2 J of work are needed to increase the extension x from $0.3 - 0.3 = 0 \text{m}$ to $0.42 - 0.3 = 0.12 \text{m}$. Hence if k is the spring constant,

$$\int_{0}^{0.12} kx \, dx = 2$$

$$\Rightarrow \frac{1}{2} kx^2 \bigg|_{0}^{0.12} = 2 \Rightarrow \frac{1}{2} k(0.12^2 - 0^2) = 2 \Rightarrow k = \frac{4}{(0.12)^2}$$

So the work required to increase its extension from $0.35 - 0.3 = 0.05 \text{m}$ to $0.4 - 0.3 = 0.1 \text{m}$ is

$$\int_{0.05}^{0.1} kx \, dx = \frac{1}{2} kx^2 \bigg|_{0.05}^{0.1}$$

$$= \frac{1}{2} k(0.1^2 - 0.05^2)$$

$$= \frac{2}{0.12^2} \left\{ 0.1^2 - 0.05^2 \right\} = \frac{25}{24} \approx 1.04 \text{ J}$$