
φn+1 − (δt)2

δtn
φn
)∣∣∣∣∣∣∣∣

0

≤ ρ‖un+1 − un‖0.

Hence, using the assumption δtn+1 ≤ δt,

ρ
(
‖un+1‖20 − ‖un‖20

)
+ 4δtn+1µ‖∇Sun+1‖20 +

1

ρ
(δt)2

(
‖∇pn+1‖20 − ‖∇pn‖20

)
+

1

ρ

(δt)4

(δtn)2
‖∇φn‖20 ≤ 0,

and the desired bound follows after summing for n = 0 to N − 1. ut
Regarding the error decay we have that under the assumption δtn ≤ δt, n =

1, .., N , there exists a constant C independent of n and δt such that

max
n=1,...,N

‖u(tn, .)− un‖L2(Ω) +

(
N∑
n=1

δtn‖u(tn, .)− un‖2H1(Ω)

)1/2

≤ Cδt,

provided u and p are smooth enough and δt is sufficiently small. The proof of the
above claim is omitted but relies on the argumentations provided in the proof of
Theorem 2. In addition, we emphasize that scheme (14) - (15) does not optimize
the choice of δtn in order to equi-distribute the time discretization errors and ex-
plain that the decay rate is dictated by δt (and not δtn, n = 1, ..., N). Including
such mechanism is out of the scope of this work. Moreover, the decay rate for the
l2(L2(Ω)) error on the pressure is still an open problem but the numerical results
provided in Figure 2 indicate an optimal rate.
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