
5. Infinitesimals and differential coefficients

The fourth most fundamental concept in calculus (after those of function, sequence and
limit) is that of infinitesimals, which are changes of arbitrarily small magnitude—so, small,
in fact, that their squares can usually be neglected. Note that we deliberately speak of the
concept of infinitesimals (plural), as opposed to the concept of an infinitesimal, because
these arbitrarily small quantities are of little use by themselves: they are useful only in
pairs. Moreover, an infinitesimal always belongs to a variable, because you can’t record a
change (however small) unless there is already something there to be changed; and corre-
spondingly, a (useful) pair of infinitesimals always belongs to a pair of related variables.
At least for now, we will denote the independent variable by x, the dependent variable
by y, the infinitesimal that belongs to x by Æx, and the infinitesimal that belongs to y byÆy. Note the important point that Æx stands for “very small change in x” and is a num-
ber all by itself: it does not mean Æ � x. Similarly for Æy. Another important point about
infinitesimals is that although they are all very small, they can still be very different sizes
of small (in much the same way that the mass of a proton exceeds the mass of an electron
by three orders of magnitude despite the exceedingly small size of both particles).

An example will serve to make these matters clearer. Consider, therefore, a square of
side x and area y, for which x and y are related byy = x2; (1)

and suppose that x is changed by a very small (positive or negative) amount Æx to becomex+ Æx. Then, correspondingly, y is changed by a very small (positive or negative) amountÆy to become y + Æy. The side is now x+ Æx; the area is now y + Æy; and so�y + Æy = (x+ Æx)2 = x2 + 2x � Æx+ (Æx)2; (2)

implying Æy = fy + Æyg � y = fx2 + 2x � Æx+ (Æx)2g � x2 = 2x � Æx+ (Æx)2 (3)

as illustrated by Figure 1.
Suppose, for example, that the side of a square of area 4 square units is increased by

0.01 units from 2 units to 2.01 units to yield a square of area (2.01)2 = 4.0401 square units.
Then x = 2, y = 4, Æx = 0:01, 2xÆx = 0:04, (Æx)2 = 0:0001 and Æy = 0:0401. This example
illustrates two points. First, even though Æx and Æy are both small, Æy is four times as large
as Æx. Second, (Æx)2 = 0:0001 makes only a tiny contribution to Æy, which is almost entirely
accounted for by the first term in (3), namely, 2xÆx. Thus, for all practical purposes, it
suffices to know that Æy � 2xÆx; to two significant figures, we obtain 0.04 regardless of
whether we use the exact expression 2xÆx+(Æx)2 or the approximation 2xÆx. The smaller
the value of Æx, the greater the extent to which Æy = Æ(x2) is accounted for by 2xÆx alone;
for example, with Æx = 10�6, 2xÆx would be correct to six significant figures. Moreover,
the above remarks apply regardless of whether Æx is positive or negative. For example,
if the side of the square of area 4 is instead decreased by 0.01 from 2 to 1.99 to yield a�On using the identity (A+B)2 = A2 + 2AB + B2 with A = x and B = Æx.



square of area (1.99)2 = 3.9601 square units, we instead have Æx = �0:01, 2xÆx = �0:04,(Æx)2 = 0:0001 and Æy = �0:0399 � �0:040, so that 2xÆx is still correct to two significant
figures.
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Figure 1: The effect on the area x2 of a square of infinitesimally changing (= increasing or decreas-
ing) its side x by Æx, which may be positive or negative; from (3), we have Æ(x2) = 2x �Æx+(Æx)2 in
either case. (a) For Æx > 0, 2x �Æx corresponds to the sum of the two equal areas of the shaded rect-
angles; (Æx)2 corresponds to the shaded square; and Æ(x2) corresponds to the total shaded area. (b)
For Æx < 0, 2x � Æx corresponds to the sum of the negatives of the areas of the same two rectangles,
which now overlap; (Æx)2 corrects for the double subtraction of their overlapping area; and Æ(x2)
corresponds to the negative of the total shaded area.

Similar considerations apply to a cube of side x and volume y, for which x and y are
related by y = x3: (4)

Again, let x be changed by a very small (positive or negative) amount Æx to become x+Æx.
Then, correspondingly, y is changed by Æy to become y + Æy. The side is now x + Æx; the
volume is now y + Æy; and soyy + Æy = (x+ Æx)3 = x3 + 3x2 � Æx+ 3x � (Æx)2 + (Æx)3; (5)

implying Æy = fy + Æyg � y = fx3 + 3x2 � Æx+ 3x � (Æx)2 + (Æx)3g � x3= 3x2 � Æx+ 3x � (Æx)2 + (Æx)3: (6)

Again, the approximation Æy = 3x2Æx is accurate enough for all practical purposes whenÆx is small; e.g., with x = 2 and Æx = 0:001 we have 3x2Æx = 0:012, which yields Æy correct
to three significant figures. In effect, the last two terms of (6) are junk.

Nevertheless, there is a practical difference between the junk (Æx)2 at the end of the
equation Æ(x2) = 2xÆx + (Æx)2 and the junk 3x(Æx)2 + (Æx)3 at the end of the equationÆ(x3) = 3x2Æx + 3x(Æx)2 + (Æx)3: the junk in Æ(x2) contains but a single term, whereas the
junk in Æ(x3) contains two terms. Moreover, if you apply the above method to Æ(x4) orÆ(x5), then you will find that the number of junk terms increases to three or four, respec-
tively; and in general, the number of junk terms in Æ(xn) is n � 1. It would therefore be ayOn using the identity (A+B)3 = A3 + 3A2B + 3AB2 +B3 with A = x and B = Æx.

2



good idea to have a notation that keeps all that junk in a trash can—without in any way
compromising the exactness of our equation.

Now, what the junk terms (Æx)2 and 3x(Æx)2 + (Æx)3 have in common is that they
not only are infinitesimal, but also are so small that you can divide either one by Æx and
still obtain an infinitesimal quantity; specifically, (Æx)2 � Æx yields the infinitesimal Æx,
and f3x(Æx)2 + (Æx)3g � Æx yields the infinitesimal 3xÆx + (Æx)2. This is the essence of
infinitesimal junk: it remains infinitesimally small even after division by Æx. Another
way to say exactly the same thing is that if you first divide by Æx and then let Æx tend to
zero, then the limit you obtain will always be zero. We therefore define “o(Æx)”—called
“little oh of delta eks”—to mean terms so small that

limÆx!0 o(Æx)Æx = 0: (7)

Thus (Æx)2 = o(Æx) because (Æx)2 � Æx = Æx ! 0 as Æx ! 0, and 3x(Æx)2 + (Æx)3 = o(Æx)
because f3x(Æx)2 + (Æx)3g � Æx = 3xÆx + (Æx)2 ! 0 also as Æx ! 0. Note an important
point: because o(Æx) is not unique—countless different expressions can all be o(Æx)—
we can never write an equation of the form “o(Æx) = TERMS.” We can use o(Æx) only in
equations of the form “TERMS = o(Æx).” In particular,o(Æx) + o(Æx) = o(Æx): (8)

What happens if you add a pile of junk to a pile of junk? You still have a pile of junk!
The upshot of all the above is that in place of (3) or (6) we can now writeÆy = 2x Æx+ o(Æx) (9)

or Æy = 3x2 Æx + o(Æx); (10)

respectively, with absolute precision: (9)-(10) are not approximate, they are exact! Although
they suppress some of the information contained in (3) or (6), this information is of no use
for our purposes; therefore, (9)-(10), despite being less informative, are superior to (3) or
(6) because they are more compact and therefore more elegant—without being imprecise.

Every relationship between variables like (1) or (4) implies a relationship between
infinitesimals like (3) or (6) that records the variation with x of the effect on y of a small
change in x, and the key to finding this relationship between infinitesimals is always to
observe that x+ Æx and y + Æy satisfy the same relationship between variables as x and y.
Furthermore, the relationship between infinitesimals can always be rewritten in the form
of (9) or (10). The coefficient of Æx on the right-hand side is called the differential coefficient;
that is, Æy = fDIFFERENTIAL COEFFICIENTg � Æx+ o(Æx): (11)

But “differential coefficient” is a lot to have to write: wouldn’t it be better to have a simple
notation instead? Dividing (11) by Æx yieldsÆyÆx = DIFFERENTIAL COEFFICIENT + o(Æx)Æx : (12)
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Now taking the limit as Æx! 0 and using (7) yields

limÆx!0 ÆyÆx = DIFFERENTIAL COEFFICIENT + limÆx!0 o(Æx)Æx= DIFFERENTIAL COEFFICIENT + 0
or

DIFFERENTIAL COEFFICIENT = limÆx!0 ÆyÆx: (13)

We see that the differential coefficient is always the limit as Æx! 0 (and hence also Æy ! 0)
of the ratio Æy=Æx. So we need a notation that is evocative of this limit, and the traditional
choice is dy=dx. That is, we define dydx = limÆx!0 ÆyÆx; (14)z It is important to note, however, that whereas Æx and Æy are both numbers and Æy=Æx
is their ratio, neither dx nor dy is a number, and therefore dy=dx is not a ratio; rather,
it is simply an evocative shorthand for the right-hand side of (14), and hence for the
differential coefficient.

We can use (14) to find differential coefficients that are hard to find by purely alge-
braic manipulation (i.e., without invoking the concept of a limit). Suppose, e.g., thaty = 1x (15)

or xy = 1. Then (x+ Æx)(y+ Æy) = 1 as well, implying xy+ Æx � y+ x � Æy+ Æx � Æy = 1. Butxy = 1, so that Æx � y + x � Æy + Æx � Æy = 0, from which (x+ Æx)Æy = �yÆx or

Æy = � y Æxx+ Æx = � Æxx(x+ Æx) : (16)

So, from (14) and Lecture 4’s limit combination rule, the differential coefficient isdydx = limÆx!0 ÆyÆx = limÆx!0 �1x(x+ Æx) = �1x(x+ 0) = � 1x2 ; (17)

and from (11), the corresponding relationship between infinitesimals isÆy = � 1x2 � Æx+ o(Æx): (18)

Our next example requires the trigonometric identitysin(A) 
os(B) + 
os(A) sin(B) = sin(A+B); (19)

both in its general form and in the special casesin2(A) + 
os2(A) = 1 (20)zSo that (11) is more succinctly written as Æy = dydx � Æx+ o(Æx).
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Figure 2: Proof of (19). From the diagram, it is clear that \HOK = \KMN = A; and so sin(A) =JKOK = NKMK , 
os(A) = OJOK = MNMK , sin(B) = KMOM and 
os(B) = OKOM . Hence sin(A + B) = HMOM =HN+NMOM = JK+NMOM = JKOM + NMOM = JKOK OKOM + NMMK MKOM = sin(A) 
os(B) + 
os(A) sin(B). Similarly,
os(A+B) = OHOM = OJ�HJOM = OJOM � NKOM = OJOK OKOM � NKMK MKOM = 
os(A) 
os(B)� sin(A) sin(B).
where B = 12� � A.x Accordingly, suppose thaty = sin(x) (21)

and hence y + Æy = sin(x+ Æx): (22)

Subtracting (21) from (22), then using (19) with A = x and B = Æx, we obtainÆy = sin(x+ Æx)� sin(x) = sin(x) 
os(Æx) + 
os(x) sin(Æx)� sin(x)= f
os(Æx)� 1g sin(x) + 
os(x) sin(Æx); (23)xA proof of (19) is sketched in Figure 2. For an alternative proof, see Exercise 7 of Lecture 9.
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from which a clever multiplication by 1 and use of (20) with A = Æx yieldsÆyÆx = 
os(Æx)� 1Æx sin(x) + 
os(x) sin(Æx)Æx= f
os(Æx) + 1gf
os(Æx)� 1gf
os(Æx) + 1gÆx sin(x) + 
os(x) sin(Æx)Æx= f
os2(Æx)� 1gf
os(Æx) + 1gÆx sin(x) + 
os(x) sin(Æx)Æx= � sin2(Æx)f
os(Æx) + 1gÆx sin(x) + 
os(x) sin(Æx)Æx= � sin(Æx) sin(x)
os(Æx) + 1 sin(Æx)Æx + 
os(x) sin(Æx)Æx :
(24)

On using the limit combination rule, we now readily find the differential coefficient:dydx = limÆx!0 ÆyÆx= � limÆx!0 sin(Æx) limÆx!0 sin(x)
os(Æx) + 1 limÆx!0 sin(Æx)Æx + 
os(x) limÆx!0 sin(Æx)Æx= � sin(0) sin(x)
os(0) + 1 � 1 + 
os(x) � 1= 0 � 12 sin(x) + 
os(x) = 
os(x):
(25)

The corresponding relationship between infinitesimals isÆy = 
os(x) � Æx+ o(Æx): (26)

We conclude by discussing a geometrical interpretation of the differential coefficient
in terms of the graph of y versus x. For the sake of definiteness, suppose that the graph is
hill-shaped, like that in Figure 3a. Then (x; y) and (x+ Æx; y + Æy) are neighboring points
on the graph; Æx is the infinitesimal horizontal displacement from (x; y) to (x+ Æx; y); andÆy is the infinitesimal change in altitude from (x+ Æx; y) to (x+ Æx; y+ Æy). So the average
slope, or average gradient, between these two points is

ALTITUDE CHANGE

HORIZONTAL DISPLACEMENT
= ÆyÆx: (27)

This average gradient is the actual gradient of the dashed line in Figure 3a. The closer
together the two large dots, the more nearly the dashed line coincides with the dotted
line, which is called the tangent line at the focal point, because in this neighborhood it
meets the curve precisely once, whereas the dashed line—or chord—meets it twice. As a
consequence, the closer together the two large dots, the more nearly the average chord
gradient Æy=Æx coincides with the gradient of the tangent. If we allow x + Æx to become
arbitrarily close to x, i.e., if we allow Æx ! 0, then—because both dots lie on the curve—
we automatically ensure that y + Æy becomes arbitrarily close to y, or Æy ! 0, and hence
that Æy=Æx becomes arbitrarily close to the gradient of the tangent. SolimÆx!0 ÆyÆx = GRADIENT OF TANGENT LINE AT POINT WITH COORDINATES (x; y): (28)
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In other words, (14), i.e., dydx = limÆx!0 ÆyÆx (29)

defines the gradient of the tangent at the point (x; y), which in turn measures the steep-
ness of the hill at this point.

x x+∆x

y

y+∆y

HaL

Hx,yL
Hx+∆x,yL

Hx+∆x,y+∆yL

x+∆x

y
y+∆y

HbL
Hx,yL

Hx,y+∆yL Hx+∆x,y+∆yL

x

Figure 3: The geometrical interpretation of the differential coefficient as the gradient or slope of
the tangent line.

Here several remarks are in order. First, everything we have said about Figure 3a
applies with equal force to Figure 3b, where the graph is the same but we have selected
a different focal point (x; y). The only difference is that Æy is now negative. Because Æx is
still positive, Æy=Æx is now negative; and so, from (29), dy=dx is also negative—unless the
focal point is precisely at the summit (and therefore not as drawn in the diagram). What
happens in this special case is that, although Æy=Æx is strictly negative, it gets arbitrarily
close to zero as the two dots on the curve coalesce; and so, from (29), dy=dx = 0 (and the
tangent line is horizontal).{ Thus dy=dx > 0 going up the hill (from left to right, i.e., in the
direction of increasing x), dy=dx = 0 at the top, and dy=dx < 0 going down the other side.
Similar considerations apply to traversing a valley (again from left to right): dy=dx < 0
going down, dy=dx = 0 at the bottom, and dy=dx > 0 going up the other side.

Second, dy=dx is a notation for the gradient or slope of the tangent line to a curve at
an arbitrary, variable point with coordinates (x; y)—but we may happen to be especially
interested in a particular, fixed point, say the point at which x = a. Then we need a new
notation to denote the gradient at that particular point. The one we use isdydx ���x=a: (30)

Third, we now know everything we need to know to find the equation of the tangent
line to a given curve at any particular point. An example will serve best to illustrate the
method. Accordingly, suppose that we would like to know the equation of the tangent{Thus, Æy=Æx < 0 usually means dy=dx < 0, but because it is possible for Æy=Æx < 0 to mean only thatdy=dx = 0 (e.g., at a summit), all that we can deduce in general from Æy=Æx < 0 in the limit as Æx! 0 is thatdy=dx � 0. Similarly, with regard to the function K in Lectures 2 and 3, all we can deduce from K(u) < 1
in the limit as u!1 is that K(1) � 1. These results illustrate a more general result, namely, that limiting
processes weaken strong inequalities.
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line to the curve with equation y = sin(x) at the point where x = 16�, and hence y =sin �16�� = 12 . From (25), we find that the slope of the tangent line is

m = dydx ���x= 16� = 
os(x)��x= 16� = 
os�16�� = 12p3: (31)

So the equation of the tangent line is that of the line through
�16�; 12� with slope m ory � 12 = m �x� 16�� =) y = p32 x� �p312 + 12 ; (32)

which intersects the axis y = 0 at the point where x = �6 � 1p3 = �0:054; see Figure 4.
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Figure 4: The tangent line to y = sin(x) at the point with coordinates
�16�; 12�.

Exercises

1. Find the differential coefficient for y = 
os(x).
Hint: Use the second identity whose proof is sketched in Figure 2.

2. Find the differential coefficient for y = xx+ 1 .

3. Find the tangent line to y = xx+ 1 at the point with coordinates
�1; 12�.

4. Find the tangent line to y = 
os(x) at the point with coordinates
�13�; 12�.

5. Find the tangent line to y = px at the point with coordinates (4; 2).
6. Let x denote the absolute temperature (in degrees Kelvin) of an ideal radiator or

black body and let y denote the energy it radiates per unit area per second or power
per unit area. Then, according to the Stefan-Boltzmann law, y = �x4 where �
(� 5:67 � 10�8JK�4m�2s�1) is the Stefan-Boltzmann constant. How is an infinites-
imal increase Æy in power per unit area related to an infinitesimal increase Æx in
temperature? What is the differential coefficient of y with respect to x?
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Suitable problems from standard calculus texts

Stewart (2003): p. 156 , ## 7-14.

Reference

Stewart, J. 2003 Calculus: early transcendentals. Belmont, California: Brooks/Cole, 5th edn.

Solutions or hints for selected exercises

1. We have both y = 
os(x)
and y + Æy = 
os(x+ Æx):
Subtracting and using 
os(A + B) = 
os(A) 
os(B) � sin(A) sin(B) with A = x andB = Æx, we obtainÆy = 
os(x+ Æx)� 
os(x) = 
os(x) 
os(Æx)� sin(x) sin(Æx)� 
os(x)= f
os(Æx)� 1g 
os(x) � sin(x) sin(Æx);
from which a clever multiplication by 1 and use of (20) with A = Æx yieldsÆyÆx = 
os(Æx)� 1Æx 
os(x) � sin(x) sin(Æx)Æx= f
os(Æx) + 1gf
os(Æx)� 1gf
os(Æx) + 1gÆx 
os(x) � sin(x) sin(Æx)Æx= � sin2(Æx)f
os(Æx) + 1gÆx 
os(x) � sin(x) sin(Æx)Æx= � sin(Æx) 
os(x)
os(Æx) + 1 sin(Æx)Æx � sin(x) sin(Æx)Æx :
From the limit combination rule, we readily find that the differential coefficient isdydx = limÆx!0 ÆyÆx= � limÆx!0 sin(Æx) limÆx!0 
os(x)
os(Æx) + 1 limÆx!0 sin(Æx)Æx � sin(x) limÆx!0 sin(Æx)Æx= � sin(0) 
os(x)
os(0) + 1 � 1 � sin(x) � 1= 0 � 12 
os(x)� sin(x) = � sin(x);
and that the corresponding relationship between infinitesimals isÆy = � sin(x) � Æx + o(Æx):
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2. We have both y = xx+ 1
and y + Æy = x+ Æx(x+ Æx) + 1 = x+ Æxx+ 1 + Æx:
Subtracting, we obtain

Æy = x+ Æxx+ 1 + Æx � xx+ 1 = (x+ Æx)(x+ 1)� (x+ 1 + Æx)x(x+ 1 + Æx)(x+ 1)
which simplifies to Æy = Æx(x+ 1 + Æx)(x+ 1)
so that ÆyÆx = 1(x+ 1 + Æx)(x+ 1) :
Now, from the limit combination rule, the differential coefficient isdydx = limÆx!0 ÆyÆx = 1(x+ 1 + 0)(x+ 1) = 1(x+ 1)2
and the corresponding relationship between infinitesimals is

Æy = Æx(x+ 1)2 + o(Æx):
3. From the previous exercise we have dydx = 1(x+1)2 , so the slope of the tangent line is

m = dydx ���x=1 = 1(x+ 1)2 ���x=1 = 14 :
Its equation is therefore y � 12 = 14(x� 1) or y = 14(x+ 1).

4. From Exercise 1 we have dydx = � sin(x), so the slope of the tangent line is

m = dydx ���x=1 = 1(x+ 1)2 ���x=1 = 14 :
Its equation is therefore y � 12 = 14(x� 1) or y = 14(x+ 1).

5. For positive x we have both y = px
and y + Æy = px+ Æx:
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Subtracting, we obtain

Æy = px+ Æx � px = (px+ Æx � px) �1 = (px+ Æx � px)px+ Æx + pxpx+ Æx + px
which simplifies to

Æy = (px+ Æx � px)(px+ Æx + px)px+ Æx � px = (px+ Æx)2 � (px)2px+ Æx + px= x+ Æx � xpx+ Æx + px = Æxpx+ Æx + px
so that ÆyÆx = 1px+ Æx + px:
Now, from the limit combination rule, the differential coefficient isdydx = limÆx!0 ÆyÆx = 1px+ 0 + px = 1px+px = 12px
(which exists as long as x > 0) and the corresponding relationship between infinites-
imals is Æy = 12 Æxpx + o(Æx):
So the slope of the tangent line at (4,2) is

m = dydx ���x=4 = 12px ���x=4 = 12p4 = 14
and its equation is y � 2 = 14(x� 4) or y = 14x+ 1.

6. Æy = 4�x3 Æx+ 6�x2 Æx2 + 4�x Æx3 + �Æx4 = 4�x3 Æx+ o(Æx) =) dydx = 4�x3.
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