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Abstract  

Recent studies reveal that unconventional reservoirs contain complex natural fracture networks. Thus, in 
stimulating hydraulic fractures, it is important to study the interactions between natural fractures and 
hydraulic fractures. The goal of this work is to describe practical aspects of recent advances in the domain 
of geomechanical and discrete fracture network coupling, stimulation modeling, treating large number of 
fractures, adaptive mesh refinement methods, and overall fracture management within an unconventional 
setting. The computational framework is developed as an in-house code named IPACS (Integrated Phase-
field Advanced Crack Propagation Simulator). Here, we describe a diffusive adaptive finite element phase 
field approach for modeling natural and hydraulic fractures. High fidelity finite element methods are 
employed to model multiphase flow with local mass conservation and dynamic mesh adaptivity. 
Geomechanics approximated by a continuous Galerkin finite element method is coupled to multiphase flow 
approximated by an enriched Galerkin finite element method by applying an iteratively coupled scheme.  

 
Introduction 

Through extended field experimentation recent field observations have shown that current stimulation 
models fall short in predicting hydraulic fracture geometries, proppant placement and transport, flowback, 
and the effects of stress shadowing and parent/child fracture parents. Moreover, most current simulators   
are unable to treat fracture propagation and production of flow and mechanics in a seamless fashion.  Effects 
in including geochemistry are generally ignored except in very simple models. Thus, there is a need to 
demonstrate recent research efforts that can assist in predicting and modelling realistic stimulation 
processes. Consequently, engineering stimulated reservoir volume including proppant placement and/or 
acid fracturing treatments, can be achieved within computationally realistic frameworks, which can be used 
for reservoir management studies. In these research fields, the Center for Subsurface Modeling (CSM) in 
collaboration with other international institutes, has been contributing numerous studies. The emphasis has 
been on rigorous mathematical modeling, physics based discretizations, and numerical simulations. A 
robust and efficient computational framework for reservoir fracture modeling was developed resulting in 
IPACS - an integrated phase-field advanced crack propagation simulator. In this paper we describe and 
illustrate the main features of IPACS [1].  
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In this presentation we focus on a phase field approach for fracture stimulation. The phase-field 
methodology is a powerful tool for modeling the evolution of microstructures and their interactions of 
defects in a wide range of materials and physical models.   The accurate simulation of fracture evolution in 
solids is a major challenge for computational algorithms, in large part due to crack paths that are generally 
unknown a priori. In this regard, phase-field approaches have shown great potential with their ability to 
automatically determine the direction of crack propagation through minimization of an energy functional. 
The phase-field framework naturally handles the emergence of phenomena such as crack nucleation and 
branching without the need to introduce additional criteria. In particular, formulations derived from 
variational theory have received a lot of attention from the applied mechanics community due to its strong 
ties to Griffith’s theory [2] for brittle fracture.  
 
Phase-field models belong to the category of continuum approaches for fracture propagation, utilizing a 
diffuse representation of cracks in place of actual discontinuities. The amount of crack regularization is 
controlled via a prescribed length scale, which constitutes an additional parameter of the model. These 
methods can be implemented to simulate large- scale evolution of material microstructure and defect motion 
without the need to explicitly track interfaces. Cracks and their growth emerge as solutions to the governing 
partial differential equations of the model. A particularly unique and striking feature of the approach is that 
all calculations are performed entirely on the initial, un-deformed configuration. There is no need to 
disconnect, eliminate, or move elements or introduce additional discontinuous basis functions, as is 
commonly done in the discrete crack computational fracture mechanics approaches. This results in a 
significant simplification of the numerical implementation, and a simple and direct pathway from two-
dimensional to three-dimensional applications.  
 
One of the major advantages of the phase field based IPACS is that this framework is easily coupled with 
the reservoir simulator for the predictive reservoir production, and with the inverse optimization algorithm 
for history-match process. Moreover, IPACS has satisfies the following/model capabilities: 
 

- an adequate meshing, well adapted to natural fracture geometries as they are characterized, 
including potential geometries induced by stimulation. 

- a stimulation model which couples adequately geomechanical effects (stimulation capacity due to 
near/far geomechanical interactions). 

- an accurate way to couple nonlinear flow and mechanics models using a posteriori adaptivity  
- an accurate account of physical processes occurring during production, especially matrix fracture 

interaction. 
 
In this paper, we demonstrate many of the above aspects, namely both the effects and the ease of 
implementation of coupling multiphase flow and mechanics in a fractured medium using a phase field 
approach. In addition, we treat the interactions between hydraulic and natural fractures. The latter are treated 
in a diffusive fashion. 
 
Coupling Flow with Phase Field Fractures  
 
This approach is described by applying an indicator scalar function also called as a phase-field 𝜙 ∈ [0,1] 
to define fractures; see [3, 4]. Here, 𝜙 is referred to as the phase function and 𝜙 = 0 and 𝜙 = 1 represent 
broken (fracture) and unbroken (reservoir) zones respectively.  In addition, there is a transition zone 𝜙 ∈
(0,1) with the length parameter 𝜖. A detailed discussion of a natural fracture network and adaptivity can be 
found in [5]. 
 
In the computational domain Λ, the energy functional based on the poroelasticity Biot system [6, 7] is 
defined as  
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where it models the balance between elastic strain energy and crack surface energy. Here 𝒖  is the 
displacement, 𝜏 is the boundary force, and 𝜎(𝒖) is the elastic stress tensor defined as 𝜎(𝒖) ≔ 2𝜇𝑒(𝒖) +
𝜆𝑡𝑟@𝑒(𝒖)B𝑰, where 𝜇 and 𝜆 are lame parameters, and 𝑒(𝒖) is the symmetric strain tensor given as 𝑒(𝒖) ≔
0.5@∇𝒖 + ∇𝒖𝑻B. In addition, 𝑝 is the pressure, 𝒏 is the outward normal vector of the domain, 𝛼 is the Biot’s 
coefficient, and 𝐺$  is the critical energy release rate or fracture toughness criteria. The 𝑔(𝜙)  is the 
degradation function, which is set as 𝑔(𝜙) = (1 − 𝜅)𝜙# + 𝜅, with 𝜅 being a small positive regularization 
parameter. The last term represents the fracture energy through the Ambrosio-Tortorelli elliptic functionals 
by replacing the Hausdorff measure in a computable form  [8, 9, 10]. Then the first formulation to solve is 
the following constrained minimization problem:  
 

mininize 𝐸 (𝒖, 𝑝, 𝜙)	subject	to	 ∂&𝜙 ≤ 0, 
 

where the last condition is known as the irreversibility condition (i.e. to fractures allowed only to propagate 
but not to heal). This minimization equation is solved by utilizing a primal-dual active set method [11] and 
continuous Galerkin finite element methods. 
 
In order to formulate the flow equation in both the reservoir and the fracture, we employ the pressure 
diffraction system [7]. In the pressure diffraction system, the underlying Darcy flow equations have the 
same structure in both the porous media and the fracture.  However, using the phase field indicator variable 
allows different treatments between reservoir flow and fracture flow. In addition, in the reservoir (or 
fracture) two phase aspects can be treated within this framework. We denote by Ω' and Ω(, for the reservoir 
and the fracture subdomains. More details to describe these domains are discussed in [12]. The pressure 
diffraction formulation that we solve is described as  
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where 𝜌 is the fluid density, 𝑀is Biot’s modulus, 𝜂 is the fluid viscosity, 𝑐'is fluid compressibility, and 𝑞is 
the source/sink term. The subscript indicates either the reservoir zone (𝑅) and the fracture zone (𝐹). Here, 
𝐾( is the permeability in the reservoir and 𝐾' is the permeability computed by the width of the fracture 
[13]. This flow equations can be extended to consider quasi-linear flow for proppant transport coupled with 
the concentration transport equation as demonstrated in [14]. Moreover, the relative permeability and 
capillary pressure to consider two phase flow system with the saturation formulation in the propagating 
fracture is discussed in [15].  
 
An enriched Galerkin (EG) [16], a simplified discontinuous Galerkin (DG) approximation, is employed for 
the spatial discretization of the above pressure diffraction system. EG provides locally and globally 
conservative fluxes and preserves local mass balance. Recently, EG has been successfully employed to 
realistic multiscale and multi-physics applications.  
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4.  Numerical Example 
 

 
Figure 1. An initial setup 

 

 
Figure 2. n=15 

 

 
Figure 3. n=50 

 

 
Figure 4. n=120 

 
A schematic setup for the numerical experiments is illustrated in Figure 1, where the initial condition is 
described with the two natural fractures at the top and bottom of the hydraulic fracture, which is placed at 
the middle. The location of the midpoint of the injection point for the hydraulic fracture is in the center of 
the domain Λ. The material properties for the injected two-phase flow and the solid materials are taken 
from [17]. In this case, two natural fractures have the same length but the bottom fracture is tilted.  
 
The simulated phase-field values for the propagating fractures for each time step n are presented in Figure 
2-4. First, the hydraulic fracture propagates until it joins with the existing natural fractures. Due to the 
pressure drop when the hydraulic and natural fractures meet, it takes a while to accumulate enough pressure 
to initiate the new branching. In other words, the fracture propagation speed from Figure 1 to 3 is much 
faster than Figure 3 to 4 since it takes much longer time to initiate the branching of the fractures at the tip 
of the natural fractures in Figure 4. The branching of the fracture presents an interesting phenomenon as 
shown in Figure 4. This example illustrates the capabilities of the proposed algorithm in handling 
multiphase flow and joining and branching of multi fractures in porous media.  
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