CHAPTER 12. VECTORS AND THE GEOMETRY OF SPACE

* How about multiplications between vectors?

12.3 The Dot Product

Definition 1 If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ then the _____ of \mathbf{a} and \mathbf{b} is the number $\mathbf{a} \cdot \mathbf{b}$ given by

 $\mathbf{a} \cdot \mathbf{b} = _____$

The result is not a _____, but it is a _____.

Example 1.

- 1. $< 2, 4 > \cdot < 3, -1 > =$
- 2. $< -1, 7, 4 > \cdot < 6, 2, -0.5 > =$
- 3. $(i + 2j 3k) \cdot (2j k) =$

Properties

- 1. $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$
- 2. $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$
- 3. $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$
- 4. $(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$
- 5. $0 \cdot \mathbf{a} = 0$

* What does the dot product really mean? Why do we need this?

_____ between the vectors

Theorem 2 If θ is the angle between the vectors **a** and **b**, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Example 2. If the vectors **a** and **b** have lengths 4 and 6, then the angle between them is $\pi/3$, find $\mathbf{a} \cdot \mathbf{b}$

1

Corollary 6. If θ is the angle between the nonzero vectors **a** and **b**, then

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

Example 3. Find the angle between the vectors $\mathbf{a} = \langle 2, 2, -1 \rangle$ and $\mathbf{b} = \langle 5, -3, 2 \rangle$.

Definition 3 Two nonzero vectors **a** and **b** are called **perpendicular** and **orthogonal** if the angle between them is $\theta = ____$. Then $\mathbf{a} \cdot \mathbf{b} = _____$.

2

Theorem 4 Two vectors \mathbf{a} and \mathbf{b} are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

Example 4. Are these two vectors $2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $5\mathbf{i} - 4\mathbf{j} - 2\mathbf{k}$ perpendicular?

* $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}|$, if two vectors : _____.

* $\mathbf{a} \cdot \mathbf{b} = -|\mathbf{a}||\mathbf{b}|$, if two vectors : _____.

12.3.1 Direction Angles and Direction Cosines

Definition 5 The ______ of a nonzero vector **a** are the angels $\alpha, \beta, \gamma \in [0, \pi]$ that **a** makes with the positive x -, y - and z - axes. The cosines of these direction angles, $\cos \alpha, \cos \beta, \cos \gamma$ are called the ______ of the vectore **a**.

Remark 6 Using Corollary 6 with b replaced by i, we obtain

$$\cos \alpha = \frac{\mathbf{a} \cdot \mathbf{i}}{|\mathbf{a}||\mathbf{i}|} = \frac{a_1}{|\mathbf{a}|}$$

Similarly, we also have

 $\cos\beta = \cos\gamma =$

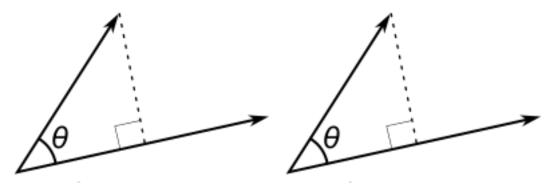
 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma =$

3

Then, we get

Example 5. Find the direction angles of the vector $\mathbf{a} = <1, 2, 3>$.

12.3.2 Projections



Definition 7 Projections:

- Scalar projection of **b** onto \mathbf{a} : $\operatorname{comp}_{\mathbf{a}}\mathbf{b} := \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$
- Vector projection of **b** onto \mathbf{a} : $\operatorname{proj}_{\mathbf{a}}\mathbf{b} := \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\mathbf{a}$

Example 6. Find the scalar projections and vector projection of $\mathbf{b} = <1, 1, 2 >$ onto $\mathbf{a} = <-2, 3, 1 >$.

Suggested Home Work Problems: 12.3 Exercises (8th edition)

#: 15 - 20, 23 - 24, 39 - 44