
10. Finite sums and infinite series

You already know what a sequence is, and from any sequence you can induce another by
adding the first n terms. Usually, we use a lower-case letter for the original sequence and
an upper-case letter for the induced sequence, i.e., the sequence of finite sums; thus, if the
original sequence is fskg, then the sequence of finite sums will be fSng defined by

Sn = s1 + s2 + : : :+ sn�1 + sn = nXk=1 sk (1)

(using the summation notation introduced at the end of Lecture 3). Often there’s a trick
for obtaining a simple expression for Sn, in other words, a formula for the finite sum.
For example, if sk = k then we can write the sum twice as follows, first forwards, then
backwards:

Sn = 1 + 2 + 3 + : : :+ (n� 2) + (n� 1) + n = nXk=1 kSn = n+ (n� 1) + (n� 2) + : : :+ 3 + 2 + 1 = nXk=1fn� (k � 1)g: (2)

Now, if we add each term to the one directly above, then we find that the result is n + 1
in all n cases. So twice Sn must sum to n times n+ 1. That is, 2Sn = n(n+ 1) orSn = 1 + 2 + 3 + : : : + n = 12n(n+ 1): (3)

For example, 1+2+3+4+ : : :+99+100 = 12 � 100� 101 = 5050. But that particular trick
in essence works only for the example on which we have used it.

A trick that works much more often is to rewrite sk as the difference between the k-th
and the (k � 1)-th term of a judiciously chosen different sequence, say fpkg. For ifsk = pk � pk�1 (4)

for all k = 1; : : : ; n then�Sn = sn + sn�1 + sn�2 + sn�3 + : : :+ s4 + s3 + s2 + s1= (pn � pn�1) + (pn�1 � pn�2) + (pn�2 � pn�3) + (pn�2 � pn�3) + : : :+ (p4 � p3) + (p3 � p2) + (p2 � p1) + (p1 � p0)= pn + (�pn�1 + pn�1) + (�pn�2 + pn�2) + (�pn�3 + pn�3) + : : :+ (�p3 + p3) + (�p2 + p2) + (�p1 + p1)� p0= pn � p0
(5)

because all terms cancel in pairs, except for the very first and last.�Note that (4) implies fpkg = fpk j k � 0g, whereas fskg = fsk j k � 1g



Suppose, for example, that we wish to calculate the finite sum13 + �13�2 + �13�3 + : : :+ �13�n = nXk=1 �13�k ; (6)

for which sk = �13�k. Here a judicious choice ispk = �32 � �13�k+1 ; (7)

because now pk � pk�1 = �32 �13�k+1 + 32 �13�k = 32 � ��13 + 1	 �13�k= 32 � 23 � �13�k = �13�k = sk (8)

and (5) impliesSn = pn � p0 = �32 � �13�n+1 + 32 � �13�0+1 = 12 �1� �13�n	 : (9)

In other words, nXk=1 �13�k = 12 �1� �13�n	 : (10)

For example, 13 + �13�2 + �13�3 ++ �13�4 + �13�5 + �13�6 + �13�7 = 12�1� �13�7	 = 10932187 .
An even more judicious choice, namely,

pk = arkr � 1 (11)

yields the standard formula for the sum of a finite geometric sum of n terms with first
term a and ratio r, where r 6= 1. For (11) implies

pk � pk�1 = arkr � 1 � ark�1r � 1 = ark � ark�1r � 1 = ark�1(r � 1)r � 1 = ark�1: (12)

So, on setting sk = ark�1 (13)

in (5) we obtain Sn = pn � p0 = arnr � 1 � ar0r � 1 = a(rn � 1)r � 1 : (14)

In other words,nXk=1 ark�1 = a+ ar + ar2 + ar3 : : :+ arn�2 + arn�1 = a(rn � 1)r � 1 ; r 6= 1: (15)

For r = 1 we need no tricks:nXk=1 a 1k�1 = a+ a+ a+ a : : : + a+ a(n times) = na: (16)
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nPk=1 k = 1 + 2 + 3 + : : :+ n = 12n(n+ 1)nPk=1 k2 = 12 + 22 + 32 + : : : + n2 = 16n(n+ 1)(2n+ 1)nPk=1 k3 = 13 + 23 + 33 + : : : + n3 = 14n2(n+ 1)2nPk=1 k4 = 14 + 24 + 34 + : : : + n4 = 130n(n+ 1)(2n+ 1)(3n2 + 3n� 1)nPk=1 k5 = 15 + 25 + 35 + : : : + n5 = 112n2(n+ 1)2(2n2 + 2n� 1)nPk=1 k6 = 16 + 26 + 36 + : : : + n6 = 142n(n+ 1)(2n+ 1)(3n4 + 6n3 � 3n+ 1)
Table 1: The sums of the powers of the first n integers for the first six integer exponents.

In sum: nXk=1 ark�1 = (a(rn�1)r�1 if r 6= 1na if r = 1: (17)

Of course, (10) is the special case for which n = 7 and a = r = 13 .
The only thing about the trick that is the slightest bit, well, tricky is judiciously guess-

ing pk. But for all of the results in Table 1—some of which are needed in Lecture 12—the
judicious choice of pk always turns out to be just Sk itself . . . which you know, because
you know Sn from the table. Now you know everything you need to know to complete
Exercise 1 by yourself.

In many of the above cases, sk increases with k, and so fskg and fSng both diverge.
If sk ! 0 as k ! 1, however, it is possible for the sequence fSng to converge to a limit,
which we denote by S1. That is,

S1 = limn!1Sn = limn!1 nXk=1 sk: (18)

Then the right-hand side of (18) is called an infinite series and is usually written as

either
1Xk=1 sk or s1 + s2 + s3 + s4 + : : : (19)

The left-hand side of (18) is the sum to which this infinite series converges. For example,
becausey limn!1 rn = 0 whenever jrj < 1; (20)ySee Equation (22) of Lecture 3.
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(15) implies that1Xk=1 ark�1 = a+ ar + ar2 + ar3 + : : :
= limn!1 a(rn � 1)r � 1 = a(0� 1)r � 1 = a1� r whenever jrj < 1 (21)

(on using the limit combination rule). Thus the infinite geometric series with first term a
and ratio r converges to the sum a1�r whenever jrj < 1 (but diverges whenever jrj � 1).

In particular, for a = r = 13 we obtain13 + �13�2 + �13�3 + �13�4 + : : : = 12 : (22)

As a further example, consider the infinite series11:2 + 12:3 + 13:4 + 14:5 + : : : = 1Xk=1 1k(k + 1) : (23)

Here sk = 1k(k+1) = kk+1 � k�1k . So with pk = kk+1 in (4)-(5) we obtain

Sn = nXk=1 1k(k + 1) = pn � p0 = nn+ 1 � 0 = nn+ 1 (24)

and thus deduce from (18)-(19) thatS1 = 1Xk=1 1k(k + 1) = limn!1Sn = limn!1 nn+ 1 = limn!1 11 + 1n = 11 + 0 = 1: (25)

In other words, 11:2 + 12:3 + 13:4 + 14:5 + 15:6 + 16:7 + : : : (forever) = 1.

Exercises

1. Verify Table 1.

2. Show that 11:2:4 + 12:3:5 + 13:4:6 + 14:5:7 + : : : = 1Xk=1 1k(k + 1)(k + 3) = 736 :
Hint: A judicious choice is pk = k(7k2+42k+59)36(k+1)(k+2)(k+3) .

Suitable problems from standard calculus texts

Stewart (2003): p. 720, ## 14, 15, 17-20 and 26 (for which use pn = n(5n+13)6(n+2)(n+3)).
Reference

Stewart, J. 2003 Calculus: early transcendentals. Belmont, California: Brooks/Cole, 5th edn.
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