Suppose that g with domain Q and range R is differentiable, and that f with domain R and range S is differentiable. Then the composition $F=f \circ g$ defined by

$$
F(x)=f(g(x))
$$

has domain Q and range S and is differentiable with

$$
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) .
$$

In other words, whenever x and y are differentially related through an intermediate u such that $y=f(u)$ and $u=g(x)$, implying $y=F(x)$ with $F=f \circ g$, then the three derivatives $\frac{d y}{d u}, \frac{d u}{d x}$ and $\frac{d y}{d x}$ are related by

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

For all practical purposes, the proof of this result-known as the chain rule-requires us only to observe that

$$
\frac{d y}{d x}=\lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=\lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta u} \cdot \frac{\delta u}{\delta x}=\lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta u} \cdot \lim _{\delta x \rightarrow 0} \frac{\delta u}{\delta x}=\lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta u} \cdot \frac{d u}{d x},
$$

that

$$
\frac{d y}{d u}=\lim _{\delta u \rightarrow 0} \frac{\delta y}{\delta u}
$$

and that $\delta x \rightarrow 0$ implies $\delta u \rightarrow 0$ (because g is continuous, otherwise it couldn't be differentiable). Strictly speaking, however, the existence of F^{\prime} can be inferred from the existence of f^{\prime} and g^{\prime} only if $\delta u \rightarrow 0$ implies $\delta x \rightarrow 0$-which usually holds, but is not guaranteed to hold, because it is possible to have $\delta u=0$ when $\delta x \neq 0$. Equivalently, the argument that

$$
\begin{aligned}
F^{\prime}(a) & =\lim _{x \rightarrow a} \frac{F(x)-F(a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{F(x)-F(a)}{g(x)-g(a)} \frac{g(x)-g(a)}{x-a}=\lim _{x \rightarrow a} \frac{F(x)-F(a)}{g(x)-g(a)} \lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{F(x)-F(a)}{g(x)-g(a)} g^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(g(x))-f(g(a))}{g(x)-g(a)} g^{\prime}(a) \\
& =\lim _{g(x) \rightarrow g(a)} \frac{f(g(x))-f(g(a))}{g(x)-g(a)} g^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a)
\end{aligned}
$$

is, strictly speaking, valid only if we can't have $g(x)=g(a)$ when $x \neq a$.
Well, suppose that we did have $g(x)=g(a)$ for $x \neq a$. What would that imply? Remember that we can make x as close as we please to a, as long as x is not actually equal to a. So if there's an $x(\neq a)$ for which $g(x)=g(a)$, just move a bit closer to x. And if there's another $x(\neq a)$ for which $g(x)=g(a)$, just move a bit closer still. And if there's yet another $x(\neq a)$ for which $g(x)=g(a)$, just move even closer again. And so on. Eventually, it must be possible to move close enough to a so that there are no more $x(\neq a)$ for which $g(x)=g(a)$-unless g is constant near a. Then, because g is
continuous, we must have $g(x)=$ constant $=g(a)$ for all x near a. Hence $g^{\prime}(a)=0$ and $F(x)=f\left(g(x)=f(g(a))=F(a)\right.$ for all x near a, implying $F=$ constant; hence $F^{\prime}(a)=0$. Thus, because

$$
0=f^{\prime}(g(a)) \cdot 0
$$

(given that f^{\prime} exists), we must have

$$
F^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a)
$$

regardless of whether g is ever constant on any subdomain.
Several successive applications of the chain rule are often necessary to calculate the derivative of a composition, because several functions may be compounded, and some of these functions may be joins. To illustrate: suppose that

$$
u=g(x)=\sqrt{x(1-x)}
$$

which is differentiable on $Q=(0,1)$: although the domain of g is actually $[0,1]$, for the purposes of the chain rule we must restrict g to where it is differentiable. The range of g is $R=\left(0, \frac{1}{2}\right)$-why? On this domain we can define

$$
y=f(u)=\left\{\begin{array}{cll}
\left(u-\frac{3}{10}\right)^{2} & \text { if } & 0<u \leq \frac{3}{10} \\
0 & \text { if } & \frac{3}{10}<u \leq \frac{4}{10} \\
\left(u-\frac{2}{5}\right)^{2} & \text { if } & \frac{2}{5}<u<\frac{1}{2}
\end{array}\right.
$$

The range of f is $S=\left(0, \frac{9}{100}\right)$-why? An application of the chain rule* yields

$$
\frac{d y}{d u}=f^{\prime}(u)=\left\{\begin{array}{cll}
2\left(u-\frac{3}{10}\right) & \text { if } & 0<u \leq \frac{3}{10} \\
0 & \text { if } & \frac{3}{10}<u \leq \frac{4}{10} \\
2\left(u-\frac{2}{5}\right) & \text { if } & \frac{2}{5}<u<\frac{1}{2}
\end{array}\right.
$$

Another application of the chain rule ${ }^{\dagger}$ yields

$$
\frac{d u}{d x}=g^{\prime}(x)=\frac{1-2 x}{2 \sqrt{x(1-x)}}
$$

Yet another application of the chain rule ${ }^{\ddagger}$ yields

These results are illustrated overleaf.
*Work out the details for yourself.
${ }^{\dagger}$ Again work out the details for yourself.
${ }^{\ddagger}$ Yet again work out the details for yourself.

