
11. The definite integral
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Figure 1: Ventricular inflow at end of the systolic phase. The graph shows the restriction to[0:28; 0:35℄ of that sketched in Figure 3b of Lecture 1; here v(t) = 3509 (1� 20t)(3� 10t)(7� 20t).
Figure 1 shows ventricular inflow at the end of the ejection phase in our cardiac cycle,
as defined by the function v introduced in Figure 3 of Lecture 1. On [0.28, 0.3) we havev(t) < 0, corresponding to arterial outflow: the ventricle is still draining. On (0.3, 0.35)
we have v(t) > 0, corresponding to the arterial backflow that closes the aortic valve: the
ventricle refills very slightly. In 0.07 seconds, inflow increases from v(0:28) = �50:1 ml/s
to v(0:3) = 0 to v(0:326) = 26:8 ml/s before decreasing again to zero at t = 0:35s. For
the first fiftieth of a second, blood flows out of the ventricle; but for the next twentieth
of a second, blood flows back in. So how much blood flows in or out, overall? In other
words, what is net transport of blood by the flow? The purpose of this lecture is to answer
that question by introducing the concept of definite integral, and to establish some of the
definite integral’s properties.

We begin by asking what it really means for the inflow to be -50.1ml/s at t = 0:28s. It
means that if flow continued at precisely this rate for the next 0.01s then �50:1 � 0:01 =�0:501ml of blood would flow into the ventricle. In other words, 0.501ml of blood would
be discharged into the aorta. This volume of discharge is numerically equal to the area of
the shaded rectangle below [0.28, 0.29] in Figure 9a. If we regard shaded area as positive
or negative according to whether it is above or below the horizontal axis, then the signed
area of the rectangle is -0.501 and represents the (negative) volume of blood that would
be transported into the ventricle—if flow continued at -50.1ml/s for 0.01s.

But it doesn’t, of course, because by t = 0:29s it has already increased to v(0:29) =�22:4ml/s. If this higher (i.e., less negative) rate had instead been maintained for the
same hundredth of a second, then the ventricular recharge would instead have been�22:4� 0:01 = �0:224ml. In other words, 0.224ml of blood would have been discharged
into the aorta; this volume is numerically equal to the area of the shaded rectangle below
[0.28, 0.29] in Figure 9b, and the corresponding signed area is -0.224. The true volume of
blood transported into the ventricle during [0.28, 0.29] must be somewhere in between: it
is underestimated by -0.501 ml, but it is overestimated by -0.224.
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Figure 2: Net amount of blood transported into the ventricle during [0:28; 0:35℄ is underestimated
by the sum of the six signed areas of the darker shaded rectangles (which is -0.2239) and over-
estimated by the sum of the six signed areas of the lighter shaded rectangles (which is 0.9467)
.

-0.501 < NET TRANSPORT OF BLOOD DURING [0.28, 0.29] < -0.224
-0.224 < NET TRANSPORT OF BLOOD DURING [0.29, 0.3] < 0

0 < NET TRANSPORT OF BLOOD DURING [0.3, 0.313] < 0.258
0.258 < NET TRANSPORT OF BLOOD DURING [0.313, 0.326] < 0.35
0.243 < NET TRANSPORT OF BLOOD DURING [0.326, 0.338] < 0.32

0 < NET TRANSPORT OF BLOOD DURING [0.338, 0.35] < 0.243

-0.22 < NET TRANSPORT OF BLOOD DURING [0.28, 0.35] < 0.95

Table 1: Crude under- and overestimates of ventricular recharge at end of the systolic phase.
Note that [0:3; 0:35℄ = [0:3; 12f0:3 + 
g℄[ [12f0:3 + 
g; 
℄[ [
; 12f
+ 0:35g℄[ [12f
+ 0:35g; 0:35℄ where
 � 0:326129 is the global maximizer on [0:28; 0:35℄; but numbers have been rounded to three
significant figures. Thus, e.g., [0.313, 0.326] rounds [12f0:3+
g; 
℄, and the bounds in the fourth line
of the table round 12f
�0:3gv �12f0:3 + 
g� � 0:257982 and 12f
�0:3gv(
) � 0:350018, respectively.

A similar analysis applies to [0.29, 0.3], on which flow increases from v(0:29) =�22:4ml/s to v(0:3) = 0ml/s: recharge is underestimated by 0:01 � v(0:29) = �0:224ml
(signed area of shaded rectangle under [0.29, 0.3] in Figure 9a) but overestimated by0:01� v(0:3) = 0ml (no shaded rectangle over [0.29, 0.3] in Figure 9b). Thus net recharge
during [0.28, 0.3], on which v increases with respect to time but flow is never positive, is
greater than �0:501� 0:224 = �0:725ml but less than �0:224+0 = �0:224ml. Continuing
in this manner, we readily obtain the results in Table 1. Summing, we find that the net
volume of blood transported into the ventricle during [0.28, 0.35] exceeds -0.22ml (sum
of signed areas of darker shaded rectangles in Figure 9a) but is less than 0.95ml (sum of
signed areas of lighter shaded rectangles in Figure 9b).

Needless to say, these bounds are perfectly useless, but we obtained them by divid-
ing [0.28, 0.35] into only six subintervals. We can improve our estimates by dividing
each subinterval into two equal pieces, but otherwise proceeding as before. The result is
shown in Figure 3. We can obtain even more accurate estimates if we double the number
of subintervals again, from 12 to 24, as shown in Figure 4. In fact, we can improve the
accuracy indefinitely, by continually doubling the number of subintervals as illustrated
by Figure 5. At each doubling, net transport of blood into the ventricle during [0.28, 0.35]
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Figure 3: Net amount of blood transported into the ventricle during [0:28; 0:35℄ is underestimated
by the sum of the 12 signed areas of the darker shaded rectangles (which is 0.1169) and overesti-
mated by the sum of the 12 signed areas of the lighter shaded rectangles (which is 0.7022) .
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Figure 4: Net amount of blood transported into the ventricle during [0:28; 0:35℄ is underestimated
by the sum of the 24 signed areas of the darker shaded rectangles (which is 0.2752) and overesti-
mated by the sum of the 24 signed areas of the lighter shaded rectangles (which is 0.5679).

is underestimated by the total signed area of the darker shaded rectangles but overesti-
mated by the total signed area of the lighter shaded rectangles. In the limit as the number
of doublings approaches infinity, however, the two signed areas must coincide, with true
net transport sandwiched in between them. Thus true net transport of blood is the com-
mon limit—say L—of both an increasing sequence of underestimates and a decreasing
sequence of overestimates. Whatever the value of L, from Figure 5 (with n = 7) we have0:4164 < L < 0:4347; and by the end of the following lecture, we will be able to show thatL = 2298154000 � 0:4256: (1)

It now appears that total signed area is a sufficiently important quantity to deserve
its own notation, and a good notation will take account of everything that quantity can
possibly depend on. The total signed area between the horizontal axis and the graph
of f on subdomain [a; b℄—counted positively above the axis, and negatively below it—
depends on both f and [a; b℄. But it does not depend on anything else. Moreover, for
reasons that will become apparent later, the accepted name for total signed area associated
with f on domain [a; b℄ is “definite integral of f from a to b,” and the standard symbol for
integral is “

R
.” So it appears that a good notation would be

R (f; a; b); that is, we should
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Figure 5: For each value of n, net amount of blood transported into the ventricle during [0:28; 0:35℄
is underestimated by the sum of 6 � 2n�1 signed areas of darker shaded rectangles (0.3514, 0.3887,
0.4072 and 0.4164 for n = 4, 5, 6 and 7, respectively) and overestimated by the sum of 6 � 2n�1
signed areas of lighter shaded rectangles (0.4977, 0.4619, 0.4438 and 0.4347 for n = 4, 5, 6 and 7,
respectively).
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write Z (f; a; b) = 8<: total signed area between the graph of f and
segment [a; b℄ of the horizontal axis, counted

positively above the axis, negatively below it.
(2a)

Traditionally, however, the above notation is not considered sufficiently evocative of the
limiting process through which we reach the definite integral. Through that process, we
take the limit of the sum of the areas of enough infinitesimally wide rectangular strips to
cover the domain in the limit as their thickness approaches zero (and hence their number
approaches infinity). The typical rectangle at station t has thickness Æt, height f(t) and
hence area f(t) Æt. So it would be more evocative to write

limÆt!0 Xt2[a;b℄ f(t) Æt = 8<: total signed area between the graph of f and
segment [a; b℄ of the horizontal axis, counted

positively above the axis, negatively below it.
(2b)

Nevertheless, it would also be extremely cumbersome. So the conventional notation is a
compromise: in place of either (2a) or (2b) we writeZ ba f(t) dt = 8<: total signed area between the graph of f and

segment [a; b℄ of the horizontal axis, counted
positively above the axis, negatively below it.

(2c)

We interpret
R ba f(t) dt as a single, stand-alone symbol for the common right-hand side of

(2a)-(2c). Compared to (2a), it has the distinct disadvantage of suggesting that the definite
integral from a to b depends on t, which it absolutely does not—from that point of view,
(2a) is a far superior notation. On the other hand, it has the advantage that the function
whose definite integral is being calculated need not be explicitly named (which, with only
26 letters in the alphabet, is not to be sneezed at). In any event, (2c) is the notation we
will use, and to use it successfully we must always bear in mind that it depends on f , a
and b—but it does not depend in any way on the “dummy” variable t we temporarily use to
identify the location of a generic infinitesimal strip before taking the limit that defines the
definite integral. To put it another way,bRa f(t) dt, bRa f(x) dx and even

bRa f(�) d�
are all precisely the same thing. For example, from the definition of definite integral in (2),
Figure 6 establishes both that Z ba 1 dt = b� a = Z ba 1 dx (3)

and that Z ba t dt = 12(b2 � a2) = Z ba x dx: (4)

By interpreting
R ba v(t) dt as the net recharge due to the inflow v we can deduce some

important properties of the definite integral. First, if v is net inflow, then�v is net outflow
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Figure 6: (a) The shaded area between y = 1 and the horizontal axis is that of rectangle with area(b � a) � 1. (b) The shaded area between y = t and the horizontal axis is that of a trapezium with
area 12(b� a)(b+ a).
(see Figure 4 of Lecture 1). Hence

R ba f�v(t)g dt is net discharge from the ventricle during[a; b℄. But net discharge is simply the negative of net recharge; henceZ ba f�v(t)g dt = �Z ba v(t) dt: (5)

Second, because, e.g., doubling or tripling an inflow doubles or triples associated net

recharge,
R ba f2v(t)g dt = 2 R ba fv(t)g dt, R ba f3v(t)g dt = 3 R ba fv(t)g dt, and so on. In general,

changing the flow by a factor of k will change the associated recharge by a factor of k orZ ba fk v(t)g dt = k Z ba v(t) dt: (6)

Third, suppose that two venules converge at C to form a vein, as cartooned in Figure 7.
At time t, let u(t) ml/s and v(t) ml/s be the outflows from the venules at C. Then total
flow into the vein at C (in ml/s) must be u(t) + v(t), because there is nowhere else for
blood to go. For the same reason, discharge into the vein during any interval [a; b℄ must
equal total discharge out of the venule, orZ ba fu(t) + v(t)g dt = Z ba u(t) dt + Z ba v(t) dt: (7)

C

u

v

u + v

Total outflow
from venules

= inflow
to vein

Total discharge
from venules

= recharge
of vein

Figure 7: A pictorial proof of (7).
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Now we note an important point: even if functions u and v were not realistic as inflows,
we could still pretend that they were inflows, and none of their properties could thereby
change. Thus (5)-(7) do not apply only to inflows: they are general properties of definite
integrals. That is, for arbitrary functions f and g, the following always hold:Z ba f�f(t)g dt = �Z ba f(t) dt (8a)Z ba fk f(t)g dt = k Z ba f(t) dt (8b)Z ba ff(t) + g(t)g dt = Z ba f(t) dt + Z ba g(t) dt: (8c)

Furthermore, we may combine them into a single equation as follows:Z ba fq f(t) + k g(t)g dt = q Z ba f(t) dt + k Z ba g(t) dt (8d)

where q and k are any real numbers (positive, negative or zero). We recover (7) as the
special cases where q = 0 and k = �1, where q = 0, and where k = q = 1, respectively. A
further general property of definite integrals is thatZ ba f(t) dt = Z 
a f(t) dt + Z b
 f(t) dt (9)

for any 
 such that a � 
 � b; see Figure 8.

0 t

y

a c b

Figure 8: A pictorial proof of (9). The lighter shading represents the signed area
R 
a f(t) dt, the

darker shading represents the signed area
R b
 f(t) dt and the combined shading represents the

signed area
R ba f(t) dt; all signed areas are drawn positive, but the result clearly holds in general.

In Lecture 12 we will use the above properties to establish (1), i.e., thatZ 0:350:28 v(t) dt = = 2298154000 � 0:4256; (10)

where v(t) is defined by the caption to Figure 1. But we aren’t quite ready to establish (10)
yet. Therefore, to illustrate the usefulness of (8)-(9), we suppose that v(t) is defined not as
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Figure 9: Ventricular inflow at end of the systolic phase according to (11).

in Figure 1, but instead by the join whose graph is sketched in Figure 9 (and for which no
realism is claimed):

v(t) = (50003 t� 15503 if 0:28 � t < 0:325350� 1000t if 0:325 � t � 0:35 (11)

Then, from (9) and successive applications of (8) and (3)-(4), the net recharge is0:35Z
0:28 v(t) dt = 0:325Z

0:28 v(t) dt + 0:35Z
0:325 v(t) dt

= 0:325Z
0:28 �50003 t� 15503 � 1	 dt + 0:35Z

0:325 f350 � 1� 1000tg dt
= 50003 0:325Z

0:28 t dt� 15503 0:325Z
0:28 1 dt+ 350 0:35Z

0:325 1 dt� 1000 0:35Z
0:325 t dt

= 50003 � (0:325)2�(0:28)22 � 15503 � f0:325� 0:28g+ 350 � f0:35� 0:325g � 1000 � (0:35)2�(0:325)22= �0:25ml

(12)

(equivalent to a net discharge of 0.25ml).
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Exercises
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1. A piecewise-linear join g is defined by the graph y = g(x) shown above on the left.

(a) Find an explicit expression for g(x) for all x 2 [0; 12℄
(b) Calculate

R 40 g(x) dx
(c) Calculate

R 120 g(x) dx
(d) It is known that 4 < b < 10. Calculate

R b0 g(x) dx.

2. A continuous join f is defined on [�2; 2℄ by

f(x) = (�p�x(2 + x) if � 2 � x < 0px(2� x) if 0 � x � 2:
Because y = p�x(2 + x) =) (x + 1)2 + y2 = 12, which is the equation of a circle

of radius 1 with center (-1,0), and because y = px(2� x) =) (x � 1)2 + y2 = 12,
which is the equation of a circle of radius 1 with center (1,0), the graph of f consists
of two semi-circles, as illustrated above on the right. Calculate each of the following
definite integrals:

(a)
R �1�2 f(x) dx

(b)
R 0�2 f(x) dx

(c)
R 1�2 f(x) dx

(d)
R 2�1 f(x) dx

(e)
R 10 f(x) dx

(f)
R 20 f(x) dx

(g)
R a�a f(x) dx for any a 2 [0; 1℄.

3. A piecewise-linear function f is defined on [0; 6℄ by

f(x) =
8>>><>>>:

2 if 0 � x < 12x if 1 � x < 28� 2x if 2 � x < 40 if 4 � x � 6:
9



Show that
R 30 f(x) dx = 8.

4. A piecewise-linear function f is defined on [0; 7℄ by

f(x) =
8>>><>>>:

3 + 2x if 0 � x < 213� 3x if 2 � x < 4x� 3 if 4 � x < 52 if 5 � x � 7:
Show that

R 70 f(x) dx = 472 .

Suitable problems from standard calculus texts

Stewart (2003): p. 392, ## 33-40, 43 and 50.

Reference

Stewart, J. 2003 Calculus: early transcendentals. Belmont, California: Brooks/Cole, 5th edn.

Solutions or hints for selected exercises

1. (a)

f(x) = 8><>:2(x� 2) if 0 � x < 46� 12x if 4 � x < 101 if 10 � x � 12:
(b) 0 (c) 17 (d) 6b� 14b2 � 20.

2. (a) �14� (b) �12� (c) �14� (d) 14� (e) 14� (f) 12� (g) 0.
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