The Area of a Circle

You can underestimate the area of a circle by inscribing a regular n-sided polygon in it; for example, the figure on the left below shows $n=10$. Let us call the underestimate U_{n}. The polygon consists of n isosceles triangles. Each such triangle has two sides of length r-the radius of the circle-and the angle between these two sides is $2 \pi / n$ (why?). Thus each such triangle consists of two right-angled triangles, each of which has hypotenuse r, base $r \sin (\pi / n)$ and altitude $r \cos (\pi / n)$. Hence the area of each right-angled triangle is $\frac{1}{2} \cdot r \sin (\pi / n) \cdot r \cos (\pi / n)$; the area of each isosceles triangle is twice that amount; and there are n such triangles in all. Thus

$$
U_{n}=n \cdot 2 \cdot \frac{1}{2} \cdot r \sin (\pi / n) \cdot r \cos (\pi / n)=\frac{1}{2} r^{2} n \sin (2 \pi / n)
$$

on using the result that $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$. For example, if $r=1$ then for $n=10$ we have $U_{10}=5 \sin (\pi / 5) \approx 2.939$.

Similarly, you can overestimate the area of a circle by inscribing it in a regular n sided polygon; for example, the figure on the right above shows $n=10$. Let us call the overestimate O_{n}. Again, the polygon consists of n isosceles triangles. Now, however, each such triangle has altitude r and base $2 r \tan (\pi / n)$, and there are n such triangles. Thus

$$
O_{n}=n \cdot 2 \cdot \frac{1}{2} \cdot r^{2} \tan (\pi / n)=\frac{r^{2} n \sin (2 \pi / n)}{1+\cos (2 \pi / n)}
$$

on using the result that $\cos (2 \theta)=2 \cos ^{2}(\theta)-1$. For example, if $r=1$ then for $n=10$ we have $O_{10}=10 \sin (\pi / 5) /\{1+\cos (\pi / 5)\} \approx 3.249$.

n	10	20	30	40	50	60	70	80	90	100
U_{n}	2.9389	3.0902	3.1187	3.1287	3.1333	3.1359	3.1374	3.1384	3.139	3.1395
O_{n}	3.2492	3.1677	3.1531	3.1481	3.1457	3.1445	3.1437	3.1432	3.1429	3.1426

If A is the area of the circle, then by definition of over- and under-estimate we have

$$
U_{n}<A<O_{n}
$$

for all values of n, no matter how large, as confirmed by the table above for $r=1$. The bigger the value of n, the better the value of both our over- and our under-estimate, with A always sandwiched between. In the limit as $n \rightarrow \infty$, the above inequalities weaken, as U_{n} and O_{n} coalesce. That is, we have

$$
\lim _{n \rightarrow \infty} U_{n} \leq A \leq \lim _{n \rightarrow \infty} O_{n}
$$

and

$$
\lim _{n \rightarrow \infty} U_{n}=\lim _{n \rightarrow \infty} O_{n}
$$

so that of necessity

$$
\lim _{n \rightarrow \infty} U_{n}=A=\lim _{n \rightarrow \infty} O_{n}
$$

In other words, A is the limit as $n \rightarrow \infty$ of either the under- or the over-estimate.
From the underestimate, we have

$$
\begin{aligned}
& A=\lim _{n \rightarrow \infty} U_{n}=\lim _{n \rightarrow \infty} \frac{1}{2} r^{2} n \sin (2 \pi / n)=\lim _{n \rightarrow \infty} \pi r^{2} \frac{\sin (2 \pi / n)}{2 \pi / n} \\
&=\pi r^{2} \lim _{n \rightarrow \infty} \frac{\sin (2 \pi / n)}{2 \pi / n}=\pi r^{2} \lim _{x \rightarrow 0+} \frac{\sin (x)}{x}=\pi r^{2} \cdot 1=\pi r^{2},
\end{aligned}
$$

on using the substitution $x=2 \pi / n$. Equivalently, from the overestimate, we have

$$
\begin{array}{r}
A=\lim _{n \rightarrow \infty} O_{n}=\lim _{n \rightarrow \infty} \frac{r^{2} n \sin (2 \pi / n)}{1+\cos (2 \pi / n)}=\lim _{n \rightarrow \infty} 2 \pi r^{2} \frac{\sin (2 \pi / n)}{\{1+\cos (2 \pi / n)\} \cdot 2 \pi / n} \\
=2 \pi r^{2} \lim _{n \rightarrow \infty} \frac{\sin (2 \pi / n)}{\{1+\cos (2 \pi / n)\} \cdot 2 \pi / n}=2 \pi r^{2} \lim _{x \rightarrow 0+} \frac{\sin (x)}{\{1+\cos (x)\} x} \\
=2 \pi r^{2} \lim _{x \rightarrow 0+} \frac{\sin (x)}{x} \lim _{x \rightarrow 0+} \frac{1}{1+\cos (x)}=2 \pi r^{2} \cdot 1 \cdot \frac{1}{1+\cos (0)}=\pi r^{2}
\end{array}
$$

as before.*

$$
\text { *Or, if you prefer, use L'Hôpital's rule: } \lim _{x \rightarrow 0+} \frac{\sin (x)}{\{1+\cos (x)\} x}=\lim _{x \rightarrow 0+} \frac{\cos (x)}{-\sin (x) \cdot x+\{1+\cos (x)\} \cdot 1}=\frac{\cos (0)}{1+\cos (0)}=\frac{1}{2} .
$$

