1. Ordinary functions: a graphical perspective

The most fundamental concept in calculus is that of a function. We first define the concept
in general terms, and then proceed immediately to examples.

A function is a rule that unambiguously labels things belonging to a given set. That is,
each thing has a unique label (although a label can be assigned to more than one thing).
The set of all possible things is the function’s domain, and the set of all possible labels is
the function’s range. Usually, both things and labels are real numbers, in which case we
will call the function an ordinary function; an ordinary function is most readily defined in
terms of its graph, a plot of all possible (THING, LABEL) pairs with THING measured
along a horizontal axis and LABEL along a vertical one.
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Figure 1: (a) Heart rate y = h(x) beats/sec and (b) oxygen consumption rate z = ¢(z) ml/min
versus body mass x kg.

For example, larger mammals have slower heart (or pulse) rates than smaller mam-
mals. For mammals between 1 kg and 10 kg in body mass, this relationship between size
and heart rate can be modelled (i.e., approximated) by the curve in Figure 1a.* This curve
is a graph, a plot of all possible (MASS, RATE) pairs, with body mass measured in kg
along the horizontal axis and resting heart rate in beats/sec along the vertical one. The
graph defines a function, because each possible body mass is unambiguously labelled by
a heart rate. More precisely, each possible x between 1 and 10 is labelled by a y between
2.1 and 3.8 such that (z, y) lies on the graph, as indicated by the dashes running vertically
from (x,0) to (z,y) and horizontally from (z,y) to (0,y).

We give this function a name: we call it h (for heart rate). The domain of & contains
all possible numbers between 1 and 10 (on the horizontal axis), whereas the range of h
contains all possible numbers between 2.1 and 3.8 (on the vertical axis). More concisely,
using [a, b] to denote the set of all numbers between a and b inclusive, the domain and
range of h are [1, 10] and [2.1, 3.8], respectively.

Different functions can be defined on the same domain. For example, larger mam-
mals have higher rates of oxygen consumption than smaller mammals. For mammals
between 1 and 10 kg, this relationship between size and oxygen consumption rate (OCR)
is modelled by the curve in Figure 1b.! Again, the curve is a graph, a plot of all possible
(MASS, RATE) pairs; and again it defines a function, because each possible body mass x
between 1 and 10 kg is uniquely labelled by an OCR z between 11 and 63 ml/min. We
give this function a name as well: we call it ¢ (for quaffing air, if you insist on a reason).
The domain is again [1, 10], but the range is now [11, 63].

*See, e.g., Dawson, 1991, p. 4.
TSee, e.g., Dawson, 1991, p. 5.



MAMMAL REPRESENTATIVE SIZE SOURCE
zorilla 1kg Estes, 1991 p. 429
rock hyrax 3 kg op. cit., p. 254
female Kirk’s dik-dik 55kg op. cit., p. 47
jackal 10 kg op. cit., pp. 398-408

Table 1: Some representative African mammal sizes.

Let h(x) denote the label that h assigns to . Then the graph in Figure 1a is the set of
all possible (z, h(z)) pairs with 1 < = < 10. In principle, only two letters are needed to
represent a function, one for its name (e.g., i or ¢) and one for the generic THING (e.g.,
x). In practice, however, it is often useful to reserve a third letter (e.g., y or z) for a generic
LABEL. Then the graph of h can also be described as the set of all possible (z,y) pairs
satisfying y = h(z),1 < 2 < 10. Likewise, the graph of ¢ is the set of all possible (z, z)
pairs such that z = ¢(z),1 < z < 10. These two graphs can be used to estimate both
heart rate and OCR for any mammal between 1 and 10 kg in size. For example, with the
help of Table 1, the model predicts that h(1) = 2.1 beats/sec and ~(10) = 3.8 beats/sec
are representative heart rates for a zorilla and a jackal, respectively; similarly, ¢(3) = 25
ml/min and ¢(5.5) = 40 ml/min are (again, according to our model) representative OCRs
for a hyrax and a pygmy antelope .

Note that heart rate keeps dropping as one moves to the right along the curve in Fig-
ure la: h is a decreasing function. Similarly, because OCR keeps rising as one moves to
the right along the curve in Figure 1b, ¢ is an increasing function. The generic term for
increasing or decreasing is monotonic. Monotonic functions have an important property:
they are invertible,* i.e., each possible LABEL belongs to precisely one THING. For ex-
ample, h is invertible because each possible heart rate between 2.1 and 3.8 is associated
with precisely one body mass (according to the model), and ¢ is invertible because each
possible OCR between 11 and 63 is associated with precisely one body mass.

If a function is invertible, then we define its inverse function by interchanging the
roles of domain and range. For example, let g denote the inverse of h in Figure 1a. Then
we obtain the graph of g by flipping over the graph of 4, in such a way that we interchange
axes while holding holding (0, 0)—the origin of coordinates—fixed. This maneuver trans-
ports the range of i from the vertical axis to the horizontal axis to become the domain of
g, and the domain of i from the horizontal axis to the vertical axis to become the range
of g. The resulting graph of g is the set of all possible (y, g(y)) pairs with 2.1 < y < 3.8
(or, if you prefer, the set of all possible (y, z) pairs such that z = g(y),2.1 < y < 3.8): see
Figure 2b. The inverse of ¢, which we denote by 7, is similarly obtained: see Figure 2d.
We can use g and r to estimate the body size associated with a given heart rate or OCR.
For example, the models associate a heart rate of 3 beats per second with a body size of
9(3) =2.6 kg and an OCR of 48 ml/min with a body size of (48) = 7 kg. Incidentally, the
standard way to represent a function’s inverse is to use the superscript ~!; thus g = h™*,
and r = ¢~'. Note the important point that h~'(y) does not mean 1/h(y); on the contrary,

Hnvertible functions are also known as one-one functions.
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Figure 2: g = h™! (upper panels) and r = ¢~ ! (lower panels)

because h is monotonic, x = h~!(y) is just another way of saying that y = h(x).

Not every function is invertible, however, because not every function is increasing
or decreasing. For example, in each cardiac cycle the volume of blood in a human left
ventricle decreases from about 120 ml at the end of diastole to about 50 ml at the end of
systole and then increases to 120 ml again for the start of the next cycle. In a (resting) heart
that beats 67 times a minute, a cycle lasts for 0.9 seconds. If we regard a cycle as beginning
when the mitral valve closes to block off the venous return, then the graph in Figure 3a
is a typical set of (TIME, VOLUME) pairs. This graph defines a function, say V', because
each possible time ¢ in the domain [0, 0.9] is unambiguously labelled by a ventricular
volume y = V(t). But V is not an invertible function, because each possible volume
between 50 ml and 120 ml is reached once during systole and once during diastole. Hence
every y satisfying 50 < y < 120 is associated with two different values of ¢; for example,
V(t) = 100 both when ¢ = 0.12 and when ¢ = 0.62. Furthermore, y = 120 is associated
with every ¢ such that 0 < ¢ < 0.05; this is the isovolumetric contraction phase, when
the mitral valve has closed and ventricular blood pressure rapidly rises to open the aortic
valve. Similarly, y = 50 is associated with every ¢ such that 0.35 < ¢ < 0.4; this is the
isovolumetric relaxation phase, when the aortic valve has closed and ventricular blood
pressure rapidly falls again to open the mitral valve. Because the graph y = V() is flat
for 0 <t < 0.05 and again for 0.35 < ¢t < 0.4, we say that V is constant both on [0, 0.05]
and on [0.35, 0.4].

Now, if you look very carefully at Figure 3a, you will see that the systolic end volume
of 50 ml at ¢ = 0.35 is not the lowest volume achieved during a cycle; rather, the lowest
volume is 49.1 ml, which is achieved at ¢t = 0.3. Although the mitral valve is still closed
when 0.3 < ¢t < 0.35, ventricular volume increases due to a brief arterial backflow (which
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Figure 3: Relationship between (a) volume of blood y = V'(¢) ml in left ventricle and (b) ventricu-
lar inflow y = v(t) ml/s at time ¢. Note that the above traces of blood volume and flow are merely
cartoons of data I abstracted from Folkow and Neil (1971, p. 157) and Levick (1995, pp. 16-20).
These cartoons capture all essential aspects of the relationship between ventricular volume and
blood flow for pedagogical purposes. For example, the diagrams include (in order) an isovolu-
metric contraction phase, when both input and output valves are closed; an ejection phase, when
the arterial flow rises to a maximum and then decreases to zero as the ventricle empties; a back-
flow phase, during which the ventricle refills slightly; an isovolumetric relaxation phase, during
which both valves are closed again; a primary phase of ventricular filling, when the chamber fills
rapidly, at first by suction; and an atrial contraction phase, which forces additional blood into the
ventricle. Nevertheless, by virtue of being cartoons, Figure 3a-b are not intended to be accurate in
every detail. For example, the relaxation phase at the beginning of diastole is only 0.05 seconds
(Levick suggests 0.08); backflow is only about 1% of stroke volume (Levick suggests that it may
be closer to 5%); and so on.



closes the aortic valve). Thus the graph of V' falls all the way from (0.05, 120) to (0.3, 49.1)
but rises thereafter from (0.3, 49.1) to (0.35, 50); it is flat between (0.35, 50) and (0.4, 50), but
then rises all the way to (0.9, 120). So V' is an uninvertible function only if we insist that
its domain is [0, 0.9]. If instead we restrict its domain to [0.05, 0.3], then V' is decreasing,
and therefore invertible. We call this function the restriction of V' to [0.05, 0.3], and we
refer to [0.05, 0.3] as a subdomain of V. Likewise, if we restrict VV’s domain to [0.4, 0.9],
then V is increasing, and again invertible. The moral here is that properties of a function
can depend on its domain of definition, and so no function is properly defined until its
domain has been specified. In particular, invertibility is a property of both function and
domain, because V is invertible on [0.05, 0.3] or [0.4, 0.9] but not on [0, 0.9].

Another property of both function and domain is that of extremum, a generic term for
minimum or maximum. A global minimum or maximum is the lowest or highest value a
function takes anywhere on its domain, whereas a local minimum or maximum occurs
where the graph of the function switches from decreasing to increasing or vice versa. Any
element of the domain corresponding to a maximum or minimum is called a maximizer
or minimizer, respectively, the generic term being extremizer. Note that extrema always lie
in the range of the function, and extremizers always lie in the domain. For example, the
graph in Figure 3b defines ventricular inflow as a function of time. Let’s call this function
v (so that the graph has equation y = v(¢),0 < ¢ < 0.9). Inspection reveals the global
minimum and maximum of v on [0, 0.9] to be y = —470 and y = 296 ml/s, respectively,
with global minimizer ¢ = 0.14 and global maximizer ¢ = 0.52. There are three local
maxima, namely, y = 27 with maximizer ¢ = 0.33, y = 296 with maximizer ¢ = 0.52 and
y = 119 with maximizer ¢ = 0.8; however, there is only one local minimum, namely, -470.
A global extremizer is always either a local extremizer or an endpoint.

Although a global extremum is unique on any given domain, there may be several
extremizers; for example, any ¢ such that 0 < ¢ < 0.05 and t = 0.9 are all global maximizers
for ventricular volume in Figure 3a. Nevertheless, changing domains can change extrema.
For example, if we were interested only in systolic blood flow, then we would restrict
the domain of v to [0, 0.35] and the global minimum would still be -470, but the global
maximum would now be 27. Similarly, if interested only in diastole, we would restrict the
domain of v to [0.35, 0.9]: the global maximum would still be 296, but the global minimum
would now be zero.

Because inflow is never positive during systole (because the ventricle is draining),
however, it may be easier to think in terms of outflow. Outflow is just the negative of
inflow: if inflow has equation y = v(t), then outflow has equation y = —uv(t), and so if
outflow is represented by the function f then f(t) = —uv(t) throughout the domain. We
write f = —v and call —v the negative of v. Figure 4b shows the graph of —v, with that
of v above it for comparison. We see that any minimum of v (regardless of whether it is
local or global) is a maximum of —v, that any maximum of v is a minimum of —v, and
vice versa. This result is general: it applies to any function.

Finally, note that, in this lecture, we have been careful to distinguish between func-
tions and labels by always using different letters. Initially, this is an excellent habit. Once
you understand the difference between function and label, however, it rarely causes con-
fusion to use the same letter for both. Henceforward, therefore, we allow ourselves the
luxury of saying things like, “Let ¢ denote time, and let V' = V() be ventricular volume
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Figure 4: Relationship between (a) ventricular inflow y = v(¢) ml/s and (b) ventricular outflow
y = f(t) = —v(t) ml/s at time ¢.



at time ¢.” The first V is technically a label, and the second V' is technically a function,
but it will be obvious from context which meaning for V' is intended. It’s rather like using
“Darwin” to refer either to a well known Victorian scientist or to one of his many books
(usually that which appeared in 1859): Darwin the scientist is not the same as Darwin the
book, but it is always obvious from context which meaning is intended.

Exercises

1. The global minimum of 49.1 ml for ventricle volume in Figure 3a occurs at ¢ = 0.3,
precisely where v changes sign from negative to positive in Figure 3b. Why must
this be so?

Suitable calculus textbook problems

Stewart (2003): p. 286, ## 3-9 (absolute means global); p. 75, ## 5-8 and 20.
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