
Liza and the Flatworm

Whenever you say Liza is Judy’s daughter, it is perfectly OK to restate your assertion
as “Liza is the daughter of Judy.” But when you say Judy is Liza’s parent, you cannot
restate your assertion as “Judy is the parent of Liza.” Why?. . . Duh! Because Lisa has two

parents. You have to say “Judy is a parent of Liza” instead. Were it not for uniqueness,
however, the statements that Liza is Judy’s daughter and that Judy is Liza’s parent would
be just two different ways of saying exactly the same thing: the important point is that
there exists a parent-daughter relationship, and we can express it in two different ways.

Similarly for functions and their derivatives. Suppose we know a function
�

with
the property that ����� ������
Then

�
is like Judy—in effect,

�
is the parent function; and

�
is like Liza—in effect,

�
is

the daughter function. So there exists a parent-daughter relationship, and we can express
it in two different ways: either

�
is
�

’s derivative, or
�

is
�
’s anti-derivative. But if we want

to rewrite our assertions without apostrophes, then we have to be a little more careful: it
is OK to say that

�
is the derivative of

�
, but we cannot say that

�
is the anti-derivative

of
�
—rather, we must say that

�
is an anti-derivative of

�
, because

�
, like Liza, has more

than one parent.
It is easy to see why. When you say that

����������, you are saying that the slope
of the graph of

�
at any point �in its domain is

����. But if you slide the graph upward
or downward in a vertical direction by a fixed amount �,	then you change the function
value at any point �in its domain by a constant amount �—from

����to
����
�— but

you do not change its slope at all: the slope of the graph of
�
�at any point �in its

domain is still
����. In other words,��������
� �����
� �����

for any value of �. Here’s the difference between
�

and Liza: Liza has only two parents,
whereas

�
has infinitely many (one for every value of �)—but in either case, “daughter

of” implies uniqueness, whereas “parent of” implies an indeterminacy.
You know by now that mathematicians don’t like to repeat lots of words if a symbol

or two will do instead. So we clearly need a way to state “
����
�is the generic anti-

derivative of
�
” in symbols. For reasons that will become apparent only later, we opt to

write ������������
�. That is������� �����
� �� ����
� is the generic anti-derivative of
��

What does all this have to do with flatworms? I thought it might not be a bad idea to
try to convince you that all this stuff about anti-derivatives is actually useful in answering
questions about nature. So let’s have a question from nature—in fact, about flatworms.��

Where downward implies ���
.�

Alexander’s (1990) Section 4.3 (pp. 119-122) is the primary source for the remainer of this lecture. Note,
however, some errors on p.121 of Alexander’s discussion; in particular, he confuses dorsal and mid-section
partial pressures in the mathematical analysis that leads to his equation (4.2).



Small animals such as platyhelminths are able to “breathe” without the help of a
vascular system. They obtain all the oxygen they need by diffusion across the surface
of their bodies from the surrounding respiratory medium. Why can’t large animals do
this? The answer, of course, is that they are too large: they have too little surface area
for oxygen to diffuse across compared to the volume of cells that must be supplied with
oxygen. But how large is too large? Or to put it another way: How big can a flatworm be
(and still survive without a vascular system)? That’s our question from nature.

To simplify this question let us assume at the outset that flatworms are flat (in the
sense that most of their surface area is on two opposite sides), so that as much of their cell
tissue is as near to the surface as possible. Then instead of asking how big a flatworm can
be, we ask more specifically: How wide can a flatworm be? For the sake of definiteness,
let our flatworm have thickness ��millimeters, and let �measure depth from its dorsal
(upper) surface—see the figure above. Then we seek an upper bound on �.

Let ����be the rate per unit area (mm�) at which oxygen at depth �diffuses down-
ward, perpendicular to the flatworm’s dorsal surface. That is, ���� is the volume of
oxygen transported downward per unit time (second) per unit area (mm�) at depth �,
and so �����is the rate per unit area at which oxygen at depth �diffuses upward. Now,
diffusion of oxygen is simply flow of oxygen from regions of higher oxygen concentra-
tion to regions of lower oxygen concentration. The greater the imbalance between higher
and lower concentration, the faster the flow. In other words, the steeper the concentration
gradient, the faster the flow. By tradition, concentration of oxygen is expressed in terms
of its partial pressure, which is the fraction of the total gas pressure attributable to oxy-
gen; for example, the partial pressure of oxygen in air at atmospheric pressure is

����atm
(because air by volume is about 21% oxygen and 78% nitrogen, with 1% trace elements).
Accordingly, let �be the partial pressure of oxygen at depth �; and let the partial pressure
at the dorsal surface be atmospheric, hence equal to 0.21 atm. The higher the value of  !"!#  , the faster the flow of oxygen, i.e., the higher the value of $�$. Moreover, if

!"!# %�
then �&�

, because if oxygen concentration is higher at lower levels then oxygen diffuses
upward; whereas if

!"!#&�
then �%�

, because if concentration is higher at higher levels
then oxygen diffuses downward. It is consistent with these observations to assume that



downward flux of oxygen per unit area is a constant times the concentration gradient or

� ��'����
where 'is called the diffusion coefficient. This proportional relationship between flux
and concentration, satisfied remarkably well in practice, is commonly known as Fick’s
law.( Alexander (1990, pp. 120-121) suggests that a suitable value for flatworm tissue is'��)��*+

mm�atm
*,

s
*,

.
Let us assume that oxygen is supplied to the upper half of our flatworm’s body by

diffusion across its dorsal surface, and to its lower half by diffusion across its ventral
(lower) surface. Then the cuboid shaded in the figure must receive its oxygen across its
upper surface CC

�
D
�
D (and hence ultimately across speckled area AA

�
B
�
B of the dorsal

surface). Let CC
�
D
�
D (and hence AA

�
B
�
B) have area -mm�. Then the cuboid’s volume is

just -times its height, or -�����. Thus if .is the rate per unit volume at which oxygen
is consumed by flatworm tissue (in mm//sec), then .-�����mm/of oxygen must be
supplied across CC

�
D
�
D every second. But the rate of oxygen supply across unit surface

area is -�. Hence, from above (Fick’s law):

-0�'����1�-.�����
or ���� �.'������
Note that, because �2�inside the cuboid,

!"!#2�
.

We have shown that 34�����is the derivative of �. So �must be an anti-derivative

of 34�����. But we know from the chain rule that���5.�'������6� .�'7������7� �.'������
Thus we already know one anti-derivative of 34�����. . . and if you’ve seen one, you’ve
seen them all! So we can write

� �� .'������� � .�'������
�
where at this stage �is an arbitrary constant. However, the partial pressure at the surface
must be atmospheric, i.e., when ���

, �must be 0.21 (atm). Hence���� � .�'������
�
or �������3�4��, implying

� � .�'������
�����.�'�� �����
.�'��������8
After Adolf Fick, a 19th-century professor of physiology at Wurzburg



Thus the partial pressure of oxygen at the flatworm’s midsection is

����
.�'������� ������.���' �
But partial pressure cannot be negative; hence

����9.��:�', or �� 2��;�':.. This
means that

;��2��<=':., or �� 2>��<='. �
The right-hand side of this inequality is an upper bound on the thickness of the flatworm.

According to Alexander (1990, p.119), flatworms consume oxygen at a rate in excess
of

���cm/per hour per gram of body tissue. Since the density of flatworm tissue is about
1 gram per cm/and an hour is 3600 seconds, the volume rate of consumption exceeds
0.1 cm/of oxygen per 3600 seconds per cm/of flatworm; or, which of course is the same
thing, 0.1 mm/of oxygen per 3600 seconds per mm/of flatworm. Thus .%���:?<��,
implying that

�:.&?<��:����?�<)��@
. We have already seen that '��)��*+

. So��<='�?�?<)��*+
, implying

��<=':.&?�?<)��*+)?�<)��@�����A<. Hence, from
above, ��&B����A<����mm. Thus, according to our analysis, a flatworm couldn’t
possibly be more than 1.1 millimeters thick.

In practice, a flatworm’s thickness is never more than about 0.5 mm, less than half
of our upper bound. Note, however, that if our flatworm could receive oxygen only
through its dorsal surface, then our analysis would predict an upper bound of 0.55 mm
on thickness instead, because in that case the ventral surface in the figure would be at���(and the worm would have thickness �, instead of ��).
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