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Enriched Galerkin �nite elements for coupled poromechanics with
local mass conservation

Jinhyun Chooa,∗, Sanghyun Leeb

aDepartment of Civil Engineering,�e University of Hong Kong, Pokfulam, Hong Kong
bDepartment of Mathematics, Florida State University, Tallahassee, FL 32306, United States

Abstract

Robust and e�cient discretizationmethods for coupled poromechanical problems are critical to ad-
dress a wide range of problems related to civil infrastructure, energy resources, and environmental
sustainability. In this work, we propose a new �nite element formulation for coupled poromechani-
cal problems that ensures local (element-wise)mass conservation.�e proposed formulation draws
on the so-called enriched Galerkin method, which augments piecewise constant functions to the
classical continuous Galerkin �nite element method.�ese additional degrees of freedom allow us
to obtain a locally conservative and nonconforming solution for the pore pressure �eld. �e en-
riched and continuous Galerkin formulations are compared in several numerical examples ranging
from a benchmark consolidation problem to a complex problem that involves plastic deformation
due to unsaturated �ow in a heterogeneous porous medium. �e results of these examples show
not only that the proposed method provides local mass conservation, but also that local mass con-
servation can be crucial to accurate simulation of deformation processes in �uid-in�ltrated porous
materials.
Keywords: enriched Galerkin method, �nite element method, coupled poromechanics, local mass
conservation

1. Introduction

In porous materials such as soils and rocks, �ow of the pore �uid can give rise to signi�cant
deformation of the solid matrix, and vice versa. �ese poromechanical interactions are central
to many important problems that relate to civil engineering [1–6], energy resources [7–10], and
environmental sustainability [11–18]. Mathematically, a poromechanical problem is described by
a coupled system of two partial di�erential equations: (1) the linear momentum balance equation
which governs the solid deformation, and (2) the mass balance equation which governs the �uid
�ow. Numerical methods for this coupled system is the focus of the present paper.

�e continuous Galerkin (CG) �nite element method is one of the most widely used meth-
ods to numerically solve a coupled poromechanical formulation (e.g., [19–38]).�e use of the CG
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method for both mass and momentum balance equations has a number of desirable consequences,
including its capabilities for handling domains of complex geometry. However, it is well known that
the CGmethod does not guarantee local (element-wise) mass conservation in �uid �ow problems,
which could lead to inaccurate solutions manifesting non-physical oscillations and/or sub-optimal
convergence [39–46]. �is aspect is particularly critical for problems that involve markedly het-
erogeneous permeability �elds, sharp interfaces between �uid phases, and coupling with transport
phenomena. Since these problems are common in real-world applications, one o�en needs a more
robust and accurate numerical method for coupled poromechanics.

�us, a locally conservative method is necessary to address the aforementioned problems of
the CG method. Locally conservative methods that have been proposed, studied, and used in the
poromechanics literature include the �nite volumemethod (e.g., [47–50]), the mixed �nite element
methods (e.g., [51–54]), and the discontinuous Galerkin (DG) �nite element methods (e.g., [55]).
Nevertheless, it still remains very challenging to obtain a high order and locally conservative so-
lution without adding signi�cant costs to the CG method. For example, when a DG or a mixed
�nite element method is used for the same mesh, the number of unknowns for the �uid �ow prob-
lem can increase several times from its CG counterpart. Such a dramatic increase in the size of the
�uid �ow problem can be detrimental to the applicability of computational poromechanics, since
the large number of unknowns for the solid deformation problem already give rise to signi�cant
computational costs.
Over the past years, the enriched Galerkin (EG) �nite element method has received growing

attention as a locally conservative method with substantially fewer degrees of freedom in compar-
ison with the DG method for a �xed mesh [56–58]. �e EG method uses the same bilinear form
as the DG method, but it only adds piecewise constant functions to the �nite element space of
the CG method. For the same polynomial order for approximations, the numerical solutions of
the EG and DG methods are very similar, and their optimal rates of error convergence are identi-
cal [57, 58]. In this regard, the EG method attains the salient advantages of the DG method with
minimal costs added to the CG method. Recently, a class of EG methods have been successfully
applied to �ow and transport problems in porous media [59–62].�e performance and e�cacy of
the EGmethod demonstrated in these studies appear to be promising for addressing the aforemen-
tioned challenges in computational poromechanics. Yet, to the best of our knowledge, the applica-
tion of the EG method to poromechanical problems has not been investigated in the literature.
In this paper, we introduce an EG �nite element formulation for locally mass conservative solu-

tions of coupled poromechanical problems.�e remainder of the paper proceeds as follows. A�er
brief review of the poromechanical formulation of interest, we develop its numerical approximation
whereby the mass balance equation is discretized by the EG �nite element method. Subsequently,
we study the accuracy and performance of the proposed numerical method through numerical
examples ranging from a veri�cation problem to a simple demonstration problem to a complex
engineering problem.

�e following notations and symbols are used throughout: bold-face letters denote tensors and
vectors; the symbol “⋅” denotes an inner product of two vectors (e.g., a ⋅ b = aibi), or a single
contraction of adjacent indices of two tensors (e.g., c ⋅ d = ci jd jk); the symbol “∶” denotes an inner
product of two second-order tensors (e.g., c ∶ d = ci jdi j). Following the standard mechanics sign
convention, stress is positive in tension and pressure is positive in compression.
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2. Poromechanical formulation

In this section, we brie�y review the balance laws and constitutive models for poromechanics,
and state the initial-boundary value problem of our interest.

2.1. Balance laws
Using mixture theory we conceptualize an unsaturated porous material as a three-phase con-

tinuum composed of the solid matrix, water, and air. �e derivation of balance laws for this type
of continuum mixture is well described in the literature (e.g., [25, 63, 64]), so it is not repeated
herein. We simply note that the following assumptions are made for arriving at a reasonably simple
mathematical model:

1. �e mixture is under quasi-static condition.
2. �e mixture is free of thermal, chemical, and other complicated e�ects.
3. �e solid deformation is in�nitesimal.
4. �e solid and water phases are incompressible.
5. �e air pressure is atmospheric (passive air condition).
6. �e solid and �uid phases do not exchange their masses.

�ese assumptions are realistic for most problems in shallow subsurface systems. It is noted that
the assumption of constant air pressure allows us to neglect the balance of air mass in unsaturated
�ow, as in the Richards equation.

�e coupled poromechanical process is described by two balance laws.�e �rst balance law is
for the linear momentum of the mixture, given by

∇ ⋅ σ + ρg = 0 , (1)

where σ is the total stress in the mixture, ρ is the density of the mixture, and g is the gravitational
acceleration vector. �e mixture density ρ can be calculated as ρ = (1 − ϕ)ρs + ϕρw , where ϕ is
the porosity, and ρs and ρw are the density of the solid and water phases, respectively. �e second
balance law is for the mass of the pore water, which can be written as

ϕṠ + S∇ ⋅ u̇ +∇ ⋅ q = 0 , (2)

where S is the water-phase saturation, u is the solid displacement vector, and q is the seepage �ux
vector.�e overdot denotes the material time derivative following the motion of the solid matrix.

2.2. Constitutive models
To close the formulation, we introduce three types of constitutivemodels.�e �rst type is for the

solid deformation response. We postulate that the principle of e�ective stress holds for unsaturated
porous materials, and adopt the following form of the e�ective stress tensor σ ′:

σ = σ ′ − Sp1 , (3)
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where p is the pore water pressure. Notably, this form of e�ective stress has been shown to be
thermodynamically consistent in the sense that it is energy-conjugate to the rate of deformation
tensor of the solid matrix [64]. �en we introduce an e�ective stress–strain relation for the solid
matrix, given by

σ̇ ′ = C ∶ ε̇ . (4)

Here, ε is the in�nitesimal strain tensor, which is related to u as

ε ∶= ∇s u = 1
2
(∇u +∇T u) , (5)

where ∇s denotes the symmetric gradient operator. Also, C is the fourth-order tensor of tangent
moduli whose speci�c form depends on the constitutive model for solid deformation.�e tangent
moduli of common elastoplastic models are explained in [65–67]. It is noted that the above stress–
strain relation (4) is expressed in a rate form to include a nonlinear constitutive model such as an
elastoplastic model.

�e second type of constitutive model is introduced for the seepage �ow. Here we use the mul-
tiphase extension of Darcy’s law, written as

q = −krwk
µw

⋅ (∇ p − ρwg) , (6)

where krw is the relative permeability of thewater phase, µw is the the dynamic viscosity ofwater, and
k is the absolute permeability tensor. In case of isotropic permeability, k reduces to a scalar ki such
that k = ki1. For notational convenience, we de�ne a lumped permeability tensor κ ∶= (krw/µw)k.
Lastly, for unsaturated cases, we introduce a constitutive model that links the water saturation

with the pore water pressure. Our particular choice is the van Genuchten model [68], which can be
expressed as

S = S1 + (S2 − S1)[1 + (−p/sα)a]−b , (7)

where S1 and S2 are the residual and maximum saturations, respectively, sα is the scaling suction,
and a and b are the exponent parameters in the van Genuchten model.�ese exponent parameters
are related as b = (a − 1)/a. �e van Genuchten parameters can also be used for determining the
relative permeability as follows:

krw = S1/2e [1 − (1 − S1/be )b]2 , Se = (S − S1)/(S2 − S1) . (8)

Once the above constitutive models are inserted into the two balance equations (1) and (2), the
problem has two unknowns, namely the solid displacement u and the pore pressure p. �is leads
to the so-called u/p formulation described in the following.
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2.3. Initial-boundary value problem statement
We now state an initial-boundary value problem for the coupled poromechanical process. Let

Ω ∈ Rd denote the domain in the d-dimensional space, which is a bounded polygon (for d = 2) or
polyhedron (for d = 3) with Lipschitz boundary ∂Ω. �e boundary is suitably decomposed into
displacement and traction boundaries, ∂Ωu and ∂Ωt , for the solid deformation problem, and pres-
sure and �ux boundaries, ∂Ωp and ∂Ωq, for the �uid �ow problem. �e decomposed boundaries
satisfy ∂Ω = ∂Ωu ∪ ∂Ωt = ∂Ωp ∪ ∂Ωq and ∅ = ∂Ωu ∩ ∂Ωt = ∂Ωp ∩ ∂Ωq. �e time interval of the
problem is denoted by T ∶= (0, T] with T > 0.

�e strong form of this problem is as follows. Given û, t̂, p̂, q̂, u0, and p0, �nd u and p such that

∇ ⋅ (σ ′(u) − S(p)p1) + ρg = 0 in Ω ×T , (9)
ϕṠ(p) + S(p)∇ ⋅ u̇ −∇ ⋅ (κ(p) ⋅ (∇ p − ρwg)) = 0 in Ω ×T , (10)

subject to boundary conditions (n is the unit outward normal vector)

u = û on ∂Ωu ×T , (11)
n ⋅ σ(u) = t̂ on ∂Ωt ×T , (12)

p = p̂ on ∂Ωp ×T , (13)
n ⋅ (κ(p) ⋅ (∇ p − ρwg)) = q̂ on ∂Ωq ×T , (14)

and initial conditions

u = u0(x) , p = p0(x) , (15)

for all position vectors x ∈ Ω at time t = 0.

Remark 1. Alternative formulations for poromechanics. �e foregoing two-�eld u/p formulation is
perhaps the most widely used formulation for coupled poromechanics. Nevertheless, there exist
several other types of poromechanical formulations in which di�erent �elds are primary variables
(e.g., [51–54, 69, 70]). A notable example is the three-�eld u/q/p formulation, whereby lowest order
Raviart–�omas and piecewise constant spaces are used for the approximation of the seepage �ux
vector q and the pore pressure p, respectively. �e three-�eld mixed formulation provides local
mass conservation by construction. However, it also has a couple of potentially undesirable aspects.
First, since the three-�eld formulation approximates the seepage �ux vector as an additional �eld,
it can be signi�cantly more expensive than the two-�eld formulation especially for 3D problems.
Second, the three-�eld formulationmay not be well posed for undrained poromechanical problems
because it uses the inverse of the permeability tensor in the governing equation. As such, it is still
worthwhile to develop a locally mass conservative method for the two-�eld u/p formulation.

3. Numerical Methods

In this section, we develop a �nite element formulation for the poromechanics problem that uses
the EGmethod to discretize the mass balance equation in a locally conservative manner. We begin
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this section with a description of the EG �nite element method. We then apply the EG method to
space discretization of the mass balance equation (2) in a locally conservative manner. For com-
pleteness, we then describe the space discretization of the momentum balance equation, the time
discretization of themass balance equation, and the fully discrete form of the poromechanical prob-
lem. Lastly, iterative solution strategies for the resulting discrete system are brie�y discussed.

3.1. Enriched Galerkin �nite element method
Let Th be a shape-regular (i.e., satisfying the minimum angle condition, see Ciarlet [71]) family

of elements T partitioning Ω. We denote by hT the diameter of T , and de�ne h ∶= maxT∈Th hT .
Each element has edges (in 2D) or faces (in 3D) at its boundaries, which are commonly referred to
as edges herea�er. Let Eh be the set of all element edges, which is decomposed into the set of internal
edges E○h and the set of boundary edges E ∂h .�e set of boundary edges is further decomposed into
E ∂h = E

∂p
h ∪ E ∂qh , where E

∂p
h is the set of edges at the Dirichlet type pressure boundary and E

∂q
h is the

set of edges at the Neumann type �ux boundary.
�e discrete space of the EG �nite element approximation is set up as follows. First, we de�ne

the space of piecewise discontinuous polynomials of degree k as

VDGk
h (Th) ∶= {ψ ∈ L2(Ω) ∶ ψ∣T ∈ Qk(T) , ∀T ∈ Th} , (16)

where L2(Ω) is the space of square integrable functions andQk is the space of polynomials of degree
at most k. For example, VDG0

h (Th) is the space for piecewise constant approximation, and VDG1
h (Th)

is the space for the linear DG approximation. Next, let VCGk
h (Th) be the subspace of VDGk

h (Th)
consisting of piecewise continuous polynomials (C0), i.e.,

VCGk
h (Th) ∶= VDGk

h (Th) ∩C0(Ω) . (17)

Accordingly, VCGk
h (Th) is the space for the CG approximation with k-th degree polynomials.�en,

the space for the EG discretization, VEGk
h , is de�ned as

VEGk
h (Th) ∶= VCGk

h (Th) + VDG0
h (Th) . (18)

In words, the EG space with k-th degree polynomials is constructed by adding (enriching) the
piecewise constant functions to the CG �nite element space. Figure 1 comparatively illustrates the
degrees of freedom of the bilinear CG, DG, and EG methods for discretization of a 2D domain
by four quadrilateral elements. It is noted that, for a su�ciently large number of elements, the
degrees of the freedom for VEG1h (Th) are approximately 1/2 (in 2D) and 1/4 (in 3D) of the degrees of
the freedom of VDG1

h (Th). See [57, 58] for more details of the EG method including mathematical
analyses.
In this work, we use weighted interior penalty methods (e.g., [58, 72]) to construct the varia-

tional formulation of the mass balance equation. For this purpose, we de�ne averages and jumps
of scalar and vector functions on Eh. For an interior edge e ∈ E○h , we denote by T+ and T− the two
elements sharing it, and by n+ and n− their respective outward unit normals. Let ζ and τ be a scalar
�eld and a vector �eld, respectively, and ζ± = ζ ∣T± and τ± = τ∣T± . For e ∈ E○h , we de�ne the weighted

6



(a) CG-Q1 (b) DG-Q1 (c) EG-Q1

Figure 1: Comparison of the degrees of freedom for a 2D Cartesian grid (Q1) with linear CG, DG and EG approxima-
tions. In (c), the degrees of freedom in the middle of the elements indicate piecewise constant functions enriched to
the �nite element space of the CG method.

averages as

{ζ}δe = δeζ+ + (1 − δe)ζ− and {τ}δe = δeτ+ + (1 − δe)τ− , (19)

where δe ∈ [0, 1] is the weight. Next, we de�ne the jumps as

[[ζ]] = ζ+n+ + ζ−n− and [[τ]] = τ+ ⋅ n+ + τ− ⋅ n− . (20)

Note that the jump of a scalar quantity is a vector, whereas the jump of a vector quantity is a scalar.
We also de�ne the average and jump terms at the boundary as

[[ζ]] = ζn and {τ}δe = τ , ∀ e ∈ E ∂h . (21)

�e weight δe in the average operator {⋅}δe may be chosen at one’s discretion. Here we adopt the
choice of [60], given by

δe = βe ∶=
κ−e

κ+e + κ−e
, (22)

where

κ+e ∶= (n+)T ⋅ κ+ ⋅ n+ and κ−e ∶= (n+)T ⋅ κ− ⋅ n+ , (23)

with κ± ∶= κ∣T± . It is noted that the weight value varies over interior edges unless the permeability
is homogeneous throughout the domain. We also de�ne κe = 2κ+e κ−e /(κ+e + κ+e ), i.e., the harmonic
mean of κ+e and κ−e , and use it to scale interior penalty terms.

3.2. Space discretization of the mass balance equation
We now discretize the mass balance equation in space using the EG method. Let us denote

the EG �nite element space approximation of the pressure p(x , t) by ph ∶= ph(x , t) ∈ VEGk
h (Th).

Since the saturation S(x , t) and the lumped permeability tensor κ(x , t) are functions of pressure,
we also denote their EG approximations by Sh ∶= Sh(x , t) ∈ VEGk

h (Th) and κh ∶= κh(⋅, t) ∈ VEGk
h (Th),

respectively. We assume that u̇(x , t) is given for now. Denoting the variations of the trial pressure
7



solutions by ψ ∈ VEGk
h (Th), the semi-discrete variational form of (10) is stated as

∑
T∈Th

∫T ψ(ϕṠh + Sh∇ ⋅ u̇)dV + ∑
T∈Th

∫T ∇ψ ⋅ κh ⋅ (∇ ph − ρwg)dV

− ∑
e∈E○h∪E

∂p
h

∫e[[ψ]] ⋅ {κh ⋅ (∇ ph − ρwg)}δe dA

+ ∑
e∈E○h∪E

∂p
h

θ ∫e[[ph]] ⋅ {κh ⋅ ∇ψ}δe dA+ ∑
e∈E○h∪E

∂p
h

α
he ∫e κe [[ψ]] ⋅ [[ph]]dA

− ∑
e∈E ∂ph

θ ∫e p̂n ⋅ (κh ⋅ ∇ψ)dA− ∑
e∈E ∂ph

α
he ∫e κe [[ψ]] ⋅ (p̂n)dA

− ∑
e∈E ∂qh

∫e ψq̂ dA = 0 , ∀ψ ∈ VEGk
h (Th) . (24)

�e use of interior penalty methods has introduced three new parameters in the above equation:
(1) the edge length he , which is de�ned as he ∶= (meas(T+)+meas(T−))/2meas(e), (2) the penalty
parameter α, which is a function of the polynomial degree k, and (3) the penalty method param-
eter θ, which leads to the symmetric interior penalty Galerkin method (SIPG) when θ = −1, the
incomplete interior penalty Galerkin method (IIPG) [73, 74] when θ = 0, and the non-symmetric
interior penalty Galerkin method (NIPG) [75] when θ = 1. In this work, we use the IIPG method.
Remark 2. Conservation properties. �e discrete variational form (24) is both locally and globally
conservative. To investigate the conservation properties, we de�ne the discrete �ux vector, qh, as

qh ∶= −κh ⋅ (∇ ph − ρwg) , ∀T ∈ Th , (25)
qh ⋅ ne ∶= −{κh ⋅ (∇ ph − ρwg) ⋅ ne} + (α/he)[[ph]] , ∀e ∈ E○h , (26)

qh ⋅ ne ∶= −κh ⋅ (∇ ph − ρwg) ⋅ ne + (α/he)(ph − p̂) , ∀e ∈ E ∂ph , (27)

qh ⋅ ne ∶= −q̂ , ∀e ∈ E ∂qh , (28)

where ne is the outward normal vector at the edge e. When e is a boundary edge, ne coincide with
the boundary normal vector n. To extract the local mass conservation property, we set ψ as 1 in an
element T and as 0 elsewhere.�en, (24) becomes

∫T(ϕṠh + Sh∇ ⋅ u̇)dV + ∑
e∈∂T

∫e qh ⋅ ne dA = 0 , ∀T ∈ Th . (29)

It is noted that CG discretization cannot attain this local conservation property since it does not
allow ψ to be 1 exclusively inside an element. Another important characteristic that enables local
mass conservation is the weak enforcement of Dirichlet boundary conditions. Moreover, to show
that qh is globally conservative, we take ψ = 1 throughout the domain and obtain

∫Ω(ϕṠh + Sh∇ ⋅ u̇)dV + ∫∂Ω qh ⋅ n dA = 0 . (30)
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�erefore, the EG discretization provides mass conservation in the entire domain as well as every
single element.
Remark 3. DG discretization. �e variational form (24) can also be used for an interior penalty
DG discretization of the same problem. �e only change is that the solution and variation spaces
become VDGk

h (Th), instead of VEGk
h (Th). As such, the EG and DG discretization methods have the

same conservation properties.
Remark 4. Penalty parameter. �e penalty parameter α in (24) comes from the weighted interior
penalty method, and it has been studied extensively in the DG literature. In essence, the value of
α controls the amount of inter-element continuity added to perfectly discontinuous elements. If α
is too small, the discretized system would be unstable. Conversely, too large an α would enforce
excessive inter-element continuity, rendering the discrete system very close to that from the CG
discretization of the same problem. In our numerical results, α ≈ 100 is a good choice. Readers
interested in this aspect are referred to [76–78] and references therein.
Remark 5. Decomposition into CG and piecewise constant DG parts. As shown in (18), the EG space
is constructed by addition of the CG space and the piecewise constant DG space. Accordingly, the
trial solutions and variations discretized by the EG method, ph ∈ VEGk

h (Th) and ψ ∈ VEGk
h (Th),

respectively, are additively decomposed as

ph = pCGk
h + pDG0

h and ψ = ψCGk + ψDG0 , (31)

where pCGk
h ,ψCGk ∈ VCGk

h (Th) and pDG0
h ,ψDG0 ∈ VDG0

h (Th). Inserting (31) into (24), one can identify
terms that are augmented to the standard CG formulation. It should be noted that many of these
new terms indeed vanish due to the characteristics of piecewise continuous polynomials (⋅)CGk and
piecewise constants (⋅)DG0 . Speci�cally, since continuous polynomials do not have jump across
edges, [[ψCGk]] = [[pCGk]] = 0, and since ψDG0 and pDG0 are constant in each element, ∇ψDG0 =
∇ pDG0 = 0. Canceling these terms out remarkably simpli�es the variational formulation. It is also
noted that ∇ψ ≠ 0 since ∇ψCGk ≠ 0.
Remark 6. Number of unknowns. Detailed comparisons of the number of unknowns for CG, DG,
and EG methods are presented in [57, 58] for both a structured rectangular mesh and an unstruc-
tured triangles/tetrahedramesh in 2D and 3D. For example, for a given N×N 2D rectangular mesh,
the number of unknowns for linear CG, DG, and EG are (N + 1)2, 4N2, and (2N + 1)2, respectively.
When the mesh size (h) and polynomial order (p) are identical, the three methods have the same
optimal order of error convergence, although their speci�c errors may vary. Since our focus is local
mass conservation, the proposed EG formulation will be compared with the CG formulation which
is widely used for poromechanics and does not provide local mass conservation. �e comparison
will be made for �xed h and p, because local mass conservation in poromechanics is particularly
motivated for heterogeneous problems of which spatial discretization is likely to be governed by
the length scale of heterogeneity. For homogeneous problems, it may be advantageous to use larger
elements with higher-order approximations to get a numerical solution of similar accuracy. Note,
however, that other factors such as iterative solvers and the number of Gauss points (for plasticity
problems) also determine the overall computational cost. As always, the selection of an optimal nu-
merical method does not have a de�nite answer and it is at the discretion of the numerical analyst.
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�e primary purpose of this work is to introduce EG as a local mass conservative method involving
fewer unknowns than DG for the same h and p.

3.3. Space discretization of the linear momentum balance equation
As for discretization of the balance of linear momentum equation (9), we use the CG method

since it is good enough for the deformation problems of our interests. For the CG discretization,
we de�ne the �nite element spaces for using continuous piecewise polynomials:

WCGk
h (Th) ∶= {η ∈ C0(Ω) ∶ η∣T ∈ Qk(T) , ∀T ∈ Th} , (32)
W̄CGk

h (Th) ∶= {η ∈ C0(Ω) ∶ η = 0 , η∣T ∈ Qk(T) , ∀T ∈ Th} . (33)

Let us denote the CG �nite element space approximation of the displacement vector u(x , t) by
uh ∶= uh(x , t) ∈ WCGk

h (Th). Accordingly, the discretized e�ective stress tensor is denoted by σ ′h.
Following the standard procedure, we can express the discrete variational form of the balance of
linear momentum as

− ∫Ω∇s η ∶ σ ′h dV + ∫Ω Shph∇ ⋅ η dV
+ ∫Ω η ⋅ ρg dV + ∫∂Ωt

η ⋅ t̂ dA = 0 , ∀ η ∈ W̄CGk
h (Th) . (34)

�e rest of the CG discretization procedure is straightforward, and its details can be found in [79]
and many others.

Remark 7. Inf–sup stability. It is well known that mixed �nite elements for coupled poromechanics
are subject to an inf–sup stability condition in the limit of undrained deformation [19, 27, 31, 32].
�is is because, during undrained deformation, the pore pressure acts as an incompressibility con-
straint, rendering the discrete system a saddle point problem much like that of mixed �nite ele-
ments for Stokes problems. Notably, Taylor–Hood elements [80] have been proven to satisfy the
inf–sup condition of mixed CG/EG elements for velocity/pressure discretization of Stokes �ow
problems [81]. On the other hand, when the �uid �ow is compressible (e.g., in the drained or un-
saturated condition), the discrete problem does not have a saddle point structure and so the mixed
�nite elements are not restricted by a stability condition. In such cases, equal-order elementsmay be
an e�cient choice for obtaining a pressure solution of the same order of accuracy.�erefore, in this
work we use Taylor–Hood elements when the problem of interest involves undrained deformation,
and use equal-order elements when it does not.

3.4. Time discretization of the mass balance equation
�e variational mass balance equation (24) contains the time derivatives of uh (a�er the CG

discretization as described above) and Sh. To discretize these variables in time, we use the implicit
Euler method. For a given time increment ∆t ∶= tn+1 − tn from time tn to tn+1, the time derivatives
of these variables are approximated as

u̇h =
un+1
h − un

h
∆t

and Ṡh =
Sn+1h − Snh
∆t

, (35)
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where (⋅)n+1 and (⋅)n denote the quantities at time tn+1 and tn, respectively. It is noted that the
saturation variable is discretized directly, not a�er being expanded by the chain rule as Ṡ = S′(p)ṗ.
�is is because the use of S′(p) in a time-discrete setting can lead to large mass balance errors, see
Celia et al. [82]. We complete the time discretization by inserting (35) into (24), and evaluate all
other variables in (24) and (34) at time tn+1. We also multiply the discrete mass balance equation
by ∆t, as common in the discretization of poromechanical formulations (e.g., [27, 32]).

3.5. Fully discrete form of the poromechanical formulation
Now we write the fully discrete form of the poromechanical problem. Let ûn+1, t̂n+1, p̂n+1, and

q̂n+1 be approximations of û(x , tn+1), t̂(x , tn+1), p̂(x , tn+1), and q̂(x , tn+1), respectively. We also set
the initial condition for the pressure as p0h ∶= ΠEG

h p(x , 0), where ΠEG
h is the interpolation operator

for the EG space VEGk
h (Th) [58].�en the discrete problem reads as follows: Given un

h and pnh, �nd
(un+1

h , pn+1h ) ∈WCGk
h (Th) × VEGk

h (Th) such that

A(un+1
h , pn+1h ; η,ψ) = F(η,ψ) , ∀ (η,ψ) ∈ W̄CGk

h (Th) × VEGh (Th) , (36)

whereA is the bilinear form, de�ned as

A(un+1
h , pn+1h ; η,ψ) ∶= a(un+1

h , η) + b(pn+1h , η) + c(un+1
h ,ψ) + d(pn+1h ,ψ) , (37)

with

a(un+1
h , η) ∶= − ∫Ω∇s η ∶ σ ′n+1h dV , (38)

b(pn+1h , η) ∶= ∫Ω Sn+1h pn+1h ∇ ⋅ η dV , (39)

c(un+1
h ,ψ) ∶= ∑

T∈Th
∫T ψSn+1h ∇ ⋅ (un+1

h − un
h)dV , (40)

d(pn+1h ,ψ) ∶= ∑
T∈Th

∫T ψϕ(Sn+1h − Snh)dV + ∑
T∈Th
∆t ∫T ∇ψ ⋅ κn+1

h ⋅ (∇ pn+1h − ρg)dV

− ∑
e∈E○h∪E

∂p
h

∆t ∫e[[ψ]] ⋅ {κn+1
h ⋅ (∇ pn+1h − ρg)}δe dA

+ ∑
e∈E○h∪E

∂p
h

∆t θ ∫e[[pn+1h ]] ⋅ {κn+1
h ⋅ ∇ψ}δe dA

+ ∑
e∈E○h∪E

∂p
h

∆t α
he ∫e κe [[ψ]] ⋅ [[pn+1h ]]dA , (41)

and F is the linear functional, de�ned as

F(η,ψ) ∶= f (η) + g(ψ) , (42)
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with

f (η) ∶= − ∫Ω η ⋅ ρg dV − ∫∂Ωt
η ⋅ t̂n+1 dA (43)

g(ψ) ∶= ∑
e∈E ∂ph

∆t θ ∫e p̂n+1n ⋅ (κn+1
h ⋅ ∇ψ)dA

+ ∑
e∈E ∂ph

∆t α
he ∫e κe [[ψ]] ⋅ (p̂n+1n)dA

+ ∑
e∈E ∂qh

∆t ∫e ψq̂n+1 dA . (44)

3.6. Solution strategy
To solve the discrete problem (36), we use Newton’s method since the problem is nonlinear

unless the material is fully saturated and linear elastic. In each Newton iteration, onemust solve the
following Jacobian system that emanates from the linearization of (36):

⎡⎢⎢⎢⎢⎣

Juu Jup
Jpu Jpp

⎤⎥⎥⎥⎥⎦

⎧⎪⎪⎨⎪⎪⎩

δuh

δph

⎫⎪⎪⎬⎪⎪⎭
= −

⎧⎪⎪⎨⎪⎪⎩

Ru

Rp

⎫⎪⎪⎬⎪⎪⎭
. (45)

Here, δuh and δph denote Newton increments of the displacement and the pressure unknowns,
respectively.�e residual vectors on the right hand side are de�ned as

Ru ∶= a(un+1
h , η) + b(pn+1h , η) , (46)

Rp ∶= c(un+1
h ,ψ) + d(pn+1h ,ψ) . (47)

Accordingly, the sub-matrices of the Jacobian matrix are given by

Juu ∶=
∂a(un+1

h , η)
∂un+1

h
, Jup ∶=

∂b(pn+1h , η)
∂pn+1h

, Jpu ∶=
∂c(un+1

h ,ψ)
∂un+1

h
, Jpp ∶=

∂d(pn+1h ,ψ)
∂pn+1h

. (48)

�e closed forms of these sub-matrices are obtained through a straightforward extension of those
in CG formulations (see [28, 34] for example).�e exact Jacobian matrix is used in this work.
However, e�cient solution of this linear system is a signi�cant challenge, which still remains an

active area of research. Broadly speaking, strategies for fully coupled numerical solution of discrete
poromechanical problems can be categorized into two classes: (1) monolithic methods which solve
the solid deformation and �uid �ow problems simultaneously, and (2) sequential methods which
solve either the deformation or the �ow problem until the coupled solution converges.�e sequen-
tial methods allow for e�cient combination of separate computer programs originally developed
for either the �uid �ow or the solid deformation problem, with a good convergence behavior when
an appropriate split method is employed [48, 83]. However, as shown by White et al. [36], when
proper preconditioning is used, a monolithic method has superior performance to a sequential
method. Here we use the block-preconditioned monolithic method described in [28, 36], which
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solves the linear system via two sequential steps of preconditioned Krylov iterations with multigrid
preconditioners.�e tolerances for both the Newton and Krylov iterations are set as 10−9.
We also note that the block-preconditioning approach may be extended further to solve the

EG-discretized pressure systemmore e�ciently.�e reason is that the pressure block can also have
a nested 2 by 2 block structure owing to the decomposition of the EG space into the CG space and
the piecewise constant DG space, namely ph = pCGk

h + pDG0
h . In this case, the Jacobian system (45)

can be expanded to

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Juu JCGk
up JDG0

up

JCGk
pu JCGk/DG0

pp JDG0/CGk
pp

JDG0
pu JDG0/CGk

pp JDG0/DG0
pp

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δuh

δpCGk
h

δpDG0
h

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

= −

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ru

RCGk
p

RDG0
p

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, (49)

as if pCGk
h and pDG0

h were distinct �eld variables in the formulation. Indeed, exploiting such a block
structure in EGdiscretization, Lee et al. [58] have proposed e�cient iterative solvers for EGmethods
for �ow and transport in porous media. We believe that the same approach can be cast into block-
partitioned solvers for poromechanics. For now, we leave this extension as a future research topic,
and use the existing poromechanics solver.

4. Numerical Examples

�ree numerical examples are presented in this section to study the accuracy and performance
of the proposed numerical method.�e �rst example veri�es the numerical method using a well-
known benchmark problem in poromechanics. �e second and third examples demonstrate the
performance and robustness of the proposed EG method in comparison with the classical CG
method. In these examples, while the pressure �eld is approximated by di�erent methods, the dis-
placement �eld is commonly approximated by the CG method. �erefore, for brevity, we shall
simply mention the numerical method for the pressure �eld approximation when comparing the
results of di�erent numerical methods. For example, the mixed CG/EG discretization of the dis-
placement/pressure �elds will be referred to as “EG.”

�e numerical examples are performed using Geocentric, a massively parallel �nite element
code for geomechanics built upon the deal.II �nite element library [84, 85], p4estmesh handling
library [86], and the Trilinos project [87].

4.1. Terzaghi’s 1D consolidation problem
To verify the numerical formulation and its implementation, we �rst consider the analytical

solutions for the classical Terzaghi’s 1D consolidation problem. Figure 2 illustrates the setup of this
problem.�e material is homogeneous, linear elastic, isotropic, and fully saturated throughout the
consolidation process. To express the analytical solution for pore pressure, we de�ne the following
non-dimensional quantities:

p∗ = p
w
, z∗ = z

H
, t∗ = ( cv

H2
) t . (50)
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Here, p is the pore pressure,w is the distributed load at the drainage boundary, z is the distance from
the drainage boundary,H is the domain thickness, t is time, and cv is the coe�cient of consolidation.
One can express cv in terms of the bulk modulus K, Poisson’s ratio ν, the isotropic permeability ki ,
and the �uid dynamic viscosity µ, as

cv = 3K (1 − ν
1 + ν

) ki
µ
. (51)

�en the analytical solution for pressure can be written as

p∗(z∗, t∗) =
∞
∑
m=0

2
M
sin(Mz∗)e−M2 t∗ , M = π(2m + 1)/2 . (52)

For this speci�c example, we assignH = 1 m,w = 1 kPa, the isotropic permeability ki = 10−12m2, the
dynamic viscosity µ = 10−6 kPa⋅s, the bulk modulus of 1000 kPa, and Poisson’s ratio of 0.25.�ese
values give the coe�cient of consolidation cv = 0.0018 m2/s.

H

zero pressure

w

no flow

Figure 2: Setup of the 1D consolidation problem.

Using this analytical solution for the consolidation problem, we examine whether the proposed
EG formulationmanifests the expected convergence rates uponmesh re�nement. For this purpose,
we �rst solve this problem using the proposed EGmethod, with h = 0.1 m (10 uniform quadrilateral
elements) and ∆t = 0.01t∗ s.�e EG solutions of the pore pressure �elds at t∗ = 0.05, 0.1, 0.25, and
0.5 are presented in Fig. 3 along with the corresponding analytical solutions.
We then perform an error convergence test with respect to the analytical solution (52) at t∗ =

0.1. For comparison, we also conduct the same convergence test with the classical CG method.
Both of the EG and CG methods use bilinear basis functions (Q1) for the mass balance equation,
whereas they discretize the momentum balance equation by CG-Q2 elements (i.e., Taylor–Hood
elements) since several initial steps may involve undrained conditions. For each of the errors p− ph
of the EG and CG solutions, we compute the L2(Ω)-norm ∥p− ph∥L2(Ω) and the H1(Ω)-seminorm
∣p − ph∣H1(Ω). To isolate the spatial errors, we reduce the time step size by 1/4 while reducing the
mesh size by 1/2.
Table 1 shows the L2(Ω)-norm and H1(Ω)-seminorm errors of the numerical solutions with

respect to the mesh size.�e expected optimal order of convergences are observed for both EG and
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Figure 3: Analytical solutions for pressure in the 1D consolidation problem and their numerical approximations by
EG-Q1 with h = 0.1 m and ∆t = 0.01t∗ s. Numbers next to the lines denote t∗.

CG solutions (i.e., 2 in the L2-norm and 1 in the H1-seminorm). �e results con�rm that the EG
method also provides optimal solutions when the CG method does. We refer to Lee et al. [58] for
the analysis of EG methods for general elliptic and parabolic equations.

EG CG
h0/h L2 error Rate H1 error Rate L2 error Rate H1 error Rate
1 2.18e-03 - 2.04e-02 - 2.15e-03 - 2.04e-02 -
2 5.56e-04 2.0 9.02e-03 1.2 5.49e-04 2.0 9.02e-03 1.2
4 1.40e-04 2.0 4.35e-03 1.1 1.38e-04 2.0 4.35e-03 1.1
8 3.50e-05 2.0 2.15e-03 1.0 3.45e-05 2.0 2.15e-03 1.0

Table 1: Convergence test results of the 1D consolidation problem with the EG and CG methods.

4.2. 1D consolidation of a two-layered material
�e purpose of the second example is to concisely demonstrate how the EG method can be

advantageous for a coupled poromechanical problem whereby the pore pressure �eld manifests a
shock-like change. For this purpose, we extend the previous example to involve a discontinuous
permeability at the center of the domain, by setting ki = 10−16 m2 at the lower half of the domain
which is 10−4 times lower than the permeability of the upper half. It is noted that such a permeability
jump is common in subsurface systems due to layers and other reasons; however, it o�en results in
nonphysical pressure oscillations in CG solutions.
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For comparison purposes, we solve this layered consolidation problemwith both the EGandCG
discretization methods. Again, for the inf–sup stability, we use Q1 elements for the pore pressure
interpolation and Q2 elements for the solid displacement interpolation. We consider two levels
of mesh sizes, h = 0.025 m and h = 0.0125 m (corresponding to h0/h = 4 and 8 in the previous
example), and set ∆t = 1 s for both cases. Other physical and numerical properties remain the same
from the previous example.
Figure 4 shows the pore pressure solutions at four time instances (t = 25, 50, 100, and 200 sec-

onds) obtained by the EG and CG pressure approximations with the two mesh sizes. One can see
that all the CG pressure solutions exhibit nonphysical oscillations at the top of the low-permeability
layer (right below 0.5 m). Such oscillations are commonly observed from CG solutions of porome-
chanics near a discontinuous permeability region or a drainage boundary (see Fig. 5 of White and
Borja [27] for example), and they are owing to the continuity enforcement of CG discretization.
�ese spurious oscillations are somewhat alleviated by mesh re�nement, but not su�ciently. In-
deed, removal of this type of numerical oscillation in a CG solution usually requires a very �ne
discretization.
In contrast, every EG solution in Fig. 4 captures the sharp change in the pressure �eld without

any non-physical oscillation, irrespective of the mesh size and the time instance.�is achievement
is thanks to the piecewise constant basis functions enriched to the CG space, which allow the overall
solution to be nonconforming. It is noted that the decreasing pore pressure below the layer interface
is due to the physical di�usion of pore pressure during the consolidation of the lower layer. �e
added number of the degrees of freedom is just the number of elements in each case: 40 in the
h = 0.025 m case and 80 in the h = 0.0125 m case. �erefore, this example demonstrates how the
EG method enables us to solve challenging yet realistic poromechanical problems with minimal
additional costs to the CG method.

4.3. Unsaturated �ow in a vertical cut with random permeability
Lastly, we consider a more complex problem that involves unsaturated �ow in heterogeneous

media. We particularly simulate the problem of wetting collapse of an unsaturated soil with ran-
dom permeability. Figure 5 depicts the setup of this problem. �e domain is a 15 m long and 5 m
high rectangle, and its log permeability �eld is generated using an exponential covariance model as
shown in the �gure.�e bottom and the right side of the domain are supported by pins and rollers,
respectively, whereas the top and the le� side are unsupported. Such an unsupported vertical cut
is possible on unsaturated soil due to the presence of capillary forces. However, when this soil is
continuously in�ltrated by water, it progressively loses the capillary forces and collapses ultimately.
To simulate this wetting collapse process, we apply a constant �ux of 30 mm/h on the top of the
domain, and assign no �ux boundary conditions elsewhere.�e initial capillary pressure is 25 kPa
throughout the domain. 18�e soil domain is modeled as an elastoplastic material to simulate the
onset of the collapse. We speci�cally use a perfectly plastic Drucker–Prager model [88], which is
suitable for modeling shear failure of a pressure-sensitivematerial [66, 67, 89].�ematerial param-
eters of this model are: the cohesion of 5 kPa, the friction angle of 28○, and the dilation angle of 5○.
In addition, to e�ciently deal with the cone of the Drucker–Prager surface, we employ a hyperbolic
approximation of the surface with the shape parameter of 0.1 (see [90, 91] for more details of this
approximation). �e elastic response is considered linear elastic with the bulk modulus of 5000
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Figure 4: Pore pressure solutions of the layered consolidation problem obtained by EG and CGmethods. (a) h = 0.025
m and (b) h = 0.0125 m.

17



Figure  : Setup of the unsaturated žow problem. Illustrated inside the domain is the log permeability •eld.

kPa and Poisson's ratio of ý.ç. As for the non-deformation responses, we assign the van Genuchten
parametersSÔ � ý.ç, Sò � Ô.ý,s� � Ô  kPa, anda � ç.ý; the intrinsic densities- s � ò.ý t/mç and
- w � Ô.ý t/mç; the porositŷ � ý. ; and the dynamic viscosity½w � Ôý� â kPa�s.

� e numerical simulation proceeds as follows. Once we discretize the domain by Ôòýý elements
as shown in Fig.  , we approximate the mass balance equation with two dišerent methods: one by
EG-QÔwith ò¥—Ô pressure degrees of freedom and the other by CG-QÔwith Ôò—Ô pressure degrees of
freedom.� e momentum balance equation is approximated by CG-QÔwith ò âò displacement de-
grees of freedom. Note that this equal-order interpolation does not encounter a stability issue since
this problem does not involve an undrained condition.� en, we run gravity loading steps without
boundary žuxes, until the domain reaches mechanical and hydraulic equilibrium.� ese gravity
loading steps are essential because not only the plasticity model depends on the con•ning pressure
but also the initially uniform capillary pressure is not under equilibrium due to the heterogeneous
permeability •eld. Subsequently, we begin the in•ltration process by applying the boundary žuxes,
and proceed the simulation with the time step size �t � Ô minute.� e simulation is halted when
a signi•cant plastic strain (say, a zone of ò±ç percents of equivalent plastic strain) has developed,
which may be thought as the onset of wetting collapse. It is noted that deformation beyond this
point is inherently large and rapid, which is inappropriate to be modeled by the current in•nitesi-
mal and quasi-static formulation. Lastly, as in the previous examples, we repeat the simulation with
the CG method.

Figure â presents the pore pressure •elds of the EG solutions aŸer ¥ýý, —ýý, and Ôòýý minutes of
water in•ltration. Due to the in•ltration from the top boundary, the pore pressure increases from
the upper part of the domain.� e wetting front is far from being straight as a consequence of the
strong heterogeneity in the permeability •eld. It is noted that not only the absolute permeability
•eld of this domain is heterogeneous as depicted in Fig.  , but the relative permeability •eld also
evolves heterogeneously by saturation changes during the in•ltration process. Due to this strong
heterogeneity in both the absolute and relative permeability •elds, the leŸ side of the wetting front
reaches the bottom of the domain earlier than other parts.

Ô—




Figure À: Log of the residual norm of the local mass balance ( ç) of the EG solutions aŸer ¥ýý, —ýý, and Ôòýý minutes.
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Figure 10: Log of the residual norm of the local mass balance (53) of the CG solutions a�er 400, 800, and 1200 minutes.
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Figure 11: EG solutions of the equivalent plastic strain and pore pressure �elds a�er 1800 minutes.

instance are shown in Fig. 12.�e plastic strain in this �gure is much less signi�cant than that in the
previous one. On a related note, theNewton iteration of theCG simulation convergeswell until 1980
minutes, at which a plastic zone similar to that in Fig. 11 develops. �e reason for this di�erence
can be gleaned from the pore pressure �eld in the CG solution. In this case, the pore pressure
accumulates in the bottom boundary in a nearly uniformmanner, so the pressure buildup does not
give rise to strain localization at this point. As such, the timing of the wetting collapse predicted
by the CG method is about 3 hours later than that by the proposed EG method. To conclude, this
example has clearly shown that local mass conservation exerts dominant control not only on the
�uid �ow but also on the �ow-induced deformation in porous media.

5. Closure

We have proposed a �nite element formulation for coupled poromechanics that uses the EG
method for local mass conservation in the �uid �ow.�e EG method uses the same bilinear form
of the DGmethod, but its degrees of freedom is appreciably fewer than that of the DG. As such, the
proposed formulation allows us to e�ciently obtain locally mass conservative solutions with the
same order of accuracy of the standard CG methods.

�rough numerical examples, we have demonstrated two major reasons why the proposed EG
�nite element formulation can be an appealing alternative to the conventional CG formulation for
coupled poromechanics. First, for problems involving highly heterogeneous permeability �elds,
the EG formulation can provide non-oscillatory and locally conservative pressure �elds whereas
the CG formulation cannot. Second, the lack of these capabilities of the CG method can lead to
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