In practice, the functions whose limits we have to find are often of the form

$$
q(x)=\frac{f(x)}{g(x)}
$$

where f and g are both continuous functions (on their respective domains, whose intersection is the domain of q). Then, broadly speaking, there are only four different cases that may arise, as follows:*

1. The first case arises when $g(a) \neq 0$. Then, because f and g are continuous,

$$
\lim _{x \rightarrow a} q(x)=\frac{f(a)}{g(a)}
$$

For example, $\lim _{x \rightarrow 4} \frac{\sqrt{x-3}}{\sqrt{x+3}}=\frac{\sqrt{4-3}}{\sqrt{4+3}}=\frac{1}{\sqrt{7}}$. So the first case is really rather trivial. ${ }^{\dagger}$
2. The second case arises when $f(a) \neq 0, g(a)=0$ and the sign of g does not change at $x=a$. Then

$$
\lim _{x \rightarrow a} q(x)= \pm \infty
$$

where the positive or negative sign is taken according to whether $g(x)$ has the same sign as $f(a)$ or the opposite one for x close to a (but $\neq a$). For example, $\lim _{x \rightarrow 4} \frac{1-x}{(5-x)(4-x)^{2}}=-\infty$, because $1-4<0$ while $(5-x)(4-x)^{2}>0$ near $x=4 .^{\ddagger}$
3. The third case arises when $f(a) \neq 0, g(a)=0$ and the sign of g does change at $x=a$. Then only one-sided limits exist. For example,

$$
\lim _{x \rightarrow 4-} \frac{1-x}{(5-x)(4-x)}=-\infty \quad \text { and } \quad \lim _{x \rightarrow 4+} \frac{1-x}{(5-x)(4-x)}=\infty \quad \text { but } \quad \lim _{x \rightarrow 4} \frac{1-x}{(5-x)(4-x)} \nexists
$$ because $(5-x)(4-x)$ changes sign from positive to negative as you move through $x=4$ from left to right.

4. The fourth case arises when $q(a)$ is undefined because $f(a)$ and $g(a)$ are both either zero or infinite (both $\frac{0}{0}$ and $\frac{\infty}{\infty}$ being meaningless). We must then find $p(x)$ such that

$$
q(x)=p(x) \quad \forall x \neq a
$$

implying

$$
\lim _{x \rightarrow a} q(x)=\lim _{x \rightarrow a} p(x)
$$

(because, you will recall, the value of q at $x=a$ is completely irrelevant to the limit of q as $x \rightarrow a$ and so, in particular, it will not matter in the least if the value of q at a isn't even defined). For example (recalling the first day of classes), because

$$
\frac{3-\sqrt{(1-h)(9+h)}}{h}=\frac{8+h}{3+\sqrt{(1-h)(9+h)}}
$$

for all $h \neq 0$, we have

$$
\lim _{h \rightarrow 0} \frac{3-\sqrt{(1-h)(9+h)}}{h}=\lim _{h \rightarrow 0} \frac{8+h}{3+\sqrt{(1-h)(9+h)}}=\frac{8+0}{3+\sqrt{(1-0)(9+0)}}=\frac{4}{3} .
$$

Similarly, because $\frac{x+1}{x-1}=\frac{1+1 / x}{1-1 / x}$ for all finite x, we have

$$
\lim _{x \rightarrow \infty} \frac{x+1}{x-1}=\lim _{x \rightarrow \infty} \frac{1+\frac{1}{x}}{1-\frac{1}{x}}=\frac{1+0}{1-0}=1
$$

[^0]
[^0]: *To keep things simple, we assume throughout that a can be approached from both the right and the left.
 ${ }^{\dagger}$ Note that f has domain $[3, \infty)$ and g has domain $[-4, \infty)$. So q has domain $[3, \infty) \cap[-4, \infty)=[3, \infty)$.
 ${ }^{\ddagger}$ Note that $(5-x)(4-x)^{2}$ is not positive everywhere-but only its behavior near $x=4$ is relevant.

