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Enriched Galerkin finite elements for coupled poromechanics with
local mass conservation
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Abstract

Robust and efficient discretization methods for coupled poromechanical problems are critical to ad-
dress a wide range of problems related to civil infrastructure, energy resources, and environmental
sustainability. In this work, we propose a new finite element formulation for coupled poromechani-
cal problems that ensures local (element-wise) mass conservation. The proposed formulation draws
on the so-called enriched Galerkin method, which augments piecewise constant functions to the
classical continuous Galerkin finite element method. These additional degrees of freedom allow us
to obtain a locally conservative and nonconforming solution for the pore pressure field. The en-
riched and continuous Galerkin formulations are compared in several numerical examples ranging
from a benchmark consolidation problem to a complex problem that involves plastic deformation
due to unsaturated flow in a heterogeneous porous medium. The results of these examples show
not only that the proposed method provides local mass conservation, but also that local mass con-
servation can be crucial to accurate simulation of deformation processes in fluid-infiltrated porous
materials.

Keywords: enriched Galerkin method, finite element method, coupled poromechanics, local mass
conservation

1. Introduction

In porous materials such as soils and rocks, flow of the pore fluid can give rise to significant
deformation of the solid matrix, and vice versa. These poromechanical interactions are central
to many important problems that relate to civil engineering [1-6], energy resources [7-10], and
environmental sustainability [11-18]. Mathematically, a poromechanical problem is described by
a coupled system of two partial differential equations: (1) the linear momentum balance equation
which governs the solid deformation, and (2) the mass balance equation which governs the fluid
flow. Numerical methods for this coupled system is the focus of the present paper.

The continuous Galerkin (CG) finite element method is one of the most widely used meth-
ods to numerically solve a coupled poromechanical formulation (e.g., [19-38]). The use of the CG
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method for both mass and momentum balance equations has a number of desirable consequences,
including its capabilities for handling domains of complex geometry. However, it is well known that
the CG method does not guarantee local (element-wise) mass conservation in fluid flow problems,
which could lead to inaccurate solutions manifesting non-physical oscillations and/or sub-optimal
convergence [39-46]. This aspect is particularly critical for problems that involve markedly het-
erogeneous permeability fields, sharp interfaces between fluid phases, and coupling with transport
phenomena. Since these problems are common in real-world applications, one often needs a more
robust and accurate numerical method for coupled poromechanics.

Thus, a locally conservative method is necessary to address the aforementioned problems of
the CG method. Locally conservative methods that have been proposed, studied, and used in the
poromechanics literature include the finite volume method (e.g., [47-50]), the mixed finite element
methods (e.g., [51-54]), and the discontinuous Galerkin (DG) finite element methods (e.g, [55]).
Nevertheless, it still remains very challenging to obtain a high order and locally conservative so-
lution without adding significant costs to the CG method. For example, when a DG or a mixed
finite element method is used for the same mesh, the number of unknowns for the fluid flow prob-
lem can increase several times from its CG counterpart. Such a dramatic increase in the size of the
fluid flow problem can be detrimental to the applicability of computational poromechanics, since
the large number of unknowns for the solid deformation problem already give rise to significant
computational costs.

Over the past years, the enriched Galerkin (EG) finite element method has received growing
attention as a locally conservative method with substantially fewer degrees of freedom in compar-
ison with the DG method for a fixed mesh [56-58]. The EG method uses the same bilinear form
as the DG method, but it only adds piecewise constant functions to the finite element space of
the CG method. For the same polynomial order for approximations, the numerical solutions of
the EG and DG methods are very similar, and their optimal rates of error convergence are identi-
cal [57, 58]. In this regard, the EG method attains the salient advantages of the DG method with
minimal costs added to the CG method. Recently, a class of EG methods have been successfully
applied to flow and transport problems in porous media [59-62]. The performance and efficacy of
the EG method demonstrated in these studies appear to be promising for addressing the aforemen-
tioned challenges in computational poromechanics. Yet, to the best of our knowledge, the applica-
tion of the EG method to poromechanical problems has not been investigated in the literature.

In this paper, we introduce an EG finite element formulation for locally mass conservative solu-
tions of coupled poromechanical problems. The remainder of the paper proceeds as follows. After
brief review of the poromechanical formulation of interest, we develop its numerical approximation
whereby the mass balance equation is discretized by the EG finite element method. Subsequently,
we study the accuracy and performance of the proposed numerical method through numerical
examples ranging from a verification problem to a simple demonstration problem to a complex
engineering problem.

The following notations and symbols are used throughout: bold-face letters denote tensors and
vectors; the symbol “” denotes an inner product of two vectors (e.g., a - b = a;b;), or a single
contraction of adjacent indices of two tensors (e.g., ¢ - d = c;jdi); the symbol “:” denotes an inner
product of two second-order tensors (e.g., ¢ : d = ¢;;d;;). Following the standard mechanics sign
convention, stress is positive in tension and pressure is positive in compression.
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2. Poromechanical formulation

In this section, we briefly review the balance laws and constitutive models for poromechanics,
and state the initial-boundary value problem of our interest.

2.1. Balance laws

Using mixture theory we conceptualize an unsaturated porous material as a three-phase con-
tinuum composed of the solid matrix, water, and air. The derivation of balance laws for this type
of continuum mixture is well described in the literature (e.g., [25, 63, 64]), so it is not repeated
herein. We simply note that the following assumptions are made for arriving at a reasonably simple
mathematical model:
The mixture is under quasi-static condition.
The mixture is free of thermal, chemical, and other complicated effects.
The solid deformation is infinitesimal.

The solid and water phases are incompressible.

The air pressure is atmospheric (passive air condition).

AN A

The solid and fluid phases do not exchange their masses.

These assumptions are realistic for most problems in shallow subsurface systems. It is noted that
the assumption of constant air pressure allows us to neglect the balance of air mass in unsaturated
flow, as in the Richards equation.

The coupled poromechanical process is described by two balance laws. The first balance law is
for the linear momentum of the mixture, given by

V-o+pg=0, )]

where o is the total stress in the mixture, p is the density of the mixture, and g is the gravitational
acceleration vector. The mixture density p can be calculated as p = (1 - ¢)p; + ¢p,,, where ¢ is
the porosity, and p, and p,, are the density of the solid and water phases, respectively. The second
balance law is for the mass of the pore water, which can be written as

$S+SV-u+v-q=0, 2)

where § is the water-phase saturation, u is the solid displacement vector, and g is the seepage flux
vector. The overdot denotes the material time derivative following the motion of the solid matrix.

2.2. Constitutive models

To close the formulation, we introduce three types of constitutive models. The first type is for the
solid deformation response. We postulate that the principle of effective stress holds for unsaturated
porous materials, and adopt the following form of the effective stress tensor o’

o=0-Spl, (3)
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where p is the pore water pressure. Notably, this form of effective stress has been shown to be
thermodynamically consistent in the sense that it is energy-conjugate to the rate of deformation
tensor of the solid matrix [64]. Then we introduce an effective stress—strain relation for the solid
matrix, given by

o =C:¢. (4)
Here, € is the infinitesimal strain tensor, which is related to u as
s 1 T
£:=V u:E(Vu+V u), (5)

where V* denotes the symmetric gradient operator. Also, C is the fourth-order tensor of tangent
moduli whose specific form depends on the constitutive model for solid deformation. The tangent
moduli of common elastoplastic models are explained in [65-67]. It is noted that the above stress—
strain relation (4) is expressed in a rate form to include a nonlinear constitutive model such as an
elastoplastic model.

The second type of constitutive model is introduced for the seepage flow. Here we use the mul-
tiphase extension of Darcy’s law, written as

k. k
Hw

q=——"—-(Vp-pug), (6)
where k,,, is the relative permeability of the water phase, y,, is the the dynamic viscosity of water, and
k is the absolute permeability tensor. In case of isotropic permeability, k reduces to a scalar k; such
that k = k;1. For notational convenience, we define a lumped permeability tensor & := (k,,,/ . ) k.

Lastly, for unsaturated cases, we introduce a constitutive model that links the water saturation
with the pore water pressure. Our particular choice is the van Genuchten model [68], which can be
expressed as

S=8+(S:-S)[1+ (=p/sa)*]", (7)

where §; and S, are the residual and maximum saturations, respectively, s, is the scaling suction,
and a and b are the exponent parameters in the van Genuchten model. These exponent parameters
are related as b = (a — 1)/a. The van Genuchten parameters can also be used for determining the
relative permeability as follows:

Ky = SYP[1= (1= SY")PT2, S, =(S-8)/(S:-S1). (8)

Once the above constitutive models are inserted into the two balance equations (1) and (2), the
problem has two unknowns, namely the solid displacement u and the pore pressure p. This leads
to the so-called u/p formulation described in the following.



2.3. Initial-boundary value problem statement

We now state an initial-boundary value problem for the coupled poromechanical process. Let
Q € R4 denote the domain in the d-dimensional space, which is a bounded polygon (for d = 2) or
polyhedron (for d = 3) with Lipschitz boundary 0Q). The boundary is suitably decomposed into
displacement and traction boundaries, 9Q),, and 9Q);, for the solid deformation problem, and pres-
sure and flux boundaries, 92, and 0}, for the fluid flow problem. The decomposed boundaries
satisfy Q) = 0Q, U 0Q); = 0Q), UIQ, and @ = 9Q, N IQ; = 9Q, N Q. The time interval of the
problem is denoted by ¥ := (0, T'] with T > 0.

The strong form of this problem is as follows. Given #, £, p, §, 4, and py, find u and p such that

V-(o'(u)-S(p)pl) +pg=0 in QxF, 9)
¢S(p) +S(p) V-i-V-(x(p)-(Vp-pug))=0 in QxT, (10)

subject to boundary conditions (n is the unit outward normal vector)

u=u on 0O, x%, 11)
n-o(u)=t on 9Q;x%T, (12)
p=p on 0Q,x%, (13)
n-(k(p)-(Vp-pwg))=4 on 0Q;xT, (14)
and initial conditions
u=uy(x), p=po(x), (15)

for all position vectors x € () at time f = 0.

Remark 1. Alternative formulations for poromechanics. The foregoing two-field u/p formulation is
perhaps the most widely used formulation for coupled poromechanics. Nevertheless, there exist
several other types of poromechanical formulations in which different fields are primary variables
(e.g., [51-54, 69,70]). A notable example is the three-field u/q/p formulation, whereby lowest order
Raviart-Thomas and piecewise constant spaces are used for the approximation of the seepage flux
vector q and the pore pressure p, respectively. The three-field mixed formulation provides local
mass conservation by construction. However, it also has a couple of potentially undesirable aspects.
First, since the three-field formulation approximates the seepage flux vector as an additional field,
it can be significantly more expensive than the two-field formulation especially for 3D problems.
Second, the three-field formulation may not be well posed for undrained poromechanical problems
because it uses the inverse of the permeability tensor in the governing equation. As such, it is still
worthwhile to develop a locally mass conservative method for the two-field u/p formulation.

3. Numerical Methods

In this section, we develop a finite element formulation for the poromechanics problem that uses
the EG method to discretize the mass balance equation in a locally conservative manner. We begin
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this section with a description of the EG finite element method. We then apply the EG method to
space discretization of the mass balance equation (2) in a locally conservative manner. For com-
pleteness, we then describe the space discretization of the momentum balance equation, the time
discretization of the mass balance equation, and the fully discrete form of the poromechanical prob-
lem. Lastly, iterative solution strategies for the resulting discrete system are briefly discussed.

3.1. Enriched Galerkin finite element method

Let 7, be a shape-regular (i.e., satisfying the minimum angle condition, see Ciarlet [71]) family
of elements T partitioning (2. We denote by hy the diameter of T, and define h := maxrey; hr.
Each element has edges (in 2D) or faces (in 3D) at its boundaries, which are commonly referred to
as edges hereafter. Let £, be the set of all element edges, which is decomposed into the set of internal
edges £ and the set of boundary edges £7. The set of boundary edges is further decomposed into
& = S,fp U 8,? 1, where E,?p is the set of edges at the Dirichlet type pressure boundary and 8;? % is the
set of edges at the Neumann type flux boundary.

The discrete space of the EG finite element approximation is set up as follows. First, we define
the space of piecewise discontinuous polynomials of degree k as

VOO (Th) = {y e L2(Q) 1 y|r e Qu(T), YT € Ty}, (16)

where L2(Q) is the space of square integrable functions and Q is the space of polynomials of degree
at most k. For example, V' (7;,) is the space for piecewise constant approximation, and V% (T;)
is the space for the linear DG approximation. Next, let VhCGk (Tu) be the subspace of VE ()
consisting of piecewise continuous polynomials (C°), i.e.,

VES(Ty) = VPO (Th) n C(Q). (17)

Accordingly, th ©4(75) is the space for the CG approximation with k-th degree polynomials. Then,
the space for the EG discretization, VhE ©, is defined as

Vi (Th) = Vi (Th) + VPO (Th). (18)

In words, the EG space with k-th degree polynomials is constructed by adding (enriching) the
piecewise constant functions to the CG finite element space. Figure 1 comparatively illustrates the
degrees of freedom of the bilinear CG, DG, and EG methods for discretization of a 2D domain
by four quadrilateral elements. It is noted that, for a sufficiently large number of elements, the
degrees of the freedom for VfGl (Tn) are approximately 1/2 (in 2D) and 1/4 (in 3D) of the degrees of
the freedom of VE G (Tw)- See [57, 58] for more details of the EG method including mathematical
analyses.

In this work, we use weighted interior penalty methods (e.g., [58, 72]) to construct the varia-
tional formulation of the mass balance equation. For this purpose, we define averages and jumps
of scalar and vector functions on &,. For an interior edge e € £, we denote by T* and T~ the two
elements sharing it, and by n* and n~ their respective outward unit normals. Let { and 7 be a scalar
field and a vector field, respectively, and {* = {|7- and 7* = 7|7+. For e € £, we define the weighted
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: e 1 e

@ I ) I )
(a) CG-Qy (b) DG-Qy (c) EG-Qq

Figure 1: Comparison of the degrees of freedom for a 2D Cartesian grid (Q;) with linear CG, DG and EG approxima-
tions. In (c), the degrees of freedom in the middle of the elements indicate piecewise constant functions enriched to
the finite element space of the CG method.

averages as
{(}s, =0:.0"+(1-6.) and {r}s, =08.7"+(1-9,.)717, (19)

where §, € [0,1] is the weight. Next, we define the jumps as
[{]=Cn"+{n and [r]]=7"n"+7 -n". (20)

Note that the jump of a scalar quantity is a vector, whereas the jump of a vector quantity is a scalar.
We also define the average and jump terms at the boundary as

[(N=¢n and {z}s5, =7, Veel’. (21)

The weight J, in the average operator {-}5, may be chosen at one’s discretion. Here we adopt the
choice of [60], given by

K
6e = e = € 5 22
/5 Ki+K; (22)
where
kI=(m)T-x"-n" and «,:=(n")" -k -n*, (23)

with &* := k|r=. It is noted that the weight value varies over interior edges unless the permeability
is homogeneous throughout the domain. We also define «, = 2k}« /(x} + k}), i.e., the harmonic
mean of k" and «;, and use it to scale interior penalty terms.

3.2. Space discretization of the mass balance equation

We now discretize the mass balance equation in space using the EG method. Let us denote
the EG finite element space approximation of the pressure p(x,t) by p, = pn(x,t) € VhEG" (Tw).
Since the saturation S(x, t) and the lumped permeability tensor x(x, t) are functions of pressure,
we also denote their EG approximations by Sj, := Sj,(x,t) € VhEG" (Tn) and k), == &, (-, t) € VhEG" (Tw)s
respectively. We assume that #(x, t) is given for now. Denoting the variations of the trial pressure

7



solutions by y € V;IE ©¢(Ty,), the semi-discrete variational form of (10) is stated as
> f Y(¢pSh+ Sy Vi) dV + Y
TeTy, TeTy

= Y [l o (Vpn - pug)}i da

o ap e
eeEpuUE,

¢ ¥ 0 [Ipl-oevyladar Y o [lyD-[p]da

'[TVII/'Kh'(VPh—ng)dV

eeé';ué‘;jp eegﬁugfp
. ] \
- % 0 [pn-(xivwyda- X o [ [yl (pn)da
eES}?P ¢ eeg}?" ‘
S [tases, voortem "
eegiq ¢

The use of interior penalty methods has introduced three new parameters in the above equation:
(1) the edge length h¢, which is defined as h° := (meas(T*) +meas(T~))/2meas(e), (2) the penalty
parameter «, which is a function of the polynomial degree k, and (3) the penalty method param-
eter 6, which leads to the symmetric interior penalty Galerkin method (SIPG) when 6 = -1, the
incomplete interior penalty Galerkin method (IIPG) [73, 74] when 6 = 0, and the non-symmetric
interior penalty Galerkin method (NIPG) [75] when 6 = 1. In this work, we use the IIPG method.

Remark 2. Conservation properties. The discrete variational form (24) is both locally and globally
conservative. To investigate the conservation properties, we define the discrete flux vector, q,, as

4, =% (Vi —pug), VTeTh, (25)
a4y 1= ~{xn - (Vpu— pug) -n} + (a/h)[pal], Veeks, (26)
a4, 1= %, (V py — pug) -0 + (a/h)(py— p), Vee&r, (27)
q, n=-q4, Vee&H, (28)

where n¢ is the outward normal vector at the edge e. When e is a boundary edge, n° coincide with
the boundary normal vector n. To extract the local mass conservation property, we set  as 1in an
element T and as 0 elsewhere. Then, (24) becomes

/(¢Sh+8hv-i¢)dV+Z q, n°dA=0, VTeT,. (29)
T

ecdT ¥ ¢

It is noted that CG discretization cannot attain this local conservation property since it does not
allow y to be 1 exclusively inside an element. Another important characteristic that enables local
mass conservation is the weak enforcement of Dirichlet boundary conditions. Moreover, to show
that gq,, is globally conservative, we take y = 1 throughout the domain and obtain

/(¢Sh+8hv~a)dV+/ q, ndA=0. (30)
Q 0Q

8



Therefore, the EG discretization provides mass conservation in the entire domain as well as every
single element.

Remark 3. DG discretization. The variational form (24) can also be used for an interior penalty
DG discretization of the same problem. The only change is that the solution and variation spaces
become V,? ©¢(T4), instead of VE ¢(Th). As such, the EG and DG discretization methods have the
same conservation properties.

Remark 4. Penalty parameter. The penalty parameter « in (24) comes from the weighted interior
penalty method, and it has been studied extensively in the DG literature. In essence, the value of
a controls the amount of inter-element continuity added to perfectly discontinuous elements. If «
is too small, the discretized system would be unstable. Conversely, too large an « would enforce
excessive inter-element continuity, rendering the discrete system very close to that from the CG
discretization of the same problem. In our numerical results, @ ~ 100 is a good choice. Readers
interested in this aspect are referred to [76-78] and references therein.

Remark 5. Decomposition into CG and piecewise constant DG parts. As shown in (18), the EG space
is constructed by addition of the CG space and the piecewise constant DG space. Accordmgly, the

trial solutions and variations discretized by the EG method, p, € VEG"(E) and v € V “(Tw)
respectively, are additively decomposed as
pr=py+ o and oy =yCoayPo, (31)

where pgc" , Ytk € VhCGk (75) and p, yPG € VP (Ty). Inserting (31) into (24), one can identify
terms that are augmented to the standard CG formulation. It should be noted that many of these
new terms indeed vanish due to the characteristics of piecewise continuous polynomials ()% and
piecewise constants (-)PC. Specifically, since continuous polynomials do not have jump across
edges, [[y“C<]] = [[p*®<]] = 0, and since yP% and pP® are constant in each element, vV yP% =
V pPC = 0. Canceling these terms out remarkably simplifies the variational formulation. It is also
noted that V y # 0 since V ¢/ = 0.

Remark 6. Number of unknowns. Detailed comparisons of the number of unknowns for CG, DG,
and EG methods are presented in [57, 58] for both a structured rectangular mesh and an unstruc-
tured triangles/tetrahedra mesh in 2D and 3D. For example, for a given N x N 2D rectangular mesh,
the number of unknowns for linear CG, DG, and EG are (N +1)?, 4N?, and (2N +1)?, respectively.
When the mesh size (h) and polynomial order (p) are identical, the three methods have the same
optimal order of error convergence, although their specific errors may vary. Since our focus is local
mass conservation, the proposed EG formulation will be compared with the CG formulation which
is widely used for poromechanics and does not provide local mass conservation. The comparison
will be made for fixed 4 and p, because local mass conservation in poromechanics is particularly
motivated for heterogeneous problems of which spatial discretization is likely to be governed by
the length scale of heterogeneity. For homogeneous problems, it may be advantageous to use larger
elements with higher-order approximations to get a numerical solution of similar accuracy. Note,
however, that other factors such as iterative solvers and the number of Gauss points (for plasticity
problems) also determine the overall computational cost. As always, the selection of an optimal nu-
merical method does not have a definite answer and it is at the discretion of the numerical analyst.
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The primary purpose of this work is to introduce EG as a local mass conservative method involving
fewer unknowns than DG for the same 4 and p.

3.3. Space discretization of the linear momentum balance equation

As for discretization of the balance of linear momentum equation (9), we use the CG method
since it is good enough for the deformation problems of our interests. For the CG discretization,
we define the finite element spaces for using continuous piecewise polynomials:

Wy (Th) = {n e CY(Q) : qlr e Qu(T), YT € Ty}, (32)
WE(T) = {n e CO(Q) s 1= 0,4l € Qu(T), VT €Ty} (33)

Let us denote the CG finite element space approximation of the displacement vector u(x,t) by
uy = up(x,t) € th 4(T5). Accordingly, the discretized effective stress tensor is denoted by o).
Following the standard procedure, we can express the discrete variational form of the balance of
linear momentum as

—/VSnO'ZdV-i-fShphVﬂdV
Q Q

+/n-png+./; n-tdA=0, VyeW S (Th). (34)
Q Q¢

The rest of the CG discretization procedure is straightforward, and its details can be found in [79]
and many others.

Remark 7. Inf-sup stability. It is well known that mixed finite elements for coupled poromechanics
are subject to an inf-sup stability condition in the limit of undrained deformation [19, 27, 31, 32].
This is because, during undrained deformation, the pore pressure acts as an incompressibility con-
straint, rendering the discrete system a saddle point problem much like that of mixed finite ele-
ments for Stokes problems. Notably, Taylor-Hood elements [80] have been proven to satisfy the
inf-sup condition of mixed CG/EG elements for velocity/pressure discretization of Stokes flow
problems [81]. On the other hand, when the fluid flow is compressible (e.g., in the drained or un-
saturated condition), the discrete problem does not have a saddle point structure and so the mixed
finite elements are not restricted by a stability condition. In such cases, equal-order elements may be
an efficient choice for obtaining a pressure solution of the same order of accuracy. Therefore, in this
work we use Taylor-Hood elements when the problem of interest involves undrained deformation,
and use equal-order elements when it does not.

3.4. Time discretization of the mass balance equation

The variational mass balance equation (24) contains the time derivatives of u; (after the CG
discretization as described above) and S;,. To discretize these variables in time, we use the implicit
Euler method. For a given time increment At := t"*! — t” from time ¢" to t"*!, the time derivatives
of these variables are approximated as

un+1 —y" . Sn+1 —Sn
2 % and §,=2h 0
At At
10

uy , (35)



where (-)"*! and ()" denote the quantities at time ¢"*! and #", respectively. It is noted that the
saturation variable is discretized directly, not after being expanded by the chain rule as § = §'(p)p.
This is because the use of §’'(p) in a time-discrete setting can lead to large mass balance errors, see
Celia et al. [82]. We complete the time discretization by inserting (35) into (24), and evaluate all
other variables in (24) and (34) at time t"*!. We also multiply the discrete mass balance equation
by At, as common in the discretization of poromechanical formulations (e.g., [27, 32]).

3.5. Fully discrete form of the poromechanical formulation

Now we write the fully discrete form of the poromechanical problem. Let """, A p™*1, and

§"*! be approximations of it(x, t"*1), t(x, t"*1), p(x, t"*), and §(x, t"*), respectively. We also set
the initial condition for the pressure as p9 := IIE¢ p(x, 0), where ITEC is the interpolation operator

for the EG space V ©¢(75) [58]. Then the discrete problem reads as follows: Given u” »and p}, find
(upt, pitt) e WCG"(E) x VEG"(E) such that

AW ppty) = F( ), Y (g, y) e WS (Th) x VES(Th) (36)

where A is the bilinear form, defined as

A(up*, it y) = a(up™, q) + b(pi™m) + c(up ™ y) +d(piy), (37)
with
n+1 — _ Sy - n+l1
a(uy™,n) = /QV n:o)dv, (38)
b(pym) = [ Sppy v endv, (39)
)= Y, [ ySiv- (- up)av, (40)
Te7],
d(py )= 3 [ ye(Sit-spave ¥ At [ Tyespt (o - pg)dv
TeTy TeT,
- % o [Tyl (6 (V5 - pg) s, da
ecEoUEN
o 8 a0 [[pp]- {7 Tyhs, da
ee&; USaP
¢ Y At [ vl oy T da, (41)
= Ué‘aP

and F is the linear functional, defined as

F(n,y) = f(n) +g(v), (42)

11



with

— _ . _ ‘An+1
f(n) = /Qn pgdV fmtn t dA (43)
g)= ) At@fﬁ”“n-(xﬁ“-vw)dA
eeE;?P €
(04
+ At — Ke : A’H—ll’l dA
z o [ ke Lyl ()
+ 2, At f y§" dA. (44)
eeé‘;?q ¢

3.6. Solution strategy

To solve the discrete problem (36), we use Newton’s method since the problem is nonlinear
unless the material is fully saturated and linear elastic. In each Newton iteration, one must solve the
following Jacobian system that emanates from the linearization of (36):

]uu ]up 6uh _ Ru ' (45)
Jpu  Top Spn R,

Here, duj, and §p; denote Newton increments of the displacement and the pressure unknowns,
respectively. The residual vectors on the right hand side are defined as

R, =a(uy™,n) +b(piin), (46)
Ry :=c(up,y) +d(pitsv). (47)

Accordingly, the sub-matrices of the Jacobian matrix are given by

Ayt ac(upy)

_ da(uy™,n) i
_ i

uu - n+l >
ou;

_9d(ppy)

, u- ) = 48
apzﬂ p auz-H ]PP apzﬂ ( )

The closed forms of these sub-matrices are obtained through a straightforward extension of those
in CG formulations (see [28, 34] for example). The exact Jacobian matrix is used in this work.
However, efficient solution of this linear system is a significant challenge, which still remains an
active area of research. Broadly speaking, strategies for fully coupled numerical solution of discrete
poromechanical problems can be categorized into two classes: (1) monolithic methods which solve
the solid deformation and fluid flow problems simultaneously, and (2) sequential methods which
solve either the deformation or the flow problem until the coupled solution converges. The sequen-
tial methods allow for efficient combination of separate computer programs originally developed
for either the fluid flow or the solid deformation problem, with a good convergence behavior when
an appropriate split method is employed [48, 83]. However, as shown by White et al. [36], when
proper preconditioning is used, a monolithic method has superior performance to a sequential
method. Here we use the block-preconditioned monolithic method described in [28, 36], which
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solves the linear system via two sequential steps of preconditioned Krylov iterations with multigrid
preconditioners. The tolerances for both the Newton and Krylov iterations are set as 10~°.

We also note that the block-preconditioning approach may be extended further to solve the
EG-discretized pressure system more efficiently. The reason is that the pressure block can also have
a nested 2 by 2 block structure owing to the decomGposition of the EG space into the CG space and
the piecewise constant DG space, namely p, = p; f p,E)G". In this case, the Jacobian system (45)

can be expanded to

]uu ]E]:;Gk ]EPGO 5uh Ru

ot T TN OpS =g RS (49)
Go/CG Gy /DG

AR I Ry

as if pgc" and pr“ were distinct field variables in the formulation. Indeed, exploiting such a block

structure in EG discretization, Lee et al. [58] have proposed efficient iterative solvers for EG methods
for flow and transport in porous media. We believe that the same approach can be cast into block-
partitioned solvers for poromechanics. For now, we leave this extension as a future research topic,
and use the existing poromechanics solver.

4. Numerical Examples

Three numerical examples are presented in this section to study the accuracy and performance
of the proposed numerical method. The first example verifies the numerical method using a well-
known benchmark problem in poromechanics. The second and third examples demonstrate the
performance and robustness of the proposed EG method in comparison with the classical CG
method. In these examples, while the pressure field is approximated by different methods, the dis-
placement field is commonly approximated by the CG method. Therefore, for brevity, we shall
simply mention the numerical method for the pressure field approximation when comparing the
results of different numerical methods. For example, the mixed CG/EG discretization of the dis-
placement/pressure fields will be referred to as “EG.”

The numerical examples are performed using Geocentric, a massively parallel finite element
code for geomechanics built upon the deal . IT finite element library [84, 85], p4est mesh handling
library [86], and the Trilinos project [87].

4.1. Terzaghi’s 1D consolidation problem

To verify the numerical formulation and its implementation, we first consider the analytical
solutions for the classical Terzaghi’s 1D consolidation problem. Figure 2 illustrates the setup of this
problem. The material is homogeneous, linear elastic, isotropic, and fully saturated throughout the
consolidation process. To express the analytical solution for pore pressure, we define the following
non-dimensional quantities:

*_B *:i - i
p_W, z 0’ t ( )t. (50)
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Here, p is the pore pressure, w is the distributed load at the drainage boundary, z is the distance from
the drainage boundary, H is the domain thickness, ¢ is time, and ¢, is the coefficient of consolidation.
One can express ¢, in terms of the bulk modulus K, Poisson’s ratio v, the isotropic permeability k;,
and the fluid dynamic viscosity y, as

c, =3K(1_—V) ki (51)
1+v Y

Then the analytical solution for pressure can be written as

pr(z )= > % sin(Mz*)e™ | M =n(2m +1)/2. (52)

m=0

For this specific example, we assign H = 1 m, w = 1 kPa, the isotropic permeability k; = 1072 m?, the
dynamic viscosity y = 107¢ kPa-s, the bulk modulus of 1000 kPa, and Poisson’s ratio of 0.25. These
values give the coefficient of consolidation ¢, = 0.0018 m?/s.

w

NN

Z€ro pressure

no flow

Figure 2: Setup of the 1D consolidation problem.

Using this analytical solution for the consolidation problem, we examine whether the proposed
EG formulation manifests the expected convergence rates upon mesh refinement. For this purpose,
we first solve this problem using the proposed EG method, with & = 0.1 m (10 uniform quadrilateral
elements) and At = 0.01¢* s. The EG solutions of the pore pressure fields at t* = 0.05, 0.1, 0.25, and
0.5 are presented in Fig. 3 along with the corresponding analytical solutions.

We then perform an error convergence test with respect to the analytical solution (52) at t* =
0.1. For comparison, we also conduct the same convergence test with the classical CG method.
Both of the EG and CG methods use bilinear basis functions (Q,) for the mass balance equation,
whereas they discretize the momentum balance equation by CG-Q, elements (i.e., Taylor-Hood
elements) since several initial steps may involve undrained conditions. For each of the errors p - p;,
of the EG and CG solutions, we compute the L?(Q)-norm | p — py [ 12(q) and the H'(Q)-seminorm
|p = Pul(a)- To isolate the spatial errors, we reduce the time step size by 1/4 while reducing the
mesh size by 1/2.

Table 1 shows the L?(Q)-norm and H'(Q)-seminorm errors of the numerical solutions with
respect to the mesh size. The expected optimal order of convergences are observed for both EG and
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Figure 3: Analytical solutions for pressure in the 1D consolidation problem and their numerical approximations by
EG-Q; with & = 0.1 m and At = 0.01¢* s. Numbers next to the lines denote ¢*.

CG solutions (i.e., 2 in the L?>-norm and 1 in the H'-seminorm). The results confirm that the EG
method also provides optimal solutions when the CG method does. We refer to Lee et al. [58] for
the analysis of EG methods for general elliptic and parabolic equations.

EG CG
ho/h | L? error Rate H'error Rate | L?error Rate H'error Rate
1 2.18e-03 - 2.04e-02 - 2.15e-03 - 2.04e-02 -

2 556e-04 2.0 9.02e-03 12 | 549e-04 2.0 9.02e-03 12
4 1.40e-04 2.0 4.35e-03 11 | 1.38e-04 2.0 4.35e-03 11
8 3.50e-05 2.0 2.15e-03 1.0 | 3.45e-05 2.0 2.15e-03 1.0

Table 1: Convergence test results of the 1D consolidation problem with the EG and CG methods.

4.2. 1D consolidation of a two-layered material

The purpose of the second example is to con