CHAPTER 12. VECTORS AND THE GEOMETRY OF SPACE

12.4 The Cross Product

* Given two nonzero vectors $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, can we find a nonzero vector \mathbf{c} that is perpendicular to both \mathbf{a} and \mathbf{b} ?

Definition 1 If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the ______ of \mathbf{a} and \mathbf{b} is the vector $\mathbf{a} \times \mathbf{b} := \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$

Remark 2 Recall the definition of a determinant.

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}$$

1

Example 1. If $\mathbf{a} = <1, 3, 4 > \text{ and } \mathbf{b} = <2, 7, -5 >$, then $\mathbf{a} \times \mathbf{b} =$

^{*} Cross product of two vectors is a vector.

Theorem 3 The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .

Remark 4 The direction of the vector $\mathbf{a} \times \mathbf{b}$: right-hand rule.

Theorem 5 If θ is the angle between **a** and **b** $(0 \le \theta \le \pi)$, then

 $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta,$ (length)

Corollary 6 The two nonzero vectors \mathbf{a} and \mathbf{b} are parallel if and only if

 $\mathbf{a}\times\mathbf{b}=0$

 $\mathbf{2}$

Remark 7 Figure 2. The geometric interpretation

* The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b} . **Example 3.** Find a vector perpendicular to the plane that passes through the points P(1, 4, 6), Q(-2, 5, -1), and R(1, -1, 1).

Example 4. Find the area of the triangle with vertices P(1, 4, 6), Q(-2, 5, -1), and R(1, -1, 1).

Remark:

$$\begin{split} \mathbf{i}\times\mathbf{j} &= \mathbf{k}, \ \mathbf{j}\times\mathbf{k} = \mathbf{i}, \ \mathbf{k}\times\mathbf{i} = \mathbf{j} \\ \mathbf{j}\times\mathbf{i} &= -\mathbf{k}, \ \mathbf{k}\times\mathbf{j} = -\mathbf{i}, \ \mathbf{i}\times\mathbf{k} = -\mathbf{j} \end{split}$$

3

Properties If \mathbf{a}, \mathbf{b} and \mathbf{c} are vectors and c is a scalar, then

1. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$ (NOTE: $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}$) 2. $(c\mathbf{a}) \times \mathbf{b} = c(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (c\mathbf{b})$ 3. $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$ 4. $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$ 5. $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ 6. $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$

12.4.1 Triple Products

Definition 8 Scalar triple product :

* The volume of the parallelepiped is the magnitude of their scalar triple product:

$$V = Ah =$$

4

Definition 9 If the volume of the parallelepiped determined by \mathbf{a}, \mathbf{b} , and \mathbf{c} is 0, then the vectors must lie in the same plane; that is, they are _____.

Example 5. Show that the vectors $\mathbf{a} = < 1, 4, -7 > \mathbf{b} = < 2, -1, 4 >$, and $\mathbf{c} = < 0, -9, 18 >$ are coplanar.

12.4.2 Torque

Definition 10 The torque τ is defined to be the cross product of the position and force vectors

 $\tau = \mathbf{r} \times \mathbf{F}$

and measures the tendency of the body to rotate about the origin.

Remark 11 The magnitude of the torque vector is

 $|\tau| = |\mathbf{r} \times \mathbf{F}| = |\mathbf{r}||\mathbf{F}|\sin\theta$

where θ is the angle between the position and force vectors.

Example 6 A bolt is tightened by applying a 40-N force to a 0.25-m wrench as shown in Figure 5. Find the magnitude of the torque about the center of the bolt.

Suggested Home Work Problems: 12.4 Exercises (8th edition)

#: 3, 5, 17, 19, 27, 29, 33, 35, 39