
8. Function sequences. The exponential and logarithm

The next most fundamental concept in calculus (after those of function, sequence, limit,
infinitesimal, differential coefficient and derivative) is that of a function sequence, which
differs from that of an ordinary sequence only in the obvious way: ffng = ff1; f2; f3; : : :g
is an ordinary sequence if it is just a list of numbers, but it is a function sequence if instead
it is a list of functions. If we use the notation ffng for a function sequence as well, how-
ever, then we risk confusion between the two; so instead we denote a function sequence
by the labels assigned by each function to the independent variable, e.g., ffn(x)g =ff1(x); f2(x); f3(x); : : :g if the independent variable is x, or ffn(t)g = ff1(t); f2(t); f3(t); : : :g
if the independent variable is t, and so on.

Suppose, for example, that reproduction in a Fibonacci population is not as perfect as
Fibonacci supposed. Specifically, it is no longer true that every pair of rabbits reproduces
itself with certainty every month; rather, it reproduces itself with probability x (and so
fails to reproduce with probability 1 � x), where 0 � x � 1. It is now no longer true
that the initial pair contributes a pair of newborns by the end of month 2; in terms of
Lecture 3, y2 6= 2. But the expected number of newborn pairs at the end of month 2 is x (in
the sense that a very large number, N , of identical but independent Fibonacci breeding
experiments would yield Nx newborn pairs by the end of February), and so the expected
total of rabbit pairs at the end of February is 1 + x. Thus, if we re-interpret yk as expected
number of young pairs at the end of month k, ak as expected number of adult pairs at
the end of month k and uk as total expected number of pairs at the end of month k, theny2 = x, a2 = 1 and u2 = 1 + x; see Table 1.n yn an un = un(x)

0 1 0 1
1 0 1 1
2 x 1 1 + x
3 x 1 + x 1 + 2x
4 x(1 + x) 1 + 2x 1 + 3x+ x2
5 x(1 + 2x) 1 + 3x+ x2 1 + 4x+ 3x2
6 x(1 + 3x+ x2) 1 + 4x+ 3x2 1 + 5x+ 6x2 + x3
7 x(1 + 4x+ 3x2) 1 + 5x+ 6x2 + x3 1 + 6x+ 10x2 + 4x3
8 x(1 + 5x+ 6x2 + x3) 1 + 6x+ 10x2 + 4x3 1 + 7x+ 15x2 + 10x3 + x4
9 x(1 + 6x+ 10x2 + 4x3) 1 + 7x+ 15x2 + 10x3 + x4 1 + 8x+ 21x2 + 20x3 + 5x4 + x5
10 x(1 + 7x+ 15x2 + 10x3 + x4) 1 + 8x+ 21x2 + 20x3 + 5x4 1 + 9x+ 28x2 + 35x3 + 15x4 + x5

Table 1: The Fibonacci polynomials.

More generally, when reproduction is uncertain, it isn’t true that the an�1 adults at the
end of month n�1 produce an�1 young at the end of month n. Neverthless, if we multiplyan�1 by the probability that a pair reproduces, which is x, we find that the expected number
of young at the end of month n is yn = x an�1; (1)

which agrees with Lecture 3 for x = 1.� We interpret (1) as saying that an�1 adults pro-�Except, of course, that we are now using n in place of k.



duce xan�1 newborns on average (where the average is taken over a large number of
independent Fibonacci breeding experiments). Our model continues to exclude mortal-
ity: a young rabbit still becomes an adult after a month has elapsed. So expected number
of adults at the end of month n still equals expected number of young at the end of monthn� 1 plus expected number of adults at the end of month n� 1:an = yn�1 + an�1: (2)

In other words, the result of Lecture 3 still holds, except that we now interpret an andyn as averages (over a very large number of Fibonacci experiments). With the same re-
interpretation, the total expected number of rabbit pairs at the end of month n is stillun = an + yn: (3)

Replacing n by n+ 1 in (1)-(3), we find thatyn+1 = x an (4a)an+1 = yn + an (4b)

and un+1 = an+1 + yn+1 = yn + an + x an. So, using (2)-(3), un+1 = un + x(yn�1 + an�1) orun+1 = un + xun�1 (5)

(from (3) with n� 1 in place of n). Thus total expected number of rabbit pairs at time n is
defined implicitly by u0 = 1 (6a)u1 = 1 (6b)un+1 = un + xun�1 if n � 1: (6c)

For example, because u2 = 1 + x, we have u3 = u2 + xu1 = 1 + x + x = 1 + 2x, u4 =u3 + xu2 = 1 + 2x + x(1 + x) = 1 + 3x + x2, and so on; see Table 1. The expected totals
at the end of each month define a function sequence fun(x)g in which each term un has
domain [0, 1]. We will call these functions the Fibonacci polynomials.y

A more interesting function sequence compares expected number of rabbit pairs at
the end of a month with expected number at the end of the previous month. By analogy
with Lecture 3, we define the function sequence f�n(x)g by

�n(x) = un(x)un�1(x) ; n � 1: (7)

Each �n has the same domain [0, 1] as un. Alternatively, dividing (6b) and (6c) by u0 andun, respectively, and proceeding as in Lecture 3, we can define f�n(x)g recursively by�1 = 1 (8a)�n+1 = 1 + x�n if n � 1 (8b)yNote, as discussed at the end of Lecture 1, that we are using a single notation for both function and
label, because it is obvious from context which meaning is intended.
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n �n = �n(x)
1 1

2 1 + x
3 1+2x1+x
4 1+3x+x21+2x
5 1+4x+3x21+3x+x2
6 1+5x+6x2+x31+4x+3x2
7 1+6x+10x2+4x31+5x+6x2+x3
8 1+7x+15x2+10x3+x41+6x+10x2+4x3
9 1+8x+21x2+20x3+5x41+7x+15x2+10x3+x4

10 1+9x+28x2+35x3+15x4+x51+8x+21x2+20x3+5x4
Table 2: The Fibonacci rational functions.

(Exercise 1). For example, �2 = 1+x=�1 = 1+x=1 = 1+x, �3 = 1+x=�2 = 1+x=(1+x) =(1 + 2x)=(1 + x); see Table 2 (and Exercise 2). We will call the functions of the sequencef�n(x)g the Fibonacci rational functions.z
The graph of �n, i.e., the curve y = �n(x), is shown in Figure 1 as a solid curve

for n = 1; :::; 6. These graphs lie alternately below and above the dashed curve (which
is the same in each diagram), getting closer to it with each successively larger value ofn. What function does this dashed curve represent? Let us call it �1. Then for large
enough n it is impossible to tell the difference between �n(x) and �n+1(x), because both
are indistinguishable from �1(x).Thus (8b) implies�1 = 1 + x�1 ; (9)

from which it follows readily that�1 = �1(x) = 12(1 +p1 + 4x) (10)

(Exercise 3). Note that �1 is identical to the composition T at the end of Lecture 2.
Let us briefly take stock. On the one hand, Figure 1 very strongly suggests that the

function sequence f�n(x)g converges as n ! 1, in the sense that for any x 2 [0; 1℄, �n(x)
can be made as close as we please to whatever value the limiting function assigns to x
by allowing n to become sufficiently large. On the other hand, we have shown that iff�n(x)g converges, then the limiting function can only be �1 = �1(x) defined by (10)
above. Strictly speaking, however, we have not actually proved the result thatlimn!1�n(x) = �1(x) = 12(1 +p1 + 4x) (11)zAgain, we use a single notation for both function and label, because it is obvious from context which
meaning is intended.
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Figure 1: Oscillatory convergence of the Fibonacci rational function sequence. The solid curves
show y = �n(x) for n = 1; : : : ; 6. The dashed curve, the same in each diagram, is y = �1(x).
for 0 � x � 1. Nevertheless, the result is true, and a proof appears in the appendix.

The upshot of all the above is that the limit of a convergent function sequence is yet
another function. But convergence is a two-sided coin. Its other side is that a function can
be defined as the limit of a function sequence.

Suppose, for example, that your savings account earns compound interest at an an-
nual rate of x (usually quoted as 100x %, e.g., a rate of 6% means x = 0:06). If you deposit
a dollar today, how much will it be worth a year from now? The answer depends on how
often the interest is compounded. If the interest is compounded only once, at the end of
the year, then your dollar is worth only 1 + x. If the interest is compounded twice, once
after six months and again at year’s end, then the dollar is worth 1 + 12x dollars after six
months, and whatever you have after six months is worth 1 + 12x times as much at year’s
end. In other words, at the end of the year your dollar is worth (1+ 12x)(1+ 12x) = (1+ 12x)2.
Similarly, if the interest is compounded quarterly, then after three months your dollar is
worth 1 + 14x, and at year’s end it is worth (1 + 14x)4.
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Figure 2: Monotonic convergence of the compound-interest function sequence defined by (12).
The solid curves show y = !n(x) for n = 1; : : : ; 6. The dashed curve is y = exp(x).

This argument generalizes. Let !n(x) be how much your dollar is worth at year’s end
if interest is compounded n times a year. Then f!n(x)g is a function sequence defined by

!n(x) = �1 + xn�n : (12)

The sequence is graphed in Figures 2-3, where y = !n(x) is shown as a solid curve forn = 1; :::; 6 in Figure 2 and for n = 2m, where m = 1; : : : ; 6, in Figure 3. Note that
the solid curves converge from below toward the dashed curve, which we denote byy = !1(x). Because !1(x) is the limit of !n(x) as n ! 1, !1(x) tells you how much
your dollar would be worth at year’s end, at interest rate x, if interest were compounded
continuously from the moment you put your dollar in the bank. It is such an important
function in mathematics that we give it a special name, the exponential function, and we
denote it by the symbol exp. Thus exp is defined byexp(x) = !1(x) = limn!1!n(x): (13)

The domain on which this definition is valid turns out to be (�1;1), although only the
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restriction of exp to [0; 1℄ is graphed in Figures 2-3.x Note in particular thatexp(0) = 1 (14)

because !n(0) = 1 for every value of n—and therefore remains so in the limit as n!1.

0 0.5 1
x

1

1.5

2

2.5

y n = 32

0 0.5 1
x

1

1.5

2

2.5

y n = 64

0 0.5 1
x

1

1.5

2

2.5

y n = 8

0 0.5 1
x

1

1.5

2

2.5

y n = 16

0 0.5 1
x

1

1.5

2

2.5

y n = 2

0 0.5 1
x

1

1.5

2

2.5

y n = 4

Figure 3: Monotonic convergence of the compound-interest function sequence defined by (12).
The solid curves show y = !n(x) for n = 2m, where m = 1; : : : ; 6. The dashed curve is y = exp(x).

It can be shown that exp is positive and strictly increasing on its domain, from which
several things follow at once: its range is (0;1); it is invertible; and the inverse function
is also strictly increasing, with domain (0;1) and range (�1;1). This inverse is just as
important in mathematicas as the exponential itself, and so it also has a special name: we
call it the logarithmic function and denote it by the symbol ln (for natural logarithm). The
graphs of exp and ln are sketched in Figure 4; note that (14) impliesln(1) = 0: (15)

Further properties of exp and ln will be discussed in later lectures, especially Lecture 9.xLarger values of x are anyhow clearly unrealistic in the case of compound interest . . . I think—but if
you know of such a bank, please tell me at once!
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Figure 4: Graphs of (a) the exponential function and (b) its inverse, the logarithmic function.
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Figure 5: y = 2x1+p1+4x .

Appendix: The convergence of the Fibonacci rational function sequence

The purpose of this appendix is to establish the convergence of the sequence f�n(x)g
defined by (8). Each function in this sequence has domain [0; 1℄. When x = 0, however,
(8) implies that �n = 1 for all n. So f�n(0)g is clearly convergent to �1(0) = 1, and we can
safely assume that 0 < x � 1, so that (8) implies �n > 1 for all n � 2.

Subtracting (9) from (8b), we obtain�n+1 � �1 = � x�n�1f�n � �1g; (16)

so thatj�n+1 � �1j = x�n�1 j�n � �1j < x�1 j�n � �1j = 2x1 +p1 + 4x j�n � �1j (17)

for all n � 2. But 2x1+p1+4x is strictly increasing with respect to x (Figure 5), and so cannot

exceed 21+p5 � 0:618 for any x 2 (0; 1℄. Thus (17) impliesj�n+1 � �1j < 0:62 j�n � �1j ; (18)

regardless of the value of x. That is, the distance between �n and �1 is reduced by at
least 38% at each iteration of the recurrence relation, and must eventually approach zero.
Moreover, from (16), if �n > �1 then �n+1 < �1, and vice versa; that is, the convergence
is oscillatory.
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Exercises

1. Verify (8).

2. Verify Table 2.

3. Verify (10).

4. Show that the inverse of g defined by g(x) = 1= exp(x) is g�1 defined by g�1(y) =ln(1=y).
5. (a) Verify that the function f defined byf(x) = 1exp(1� 4x)

is increasing on [0; 1℄.
(b) What is the range of f?

(c) Find an expression for f�1(y).
6. The function sequence fsn(x) j n � 0; 0 � x � 4g is defined recursively bys0 = 1sn+1 = 12 �sn + xsn� ; for n � 0

(a) Find rational-function expressions for s1(x), s2(x), s3(x) and s4(x).
(b) What function s1 is defined on [0; 4℄ by s1(x) = limn!1 sn(x)?
(c) Verify graphically that the function sequence converges from above (in the

sense that sn(x) � s1(x) for n � 1).

7. The function sequence fsn(x) j n � 0; 0 � x � 8g is defined recursively bys0 = 1sn+1 = 12 �sn + xs 2n � ; for n � 0
(a) Find rational-function expressions for s1(x), s2(x) and s3(x).
(b) What function s1 is defined on [0; 8℄ by s1(x) = limn!1 sn(x)?
(c) Verify graphically that the function sequence converges.

8. A sequence fHn(x)g of polynomials called the Hermite polynomials is defined by
the recurrence relation H0 = 1H1 = 2xHn+1 = 2(xHn � nHn�1) if n � 1:
Show that H4(x) = 4(4x4 � 12x2 + 3), and find H7(x).
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9. A sequence fLn(x)g of polynomials called the Laguerre polynomials is defined by
the recurrence relationL0 = 1L1 = 1� xLn+1 = (2n+ 1� x)Ln � n2Ln�1 if n � 1:
Show that L4(x) = x4 � 16x3 + 72x2 � 96x+ 24, and find L6(x).

10. A sequence fPn(x)g of polynomials called the Legendre polynomials is defined by
the recurrence relationP0 = 1P1 = xPn+1 = (2n+ 1)xn+ 1 Pn � nn+ 1Pn�1 if n � 1:
Show that P3(x) = 12x(5x2 � 3), and find P5(x).

11. The compositions f and g are defined by f(x) = H3(L2(x)) and g(x) = L2(H3(x)),
where H3 and L2 are defined in Exercises 8-9. Find explicit expressions for the poly-
nomials f(x) and g(x). What are their orders?

12. The compositions f and g are defined by f(x) = P2(L3(x)) and g(x) = L3(P2(x)),
where L3 and P2 are defined in Exercises 9-10. Find explicit expressions for the
polynomials f(x) and g(x). What are their orders?
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Solutions or hints for selected exercises

7. (a) s1(x) = 12(x+ 1), s2(x) = x3+3x2+11x+14(x+1)2 ands3(x) = x9+9x8+124x7+612x6+1638x5+2462x4+2492x3+756x2+97x+18(x4+4x3+14x2+12x+1)2 .

(b) As n!1, sn ! s1 =) sn+1 ! s1; and so, letting n!1 in sn+1 = 12(sn+xs�2n ),
we obtain s1 = 12(s1 + xs�21 ), which is readily solved to yield s1 = s1(x) = 3px.
(c) See the diagram below. The solid curves are y = sn(x) for n = 0; : : : ; 5 and the
dashed curve is y = s1(x).
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8. H7(x) = 16x(8x6 � 84x4 + 210x2 � 105).
9. L6(x) = x6 � 36x5 + 450x4 � 2400x3 + 5400x2 � 4320x+ 720.

10. P5(x) = 18x(63x4 � 70x2 + 15).
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