
12. More on the definite integral
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Figure 1: (a) Left-hand and (b) right-hand approximation to
∫ b
a f(t) dt for n = 16.

When f is neither a constant nor a linear function, the key to evaluating
∫ b

a
f(t) dt is to

observe that piecewise-constant functions can approximate f as accurately as we please
for the purpose of calculating its definite integral. The method we describe is perfectly
general, but for the sake of definiteness we suppose that f is the function defined by

f(t) = t2. (1)

Figure 1 shows two piecewise-constant approximations to f on the interval [a, b]. The one
on the left is the approximation f16 obtained by dividing [a, b] into sixteen equal subinter-
vals and insisting that the approximation is actually correct at the left-hand end of each
subinterval; for that reason, we call f16 a left-hand (piecewise-constant) approximation.
The one on the right is the approximation φ16 obtained by again dividing [a, b] into six-
teen equal subintervals but instead insisting that the approximation is actually correct at
the right-hand end of each subinterval; for that reason, we call φ16 a (surprise, surprise!)
right-hand approximation. More generally, for any f and with n equal subintervals, the
n-th left-hand and n-th right-hand approximations fn and φn are defined by

fn(t) = f
(

a + (i−1)(b−a)
n

)

when a+ (i−1)(b−a)
n

≤ t < a+ i(b−a)
n

for i = 1, . . . , n (2)

φn(t) = f
(

a + i(b−a)
n

)

when a + (i−1)(b−a)
n

≤ t < a + i(b−a)
n

for i = 1, . . . , n. (3)

Now here’s the thing: for any f , both
∫ b

a
fn(t) dt and

∫ b

a
φn(t) dt are easy to calculate,

because the region between segment [a, b] of the horizontal axis and the graph of any
piecewise-constant function is always piecewise-rectangular. In fact, because the con-
stituent rectangles of fn and φn all have precisely the same width, namely, (b − a)/n, we
readily obtain the n-th left-hand approximation

∫ b

a

fn(t) dt =
n

∑

i=1

b − a

n
f

(

a + (i−1)(b−a)
n

)

=
b − a

n

n
∑

i=1

f
(

a + (i−1)(b−a)
n

)

(4)



and the n-th right-hand approximation

∫ b

a

φn(t) dt =
n

∑

i=1

b − a

n
f

(

a + i(b−a)
n

)

=
b − a

n

n
∑

i=1

f
(

a + i(b−a)
n

)

(5)

to
∫ b

a
f(t) dt. Note how (because b > a) the sign of f will always guarantee that area

is counted positively above the axis and negatively below it (although in this particular
case, it is always counted positively).

As illustrated by Figure 1, for any increasing function f we have

∫ b

a

fn(t) dt <

∫ b

a

f(t) dt <

∫ b

a

φn(t) dt (6)

for all values of n, no matter how large (and regardless of the sign of f , although in
Figure 1 f is always positive). The greater the value of n, the greater the accuracy of both

overestimate and underestimate, with
∫ b

a
f(t) dt always sandwiched between. In the limit

as n → ∞, inequalities (6) weaken, as
∫ b

a
fn(t) dt and

∫ b

a
φn(t) dt coalesce. That is, we have

lim
n→∞

∫ b

a

fn(t) dt ≤

∫ b

a

f(t) dt ≤ lim
n→∞

∫ b

a

φn(t) dt (7)

and

lim
n→∞

∫ b

a

fn(t) dt = lim
n→∞

∫ b

a

φn(t) dt, (8)

so that of necessity

lim
n→∞

∫ b

a

fn(t) dt =

∫ b

a

f(t) dt = lim
n→∞

∫ b

a

φn(t) dt. (9)

In other words,
∫ b

a
f(t) dt is the limit as n → ∞ of either

∫ b

a
fn(t) dt or

∫ b

a
φn(t) dt. Further-

more, (9) is always true, even if f is not an increasing function: if f is decreasing, then

because
∫ b

a
φn(t) dt <

∫ b

a
f(t) dt <

∫ b

a
fn(t) dt for all n, and more generally because [a, b]

can always be subdivided into intervals on which f is either increasing, decreasing or

constant. Indeed the common limit as n → ∞ of
∫ b

a
fn(t) dt and

∫ b

a
φn(t) dt is the legal

definition of the definite integral of f from a to b; however, we continue to think of the
definite integral intuitively as merely signed area.

Because either
∫ b

a
fn(t) dt or

∫ b

a
φn(t) dt will yield

∫ b

a
f(t) dt in the limit as n → ∞, for

f(t) = t2 we are free to calculate only the second. Substituting into (5), we obtain

∫ b

a

φn(t) dt =
b − a

n

n
∑

i=1

f
(

a + i(b−a)
n

)

=
b − a

n

n
∑

i=1

{

a + i(b−a)
n

}2

. (10)
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But
n

∑

i=1

{

a + i(b−a)
n

}2

=
n

∑

i=1

{

a2 · 1 + 2a(b−a)i
n

+ (b−a)2i2

n2

}

=
n

∑

i=1

a2 · 1 +
n

∑

i=1

2a(b−a)i
n

+
n

∑

i=1

(b−a)2i2

n2

= a2

n
∑

i=1

1 + 2a(b−a)
n

n
∑

i=1

i + (b−a)2

n2

n
∑

i=1

i2

= a2 · n + 2a(b−a)
n

· 1
2
n(n + 1) + (b−a)2

n2 · 1
6
n(n + 1)(2n + 1)

(11)

on using Table 1 from Lecture 10, and because 1+1+1+ . . .+1 (n times) = n. Substituting
back into (10), we obtain

∫ b

a

φn(t) dt = b−a
n

· a2 · n + b−a
n

· 2a(b−a)
n

· 1
2
n(n + 1) + b−a

n
· (b−a)2

n2 · 1
6
n(n + 1)(2n + 1)

= (b − a)
{

a2 + a(b − a)
(

1 + 1
n

)

+ 1
6
(b − a)2

(

1 + 1
n

) (

2 + 1
n

)}

after simplification. So

∫ b

a

f(t) dt = lim
n→∞

∫ b

a

φn(t) dt

= (b − a) lim
n→∞

{

a2 + a(b − a)
(

1 + 1
n

)

+ 1
6
(b − a)2

(

1 + 1
n

) (

2 + 1
n

)}

= (b − a)
{

a2 + a(b − a) lim
n→∞

(

1 + 1
n

)

+ 1
6
(b − a)2 lim

n→∞

(

1 + 1
n

)

lim
n→∞

(

2 + 1
n

)

}

= (b − a)
{

a2 + a(b − a)(1 + 0) + 1
6
(b − a)2(1 + 0)(2 + 0)

}

= (b − a)
{

a2 + a(b − a) + 1
3
(b − a)2

}

= 1
3
(b − a)(a2 + ab + b2) = 1

3
(b3 − a3)

(12)

after simplification. We have thus established that

∫ b

a

t2 dt = 1
3
(b3 − a3). (13)

A very similar calculation shows that

∫ b

a

t3 dt = 1
4
(b4 − a4) (14)

(Exercise 4). Furthermore, from Lecture 11, we already know that

∫ b

a

1 dt = b − a,

∫ b

a

t dt = 1
2
(b2 − a2). (15)

Now we have all of the results we need to calculate the recharge associated with the
ventricular inflow v(t) = 350

9
(1 − 20t)(3 − 10t)(7 − 20t) sketched in Figure 1 of Lecture 11

for t ∈ [0.28, 0.35]. First we rewrite v(t) as a polynomial:

v(t) = 2450
3

− 192500
9

t + 980000
9

t2 − 1400000
9

t3, 7
25

≤ t ≤ 7
20

. (16)
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Then with a = 0.28 and b = 0.35 in (13)-(15) we obtain

0.35
∫

0.28

v(t) dt =

0.35
∫

0.28

{

2450
3

· 1 − 192500
9

t + 980000
9

t2 − 1400000
9

t3
}

dt

= 2450
3

0.35
∫

0.28

1 dt − 192500
9

0.35
∫

0.28

t dt + 980000
9

0.35
∫

0.28

t2 dt − 1400000
9

0.35
∫

0.28

t3 dt

= 2450
3

· 7
100

− 192500
9

· 441
20000

+ 980000
9

· 20923
3000000

− 1400000
9

· 885969
400000000

= 22981
54000

,

(17)

upholding the claim we made for L near the beginning of Lecture 11.

Finally, in discussing the definite integral
∫ b

a
f(t) dt, we have assumed throughout (at

least implicitly) that b > a. So the question arises: does
∫ b

a
f(t) dt mean anything if a > b?

The (not so obvious) answer is yes, because

∫ a

b

f(t) dt = −

∫ b

a

f(t) dt (18)

is a general property of the definite integral, and is easiest to obtain directly from the legal
definition. First we note that

n
∑

i=1

ωi = ω1 + ω2 + . . . + ωn = ωn + ωn−1 + . . . + ω1 =
n
∑

i=1

ωn+1−i

for any ωi, in particular for ωi = f
(

b + (i−1)(a−b)
n

)

. Then, from (4)-(5) and (9), we obtain

∫ a

b

f(t) dt = lim
n→∞

∫ a

b

fn(t) dt = lim
n→∞

a − b

n

n
∑

i=1

f
(

b + (i−1)(a−b)
n

)

= − lim
n→∞

b − a

n

n
∑

i=1

f
(

b + (i−1)(a−b)
n

)

= − lim
n→∞

b − a

n

n
∑

i=1

f
(

b + ({n+1−i}−1)(a−b)
n

)

= − lim
n→∞

b − a

n

n
∑

i=1

f
(

b + (n−i)(a−b)
n

)

= − lim
n→∞

b − a

n

n
∑

i=1

f
(

a + i(b−a)
n

)

= − lim
n→∞

∫ b

a

φn(t) dt = −

∫ b

a

f(t) dt

(19)

as required. Note that for a = b the result reduces to

∫ a

a

f(t) dt = 0. (20)
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Exercises

1. Calculate
∫ 3

1
g(t) dt for g defined on [1, 3] by

g(t) =

{

4t3 + 52 if 1 ≤ t < 2

3t2 + 36t if 2 ≤ t ≤ 3.

Also, verify that g is continuous.
Hint: Use (13)-(15) in conjunction with (8)-(9) from Lecture 11.

2. Calculate
∫ 2

0
g(t) dt for g defined on [0, 2] by

g(t) =

{

3t2 − 4t if 0 ≤ t < 1

4t3 − 5t2 if 1 ≤ t ≤ 2.

Also, verify that g is continuous.
Hint: Use (13)-(15) in conjunction with (8)-(9) from Lecture 11.

3. Calculate
∫ 4

2
g(t) dt for g defined on [2, 4] by

g(t) =

{

4t3 + 6t2 + 2t + 240 if 2 ≤ t < 3

3t2 + 128t − 3 if 3 ≤ t ≤ 4.

Is g is continuous?
Hint: Use (13)-(15) in conjunction with (8)-(9) from Lecture 11.

4. Obtain (14).
Hint: Follow the method that yielded (13), using Table 1 of Lecture 10 where necessary.

5. Evaluate
∫ b

a
t4 dt.

Hint: Follow the method that yielded (13), using Table 1 of Lecture 10 where necessary.

6. Evaluate
∫ b

a
t5 dt.

Hint: Follow the method that yielded (13), using Table 1 of Lecture 10 where necessary.

7. Evaluate
∫ b

a
t6 dt.

Hint: Follow the method that yielded (13), using Table 1 of Lecture 10 where necessary.

8. Evaluate
∫ 1

−1
ex − 1 dx.

Hint: Assume that eδx = 1 + δx + o(δx). We will obtain this result in Lecture 20, where

it appears as equation (11). Otherwise follow the method that yielded (13), using equation

(11) of Lecture 10 where necessary.

Suitable problems from standard calculus texts

Stewart (2003): pp. 391-392, ## 21-25 and 41-42. For the first five problems use (13)-(15) in
conjunction with (8) from Lecture 11.
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Reference

Stewart, J. 2003 Calculus: early transcendentals. Belmont, California: Brooks/Cole, 5th edn.

Solutions or hints for selected exercises

1. 176.

2. 7
3
.

3. 830.

8. From (4), i.e., using a left-handed approach, we have

0
∫

−1

ex − 1 dx = lim
n→∞

0 − (−1)

n

n
∑

i=1

f
(

−1 + (i−1)(0−(−1))
n

)

= lim
n→∞

1

n

n
∑

i=1

f
(

−1 + i−1
n

)

= lim
n→∞

1

n

n
∑

i=1

{

e−1+(i−1)/n − 1
}

= lim
n→∞

1

n

n
∑

i=1

{

e−1ei/ne−1/n − 1
}

= lim
n→∞

1

n

{

n
∑

i=1

e−1ei/ne−1/n −
n

∑

i=1

1

}

= lim
n→∞

1

n

{

e−1e−1/n

n
∑

i=1

ei/n − {1 + 1 + . . . + 1} (n times)

}

= lim
n→∞

1

n

{

e−(1+1/n)

n
∑

i=1

(

e1/n
)i

− n

}

= lim
n→∞

1

n

{

e−(1+1/n)e1/n 1 −
(

e1/n
)n

1 − e1/n
− n

}

= lim
n→∞

1

n

{

e−1e−1/ne1/n 1 − e1

1 − e1/n
− n

}

= lim
n→∞

{

1

n
e−1 1 − e

1 − e1/n
− 1

}

= lim
n→∞

e−1 − 1

n(1 − e1/n)
− 1 = lim

δx→0+

δx(e−1 − 1)

1 − eδx
− 1

= lim
δx→0+

(1 − e−1)δx

eδx − 1
− 1 = (1 − e−1) lim

δx→0+

δx

eδx − 1
− 1

= (1 − e−1) lim
δx→0+

δx

1 + δx + o(δx) − 1
− 1

= (1 − e−1) lim
δx→0+

1

1 + o(δx)
δx

− 1 = (1 − e−1)
1

1 + 0
− 1

= −e−1,
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in which we have used equation (11) of Lecture 10 with a = 1 and r = e1/n. Similarly,
using a right-handed approach (for a bit of variety), i.e., from (5):

1
∫

0

ex − 1 dx = lim
n→∞

1 − 0

n

n
∑

i=1

f
(

0 + i(1−0)
n

)

= lim
n→∞

1

n

n
∑

i=1

f
(

i
n

)

= lim
n→∞

1

n

n
∑

i=1

{

ei/n − 1
}

= lim
n→∞

1

n

{

n
∑

i=1

(

e1/n
)i

−
n

∑

i=1

1

}

= lim
n→∞

1

n

{

e1/n 1 −
(

e1/n
)n

1 − e1/n
− n

}

= lim
n→∞

{

1

n
e1/n 1 − e

1 − e1/n
− 1

}

= (1 − e) lim
n→∞

1

n

e1/n

1 − e1/n
− 1 = (e − 1) lim

n→∞

1

n

e1/n

e1/n − 1
− 1

= (e − 1) lim
δx→0+

δxeδx

eδx − 1
− 1

= (e − 1) lim
δx→0+

δx{1 + δx + o(δx)}

δx + o(δx)
− 1

= (e − 1) lim
δx→0+

1 + δx + o(δx)

1 + o(δx)
δx

− 1

= (e − 1)
1 + 0 + 0

1 + 0
− 1 = (e − 1) · 1 − 1 = e − 2.

Now
1
∫

−1

ex − 1 dx =
0
∫

−1

ex − 1 dx +
1
∫

0

ex − 1 dx = −e−1 + e − 2 = e −
1

e
− 2 ≈ 0.3504.
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