Chapter 12. Vectors and the Geometry of Space

12.1 Three-Dimensional Coordinate System

12.1.1 3D Space

Recall:

- To represent points in space :
- Choose a fixed point O (the origin)
- Coordianate axes : x, y and z.

Definition 1

1. Coordinates
2. Cooridate planes, for example $x y$-plane, $x z$-plane, \cdots
3. Octants
4. The point $P(a, b, c)$ determines a rectangular box. If we drop a perpendicualr from P to the $x y$-plane, we get a point Q with coordinates $(a, b, 0)$ called the \qquad of P onto the $x y$-plane.
5. The Cartesian product $\mathbb{R} \times \mathbb{R} \times \mathbb{R}=\{(x, y, z) \mid x, y, z \in \mathbb{R}\}$ is the set of all ordered triples of real numbers and is denoted by \mathbb{R}^{3}.

12.1.2 Surfaces

Recall:

- The graph of an equation $f(x, y)$ involving x and y in \mathbb{R}^{2} is a line/curve.
- In \mathbb{R}^{3}, an equation $f(x, y, z)$ in x, y, and z represents a surface.

Example 1. What surfaces in \mathbb{R}^{3} are represented by the following equations?
(a) $z=3$
(b) $y=5$

Example 2. (b) What does the equation $x^{2}+y^{2}=1$ represent as a surface in \mathbb{R}^{3} ?
(a) Which points (x, y, z) satisfy the equations

$$
x^{2}+y^{2}=1 \text { and } z=3
$$

12.1.3 Distance and Spheres

Definition 2 Distance Formula in Three Dimensions. The distance $\left|P_{1} P_{2}\right|$ between the points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|P_{1} P_{2}\right|:=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\underline{\left(z_{2}-z_{1}\right)^{2}}}
$$

Example 4. The distance from the point $P(2,-1,7)$ to the point $Q(1,-3,5)$ is \qquad .

Example 5. Find an equation of a sphere with radius r and center $C(a, b, c)$?
Recall: How about in two dimension? an equation of a circle?

Definition 3 Equation of a Sphere, in particular, if the center is the origin $O(0,0,0)$:

Example 6. Show that $x^{2}+y^{2}+z^{2}+4 x-6 y+2 z+6=0$ is the equation of a sphere, and find its center and radius.
Recall: factorization, perfect squares

Example 7. What region in \mathbb{R}^{3} is represented by the following inequalities?

$$
1 \leq x^{2}+y^{2}+z^{2} \leq 4, \quad z \leq 0
$$

$$
\#: 13,15,17-20,47
$$

