CHAPTER 12. VECTORS AND THE GEOMETRY OF SPACE

12.1 THREE-DIMENSIONAL COORDINATE SYSTEM

12.1.1 3D Space

Recall:

- To represent points in space :
 - Choose a fixed point O (the origin)
 - Coordianate axes : x, y and z.

Definition 1

- 1. Coordinates
- 2. Cooridate planes, for example xy-plane, xz-plane, \cdots

3. Octants

4. The point P(a, b, c) determines a rectangular box. If we drop a perpendicual from P to the xy-plane, we get a point Q with coordinates (a, b, 0) called the _____ of P onto the xy-plane.

5. The Cartesian product $\mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z) | x, y, z \in \mathbb{R}\}$ is the set of all ordered triples of real numbers and is denoted by \mathbb{R}^3 .

12.1.2 Surfaces

Recall:

- The graph of an equation f(x, y) involving x and y in \mathbb{R}^2 is a line/curve.
- In \mathbb{R}^3 , an equation f(x, y, z) in x, y, and z represents a **surface**.

Example 1. What surfaces in \mathbb{R}^3 are represented by the following equations?

(a)
$$z = 3$$
 (b) $y = 5$

Example 2. (b) What does the equation $x^2 + y^2 = 1$ represent as a surface in \mathbb{R}^3 ?

(a) Which points (x, y, z) satisfy the equations

$$x^2 + y^2 = 1$$
 and $z = 3$

12.1.3 Distance and Spheres

Definition 2 Distance Formula in Three Dimensions. The distance $|P_1P_2|$ between the points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is

$$|P_1P_2| := \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Example 4. The distance from the point P(2, -1, 7) to the point Q(1, -3, 5) is _____.

Example 5. Find an equation of a sphere with radius r and center C(a, b, c)? **Recall:** How about in two dimension? an equation of a circle?

Definition 3 Equation of a Sphere, in particular, if the center is the origin O(0, 0, 0):

Example 6. Show that $x^2 + y^2 + z^2 + 4x - 6y + 2z + 6 = 0$ is the equation of a sphere, and find its center and radius. Recall: factorization, perfect squares

Example 7. What region in \mathbb{R}^3 is represented by the following inequalities?

 $1 \le x^2 + y^2 + z^2 \le 4, \ z \le 0$

Suggested Home Work Problems: 12.1 Exercises (8th edition)

#:13,15,17-20,47