10. Finite sums and infinite series

You already know what a sequence is, and from any sequence you can induce another by adding the first n terms. Usually, we use a lower-case letter for the original sequence and an upper-case letter for the induced sequence, i.e., the sequence of finite sums; thus, if the original sequence is $\left\{s_{k}\right\}$, then the sequence of finite sums will be $\left\{S_{n}\right\}$ defined by

$$
\begin{equation*}
S_{n}=s_{1}+s_{2}+\ldots+s_{n-1}+s_{n}=\sum_{k=1}^{n} s_{k} \tag{1}
\end{equation*}
$$

(using the summation notation introduced at the end of Lecture 3). Often there's a trick for obtaining a simple expression for S_{n}, in other words, a formula for the finite sum. For example, if $s_{k}=k$ then we can write the sum twice as follows, first forwards, then backwards:

$$
\begin{align*}
& S_{n}=1+2+3+\ldots+(n-2)+(n-1)+n=\sum_{k=1}^{n} k \\
& S_{n}=n+(n-1)+(n-2)+\ldots+3+2+1=\sum_{k=1}^{n}\{n-(k-1)\} . \tag{2}
\end{align*}
$$

Now, if we add each term to the one directly above, then we find that the result is $n+1$ in all n cases. So twice S_{n} must sum to n times $n+1$. That is, $2 S_{n}=n(n+1)$ or

$$
\begin{equation*}
S_{n}=1+2+3+\ldots+n=\frac{1}{2} n(n+1) . \tag{3}
\end{equation*}
$$

For example, $1+2+3+4+\ldots+99+100=\frac{1}{2} \times 100 \times 101=5050$. But that particular trick in essence works only for the example on which we have used it.

A trick that works much more often is to rewrite s_{k} as the difference between the k-th and the $(k-1)$-th term of a judiciously chosen different sequence, say $\left\{p_{k}\right\}$. For if

$$
\begin{equation*}
s_{k}=p_{k}-p_{k-1} \tag{4}
\end{equation*}
$$

for all $k=1, \ldots, n$ then*

$$
\begin{align*}
S_{n}= & s_{n}+s_{n-1}+s_{n-2}+s_{n-3}+\ldots+s_{4}+s_{3}+s_{2}+s_{1} \\
= & \left(p_{n}-p_{n-1}\right)+\left(p_{n-1}-p_{n-2}\right)+\left(p_{n-2}-p_{n-3}\right)+\left(p_{n-2}-p_{n-3}\right)+\ldots \\
& \quad+\left(p_{4}-p_{3}\right)+\left(p_{3}-p_{2}\right)+\left(p_{2}-p_{1}\right)+\left(p_{1}-p_{0}\right) \\
& =p_{n}+\left(-p_{n-1}+p_{n-1}\right)+\left(-p_{n-2}+p_{n-2}\right)+\left(-p_{n-3}+p_{n-3}\right)+\ldots \tag{5}\\
& \quad \quad+\left(-p_{3}+p_{3}\right)+\left(-p_{2}+p_{2}\right)+\left(-p_{1}+p_{1}\right)-p_{0} \\
= & p_{n}-p_{0}
\end{align*}
$$

because all terms cancel in pairs, except for the very first and last.

[^0]Suppose, for example, that we wish to calculate the finite sum

$$
\begin{equation*}
\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{3}+\ldots+\left(\frac{1}{3}\right)^{n}={ }_{k=1}^{n}\left(\frac{1}{3}\right)^{k} \tag{6}
\end{equation*}
$$

for which $s_{k}=\left(\frac{1}{3}\right)^{k}$. Here a judicious choice is

$$
\begin{equation*}
p_{k}=-\frac{3}{2} \cdot\left(\frac{1}{3}\right)^{k+1} \tag{7}
\end{equation*}
$$

because now

$$
\begin{align*}
p_{k}-p_{k-1} & =-\frac{3}{2}\left(\frac{1}{3}\right)^{k+1}+\frac{3}{2}\left(\frac{1}{3}\right)^{k}=\frac{3}{2} \cdot\left\{-\frac{1}{3}+1\right\}\left(\frac{1}{3}\right)^{k} \tag{8}\\
& =\frac{3}{2} \cdot \frac{2}{3} \cdot\left(\frac{1}{3}\right)^{k}=\left(\frac{1}{3}\right)^{k}=s_{k}
\end{align*}
$$

and (5) implies

$$
\begin{equation*}
S_{n}=p_{n}-p_{0}=-\frac{3}{2} \cdot\left(\frac{1}{3}\right)^{n+1}+\frac{3}{2} \cdot\left(\frac{1}{3}\right)^{0+1}=\frac{1}{2}\left\{1-\left(\frac{1}{3}\right)^{n}\right\} . \tag{9}
\end{equation*}
$$

In other words,

$$
{ }_{k=1}^{n}\left(\frac{1}{3}\right)^{k}=\frac{1}{2}\left\{1-\left(\frac{1}{3}\right)^{n}\right\}
$$

For example, $\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{3}++\left(\frac{1}{3}\right)^{4}+\left(\frac{1}{3}\right)^{5}+\left(\frac{1}{3}\right)^{6}+\left(\frac{1}{3}\right)^{7}=\frac{1}{2}\left\{1-\left(\frac{1}{3}\right)^{7}\right\}=\frac{1093}{2187}$.
An even more judicious choice, namely,

$$
\begin{equation*}
p_{k}=\frac{a r^{k}}{r-1} \tag{11}
\end{equation*}
$$

yields the standard formula for the sum of a finite geometric sum of n terms with first term a and ratio r, where $r \neq 1$. For (11) implies

$$
\begin{equation*}
p_{k}-p_{k-1}=\frac{a r^{k}}{r-1}-\frac{a r^{k-1}}{r-1}=\frac{a r^{k}-a r^{k-1}}{r-1}=\frac{a r^{k-1}(r-1)}{r-1}=a r^{k-1} \tag{12}
\end{equation*}
$$

So, on setting

$$
\begin{equation*}
s_{k}=a r^{k-1} \tag{13}
\end{equation*}
$$

in (5) we obtain

$$
\begin{equation*}
S_{n}=p_{n}-p_{0}=\frac{a r^{n}}{r-1}-\frac{a r^{0}}{r-1}=\frac{a\left(r^{n}-1\right)}{r-1} . \tag{14}
\end{equation*}
$$

In other words,

$$
\begin{equation*}
{ }_{k=1}^{n} a r^{k-1}=a+a r+a r^{2}+a r^{3} \ldots+a r^{n-2}+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}, \quad r \neq 1 \tag{15}
\end{equation*}
$$

For $r=1$ we need no tricks:

$$
\begin{equation*}
{ }_{k=1}^{n} a 1^{k-1}=a+a+a+a \ldots+a+a(n \text { times })=n a . \tag{16}
\end{equation*}
$$

$$
\begin{aligned}
& \hline \sum_{k=1}^{n} k=1+2+3+\ldots+n=\frac{1}{2} n(n+1) \\
& \sum_{k=1}^{n} k^{2}=1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
& \sum_{k=1}^{n} k^{3}=1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{1}{4} n^{2}(n+1)^{2} \\
& \sum_{k=1}^{n} k^{4}=1^{4}+2^{4}+3^{4}+\ldots+n^{4}=\frac{1}{30} n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right) \\
& \sum_{k=1}^{n} k^{5}=1^{5}+2^{5}+3^{5}+\ldots+n^{5}=\frac{1}{12} n^{2}(n+1)^{2}\left(2 n^{2}+2 n-1\right) \\
& \sum_{k=1}^{n} k^{6}=1^{6}+2^{6}+3^{6}+\ldots+n^{6}=\frac{1}{42} n(n+1)(2 n+1)\left(3 n^{4}+6 n^{3}-3 n+1\right) \\
& \hline
\end{aligned}
$$

Table 1: The sums of the powers of the first n integers for the first six integer exponents.

In sum:

$$
\begin{array}{cl}
n \tag{17}\\
k=1
\end{array} a r^{k-1}=\left\{\begin{array}{cl}
\frac{a\left(r^{n}-1\right)}{r-1} & \text { if } r \neq 1 \\
n a & \text { if } r=1
\end{array}\right.
$$

Of course, (10) is the special case for which $n=7$ and $a=r=\frac{1}{3}$.
The only thing about the trick that is the slightest bit, well, tricky is judiciously guessing p_{k}. But for all of the results in Table 1—some of which are needed in Lecture 12-the judicious choice of p_{k} always turns out to be just S_{k} itself \ldots. which you know, because you know S_{n} from the table. Now you know everything you need to know to complete Exercise 1 by yourself.

In many of the above cases, s_{k} increases with k, and so $\left\{s_{k}\right\}$ and $\left\{S_{n}\right\}$ both diverge. If $s_{k} \rightarrow 0$ as $k \rightarrow \infty$, however, it is possible for the sequence $\left\{S_{n}\right\}$ to converge to a limit, which we denote by S_{∞}. That is,

$$
\begin{equation*}
S_{\infty}=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}{ }_{k=1}^{n} s_{k} \tag{18}
\end{equation*}
$$

Then the right-hand side of (18) is called an infinite series and is usually written as

$$
\begin{equation*}
\text { either }{ }_{k=1}^{\infty} s_{k} \text { or } s_{1}+s_{2}+s_{3}+s_{4}+\ldots \tag{19}
\end{equation*}
$$

The left-hand side of (18) is the sum to which this infinite series converges. For example, because ${ }^{\dagger}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} r^{n}=0 \quad \text { whenever }|r|<1 \tag{20}
\end{equation*}
$$

[^1](15) implies that
\[

$$
\begin{align*}
{ }_{k=1}^{\infty} a r^{k-1} & =a+a r+a r^{2}+a r^{3}+\ldots \\
& =\lim _{n \rightarrow \infty} \frac{a\left(r^{n}-1\right)}{r-1}=\frac{a(0-1)}{r-1}=\frac{a}{1-r} \quad \text { whenever }|r|<1 \tag{21}
\end{align*}
$$
\]

(on using the limit combination rule). Thus the infinite geometric series with first term a and ratio r converges to the sum $\frac{a}{1-r}$ whenever $|r|<1$ (but diverges whenever $|r| \geq 1$). In particular, for $a=r=\frac{1}{3}$ we obtain

$$
\begin{equation*}
\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{3}+\left(\frac{1}{3}\right)^{4}+\ldots=\frac{1}{2} \tag{22}
\end{equation*}
$$

As a further example, consider the infinite series

$$
\begin{equation*}
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\ldots={ }_{k=1}^{\infty} \frac{1}{k(k+1)} . \tag{23}
\end{equation*}
$$

Here $s_{k}=\frac{1}{k(k+1)}=\frac{k}{k+1}-\frac{k-1}{k}$. So with $p_{k}=\frac{k}{k+1}$ in (4)-(5) we obtain

$$
\begin{equation*}
S_{n}={ }_{k=1}^{n} \frac{1}{k(k+1)}=p_{n}-p_{0}=\frac{n}{n+1}-0=\frac{n}{n+1} \tag{24}
\end{equation*}
$$

and thus deduce from (18)-(19) that

$$
\begin{equation*}
S_{\infty}={ }_{k=1}^{\infty} \frac{1}{k(k+1)}=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=\frac{1}{1+0}=1 \tag{25}
\end{equation*}
$$

In other words, $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\ldots($ forever $)=1$.

Exercises

1. Verify Table 1.
2. Show that

$$
\frac{1}{1.2 .4}+\frac{1}{2.3 .5}+\frac{1}{3.4 .6}+\frac{1}{4.5 .7}+\ldots={ }_{k=1}^{\infty} \frac{1}{k(k+1)(k+3)}=\frac{7}{36} .
$$

Hint: A judicious choice is $p_{k}=\frac{k\left(7 k^{2}+42 k+59\right)}{36(k+1)(k+2)(k+3)}$.

Suitable problems from standard calculus texts

Stewart (2003): p. 720, \#\# 14, 15, 17-20 and 26 (for which use $p_{n}=\frac{n(5 n+13)}{6(n+2)(n+3)}$).

Reference

Stewart, J. 2003 Calculus: early transcendentals. Belmont, California: Brooks/Cole, 5th edn.

[^0]: ${ }^{*}$ Note that (4) implies $\left\{p_{k}\right\}=\left\{p_{k} \mid k \geq 0\right\}$, whereas $\left\{s_{k}\right\}=\left\{s_{k} \mid k \geq 1\right\}$

[^1]: †See Equation (22) of Lecture 3.

