19. The shape of a graph: extrema and concavity

Although, for some purposes, we can describe a function accurately enough by identify-
ing its extrema and where it increases or decreases, for other purposes it is useful also to
know how it increases or decreases. Moreover, although we have known since Lecture 1
how to locate the extrema graphically—just look at the graph—we have yet to consider
locating extrema analytically. These are our concerns in this lecture.
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Figure 1: (a) Volume of blood in a human left ventricle, y = V(¢) ml. (b) Elevation of graph in
degrees (i.e., y = 1550(t), where 6(t) is elevation in radians at time ). The dots correspond to
inflection points where the concavity changes sign, i.e. where the elevation has a local extremum.

Let’s begin once again with ventricular volume in our cardiac cycle (Figure 1a). If you
look carefully, you will see that although V' increases throughout [0.4, 0.75], its increase
on [0.4, 0.52] is different from that on [0.52, 0.75]. Why? Imagine that your graph is a
narrow tunnel and that you are a long and skinny worm who slinks along from left to
right, always looking straight ahead into the tunnel. You are also a very clever worm
with a penchant for mathematics, and so as you travel from left to right you record a
trace of your elevation, i.e., the angle between your line of sight (shown dotted in Figure
1la) and the horizontal (shown dashed); elevation is counted positively when your line of
sight is above horizontal but negatively when it is below, so your elevation always lies
between +90°. Your trace of elevation is sketched in Figure 1b, directly below the graph of
V. Observe that you travel horizontally for 0.05 seconds until, at t = 0.05s, your elevation
dips below zero and you start to slither downhill. Your elevation continues to decrease
until, at ¢ = 0.14s, it reaches a minimum of —64°; thereafter, your elevation increases, but



you are still going down. Your descent does not end until ¢ = 0.3, when your elevation
reaches zero again. Thereafter, your elevation increases to a maximum of 7° at ¢t = 0.33,
decreases to zero at t = (.35, and then remains zero as you glide horizontally through
the tunnel’s isovolumetric relaxation section. Att¢ = 0.4, your elevation begins to rise
sharply as you climb uphill toward a maximum elevation of 53° at ¢ = 0.52; thereafter,
your elevation decreases, but you are still going up. Your line of sight is momentarily
level att = 0.75, but your elevation then increases once more as you resume your upward
climb; it achieves its final local maximum of 28° at t = 0.8, then decreases to zero att = 0.9
as you approach the ventricular maximum at the end of the cardiac cycle.

In more abstract terms, a graph is concave up if its elevation is increasing but concave
down if its elevation is decreasing. Moreover, a graph has an inflection point wherever
its concavity changes from up to down or vice versa—i.e., where its elevation changes
from increasing to decreasing or vice versa. Accordingly, V' is concave down on [0.05,
0.14], concave up on [0.14, 0.33], concave down on [0.33, 0.35], concave up on [0.4, 0.52],
concave down on [0.52, 0.75], concave up on [0.75, 0.8] and concave down on [0.8, 0.9]
with inflection points at ¢t = 0.14,¢ = 0.33,¢t = 0.52, ¢t = 0.75 and ¢t = 0.8 (as indicated
by the dots in Figure 1). Whenever a graph is perfectly straight (not necessarily flat), it is
said to have no concavity; for example, V' has no concavity on [0, 0.05] or [0.35, 0.4].
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Figure 2: (a) Outflow of blood from a human left ventricle, y = f(¢) ml/s. (b) Elevation of graph

in degrees (i.e., y = 1550(t), where 6(t) is elevation in radians at time ?).

Similar considerations apply to ventricular outflow f (defined by f(t) = —V'(?),
whose elevation is plotted in Figure 2b, directly below the graph of f itself in Figure 2a.

2



Notice how elevation increases abruptly from 0° to 81° at ¢ = 0.05 and decreases abruptly
from 52° to 0° at t= 0.35, from 0° to —72° att = 0.4, and from 8° to —71° at¢t = 0.75. Thatis,
elevation is discontinuous at ¢ = 0.05, ¢ = 0.35, ¢ = 0.4 and ¢ = 0.75 with discontinuities
(or jumps) of 81, -52, -72 and -79 (= -71 - 8) degrees, respectively; each discontinuity of
elevation corresponds to a sharp turn in the tunnel or, more abstractly, to a corner in the
graph of f itself (thus f has corners at¢ = 0.05,¢t = 0.35,¢t = 0.4 and ¢t = 0.75). A cor-
ner can be an inflection point; for example, f has an inflection point at ¢ = 0.75, where its
concavity changes abruptly from down to up (because elevation changes discontinuously
from decreasing to increasing). Incidentally, note from inspection of Figure 4 of Lecture 1
that the concavities of f and — f are always opposite (except where f has no concavity).
This result is general: it applies to any (ordinary) function.

So far, so good—but our perspective is still entirely graphical. Now we must collect
our thoughts together and turn them into analytical statements. Let us agree to denote
the elevation of y in radians at time ¢ by 6(t), so that z;6() is the elevation in degrees as
plotted in Figures 1-2. Then, from the above discussion of Figures 1-2, y is increasing or
decreasing with respect to ¢ according to whether 6 is positive or negative and

y has a local extremum at ¢ = ¢ <= 6(t) changes signatt = ¢ (1a)
y concave up <= 0(t) increasing with respect to ¢ (1b)
y concave down <= 6(t) decreasing with respect to . (1c)

Note that there are two ways in which 6(¢) can change sign at ¢t = ¢. The first and more
frequent case is where 6(c) = 0, e.g., for ¢ = 0.3 in Figure 1 or for ¢ = 0.14, ¢ = 0.33,
c = 0.52 and ¢ = 0.8 in Figure 2; in this case the extremum is said to be smooth. In the
second case, the extremum is at a corner: (c) is undefined because 6(t) is discontinous at
t = cbutf(c¢ ) and 0(c*) have opposite signs. An example occurs for ¢ = 0.75 in Figure 2,

where elevation jumps discontinuously from positive to negative with £-6(c~) = 8° and

a0 (c™) = —71°. These considerations enable us to rewrite (1) as
y has a local extremum at ¢ = ¢ <= EITHER #(c) = 0 OR f(c")f(c™) < 0 (2a)
y concave up <= 6'(t) > 0 (2b)
y concave down <= 6'(t) < 0. (2¢)

There are two kinds of smooth local extremum, however: a smooth local maximum where
elevation is decreasing, and a smooth local minimum where elevation is increasing. Like-
wise, there are two kinds of corner local extremum: a corner local maximum where
6(c”) > 0 > 6(c"), and a corner local minimum where 6(c*) > 0 > 6(c¢”). So we can
replace (2) by

(c) = ' (c
y has a local maximum at ¢t = ¢ <= EITHER §(c) =0 AND () <0 (3a)
OR f(c™) > 0> 6(c")
=0 A !
y has a local minimum at ¢ = ¢ <= EITHER §(c) =0 liID #(e) >0 (3b)
OR O(c™) > 0> 6(c)
y concave up <= 0'(t) >0 (3¢)
y concave down <= ¢'(t) < 0. (3d)



But the tangent of the angle of elevation is always the slope of the curve, i.e.,

tan(f) = % 4)

(see Figure 3). Differentiating with respect to :

y

Figure 3: Pictorial version of (4)

d Cd (dy
o o)y = 2 {0, ®)

The right-hand side of this equation is the (label assigned by the) derivative of the deriva-
tive of y or second derivative of y with respect to ¢, for which we adopt the standard notation

£y * The chain rule can be applied to the left-hand side of (5). Thus

dt?

d do d*y
R () )
ap NG = ©)
o do d?
2 Y
sec (9)% = W (7)
Because sec?(f) is always positive for —im < 6 < 3w, the sign of ¢'(t) must always

agree with the sign of % ; moreover, because the sign of tan(f) in (4) always agrees with
that of 6, the sign of § must also agree with that of 2. Hence (assuming that y varies

continuously—though not necessarily smoothly—with respect to ¢) we can replace (3) by

dy _ d?y
EITHER %| =0 AND Z¥|,_ <0

y has a local maximum att = ¢ <= dy dy t=c (8a)
OR d_lt‘t:c* >0> dt |t=c+
dy _ d?y
.. EITHER —; =0 AND =3 >0
y has a local minimum att = ¢ < iy dlt=e = dt? lt=c (8b)
OR Z7|,_+ > 0> 55|, -
2
y concave up <= ’1173 >0 (8¢c)
2
y concave down < £ < 0. (8d)

“Or f7(t),if y = f(t).



These equivalences, together where appropriate with dominance arguments and infor-
mation about asymptotes (Lecture 4), suffice to determine the shape of an ordinary func-
tion’s graph. They also suffice to determine the global minimum or maximum of any
continuous function f on any closed interval [a, b]—because, as we pointed out in Lecture
1, a global extremizer is always either a local extremizer or an endpoint.

A remark is now in order. Most of the functions we deal with in calculus are smooth
on their entire domain. In particular, sin, cos, the exponential function and any polyno-
mial are smooth on (—o0, o), In is smooth on (0, o), and any rational function (i.e., any
ratio of two polynomials) is smooth on its domain (which is almost all of (—oco, co) but ex-
cludes points at which the denominator would be zero). Furthermore, any combination
of these functions is smooth on its domain. But if you have a smooth function, then you
must have smooth extrema. So corner extrema are not especially frequent, and arise in
practice only where the components of a join are spliced. A couple of examples will help
to make this clear.

Consider first the function f defined on (—oo, c0) by

It —1
t) = .
It perhaps isn’t obvious that this is a join of two smooth components, but it is:
=1 if te(—00,0
) = ! (10

o if tel0,00).

The only potential corner extremum is at ¢ = 0, so we test for that first. The derivative of
f is readily found by the methods of Lecture 7:

—12 i te (—o0,0)

flo = B0 (11)
1(;2?1)2 if te(0,00)
from Exercise 1. So we obtain
F0) = Gm f() = 1, FO0%) = lim f(5) = L. (12)
t—0— t—0+

Because the derivative crosses zero from negative to positive by jumping from —1 to +1,
t = 0is a corner local minimizer, and the local minimum is f(0) = —1.

Any other local extremum must be a smooth extremum, and hence must satisfy
f'(t) = 0. From (11), the only candidate extremizers in (—oc, 0) satisfy —1 + 2t + > = 0 or
t = —1 + v/2, which implies t = —1 — /2 because —1 + v/2 ¢ (—0,0). Sot = —1 — /2 s
the only possible local extremizer in (—oo, 0). Is it a maximum or a minimum? To answer
that, we need f”(—1 — 1/2). Again using the methods of Lecture 8:

UHOSE®) if te(—00,0) (L4 |)A 4l + )

"(t) = ) = 13

) WA if te (0,00) (2 + 1)3 9

from Exercise 2. Substituting ¢t = —1 — v/2 into (13) yieldsf"(~1 — v2) = 1 — ;%5 which
is negative (because 8 < 9). Hence, from (8a), t = —1 — V2 ~ —2.41 is a local maximizer,

and the local maximum is f(—1 — v/2) = 1{v2 — 1} ~ 0.207.
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From (13) and Exercise 3, we see that f”(t) > 0 on (—oc0,0) if 1 + 4t + t*> > 0 or
t € (—o0,—2 —/3) U (=2 + +/3,0), whereas f"(t) < 0 on (—oc,0) if 1 + 4t + 2 < 0
ort € (-2 —+/3,-2 + /3). Thus f is increasing and concave up on (—oo, —2 — 1/3),
increasing and concave down on (—2 — /3, —1 — v/2), decreasing and concave down on
(—1—+/2, —2+4+/3) and decreasing and concave up on (—2++/3, 0), with inflection points
att = —2 + /3. Also, because (9) implies that f(t) ~ ﬁ when |t| is very large, we know
that f(t) — 0 ast — —oo. This information suffices to determine the shape of the graph
for (—o0,0). The corresponding analysis for (0, c0) is unnecessary, because f is an even
function—i.e., f(—t) = f(¢) forall t € (—o0,00). So we obtain the graph for (0, co) from
the graph for (—oo, 0) by reflection in the y-axis.

Furthermore, because f(0) = —1 is the only local minimum and f(0) < f(+o0), f(0)
is also the global minimum. Likewise, because f(—1+ V2) = %{\/5 — 1} are the only local
maxima and f(—14+/2) > f(+oc), —1+ /2 are also global maximizers. The entire graph
of f is sketched in Figure 4, which confirms that f(0) = —1 is the global minimum, that
f(—=1£+v?2) = L{y/2 — 1} is the global maximum, that 0 is the unique global minimizer
and that —1 + /2 are the non-unique global maximizers. Of course, the global minimum
and maxima could have been determined approximately from the graph alone, but the
inflection points would have been much harder to locate—even approximately.
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Figure 4: The graph y = f(t) for f defined by (9). The large dots are extrema, the small dots are

inflection points.

For a second example, consider the function f defined on (—oo, co0) by

(t— 1)

t) = . 14
/) (1+1t)(2+1) (14
which again is a join of two smooth components:
1t if te(—00,0)
f(t) = (1) y 0 (15)
(1+2)(£2+1) if ¢€l0,00)

The only potential corner extremum is again at ¢ = 0, so again we test for that first. From
Exercise 4, the derivative of f is given by

—1—2t+82 if te (_ 0
4 i o0, 0)
flt) = (l(tftJ)r(t)Sth273tf3) if (16)
A+02(2 1) if te(0,00)
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from Exercise 1. So we obtain

f(07) = lim f'(t) = —1, f1(07) = lim f'(t) = -3. (17)
t—0~ t—0t
Because the derivative does not change sign as it (discontinously) crosses zero, in this
case there is no corner local extremum at ¢ = 0.

Any other local extremum must be a smooth extremum, and hence must satisfy
f'(t) = 0. From (17), the only candidate extremizer in (—oc, 0) satisfies —1 — 2t + t* = 0
ort =1—+/2 (because 1 + v/2 ¢ (—o0,0)). To determine whether it is a maximum or a
minimum, we need f”(1 — v/2). Again using the methods of Lecture 8, we have

2(144)(1—4t+12 i
) = M i
A if te (0,00)

from Exercise 5. Substituting ¢t = 1 — v/2 into (18) yieldsf”(1 — v/2) = —1 — %, which

is negative. Hence, from (8a), t = 1 — V2 &~ —0.41 is a local maximizer, and the local
maximum is f(1 — v2) = 1{/2 + 1} ~ 1.207. Moreover, because 1 — 4t + t> > 0 when ¢
is negative, (18) implies that the only inflection point on (—00,0) isatt = —1: for¢t < —1
we have f”(t) > 0, and for t > —1 we have f"(¢) < 0. So the graph of f is increasing and
concave up on (—oo, —1), increasing but concave down on (—1,1 — v/2) and decreasing
and concave down on (1 — +/2,0). Also, because (14) implies that f(t) ~ ﬁ when |¢] is
very large, we again know that f(¢) — 0 as ¢t — —oo. The above information suffices to
determine the shape of the graph for (—o0, 0).

In this case, the corresponding analysis for (0, c0) is necessary, because f is neither
an odd nor an even function. From (16), candidates for f'(¢) = 0 on (—oc, 0) must satisfy
either t = 1 or t* — 3¢t — 3¢t — 3 = 0. From (18) we have f”(1) = 1, and so ¢t = 1 is a local
minimizer. It turns out that t* — 3¢* — 3t — 3 = 0 has only one real solution, namely

t = c = 14+1/4-2V/2+{/4+2V2 ~ 3951 (19)

(never mind for the moment how I found c—that would merely distract us from our
purpose), and f”(c) ~ —0.8781 x 102 is negative. So t = c is a local maximizer. It also
turns out that there are only two real solutions of t® — 6t° — 3t* + 15¢* 4 6¢ + 3 = 0, namely
(again ignoring how I found them),

t = & ~ 1460 and t = & ~ 6.407. (20)

So, from (18), the only inflection points on (0,00) are att = & and ¢ = &: for 0 < t < &
we have f"(t) > 0, for §&; <t < & wehave f"(t) < 0and for & <t < co we have f"(t) > 0
again. So the graph of f is decreasing and concave up on (0, 1), increasing and concave
up on (1,&;), increasing and concave down on (&, ¢), decreasing and concave down on
(¢, &) and decreasing and concave up on ({2, 00). The above information, together with
the knowledge that f(¢t) — 0 as ¢t — oo (from (14)), suffices to determine the shape of the
graph for (0, 00).

Furthermore, because f(1) = 0 is the only local minimum and f () is never negative,
1 must be the global minimizer. But there are two local maximizers, namely, t = 1 — V2
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and t = ¢, and so the global maximum is the larger of f(1 — v/2) and f(c). We know from
above that f(1 — v/2) =~ 1.207, and f(c) =~ 0.106. Sot = 1 — v/2 is the global maximizer.
The entire graph of f is sketched in Figure 5 to confirm our results.

y
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Figure 5: The graph y = f(t) for f defined by (14). The large dots are extrema, the small dots are
inflection points.

Now for three closing remarks. First, the technical term for a point at which ‘;—ﬁ’ = f'(t)
either is zero or does not exist is a critical point. So a local extremum always occurs at a
critical point, although a critical point need not be a local extremum—because it might be
an inflection point at which % = f'(t) and ‘% = f"(t) are both zero. The technical term
for such a point is stationary point. For example, there is a stationary point for y = V (¢) in
Figure 1 at ¢ = 0.8, where the elevation drops to zero but never actually crosses zero.

Second, as remarked in Lecture 1, global extrema are highly domain-dependent: if
you change the domain, then chances are that you change the function’s global maximum
or minimum. In particular, for y = f(¢) in Figure 5, ¢ = 1 will not be the global minimizer
on any subdomain that excludes t = 1 and ¢t = 1 — v/2 will not be the global maximizer
on any subdomain that excludes t = 1 — V2. Furthermore, because a global extremum
need not occur at a critical point, you must always check the endpoints. For example,
from Figure 5 the maximum of f on [0, 3] is f(0) = 1, whereas the maximum of f on |3, 6]
is f(c) ~ 0.106.

Third, for any function, an inflection point is always a critical point of the derivative.
To see why, think once more in terms of ventricular volume V' and inflow v, which are
related by V' = v. If V has an inflection point at t = ¢, then V"(£) = 0. But v'(¢) = V"(¢)
for any ¢ and so v'(§) = 0, which makes ¢ = £ a critical point. See Figure 1, where the dots
correspond to inflection points in the upper diagram but to extrema in the lower diagram.

Exercises

1. Verify (11).
2. Verify (13).
3. Show that 1+4t+t> < 0where —2— /3 < t < —2+4+/3 (and otherwise 1+4t+12 > 0).
4. Verify (16).



5. Verity (18).

6. Figure 1 of Lecture 11 shows ventricular inflow v(t) = 2420 — 1920004 98000042 140000043

at the end of the systolic phase of our cardiac cycle. Find the maximum of v on
0.28, 0.35].

7. A function f is defined on [0, 5] by f(t) = 17 — 18t + 8¢* — 3.

(a) Find an expression for f'(t).
(b) Hence find all local extrema.
(c) Where is f concave up? Where is f concave down?

(d) Find both the minimum and the maximum of f on [0, 5].
8. A function f is defined on [0, 4] by f(t) = 3t* — 14> + 9¢ + 8.

(a) Find an expression for f’(t).
(b) Hence find all local extrema.
(c) Where is f concave up? Where is f concave down?

(d) Find both the minimum and the maximum of f on [0, 4].
9. A function f is defined on [0, 3] by f(t) = £t(9t — 2¢* — 12).

(a) Find an expression for f'(t).

(b) Hence find all local extrema.

(c) Where is f concave up? Where is f concave down?

(d) Find both the minimum and the maximum of f on [0, 3].

10. A function f is defined on [0, 7] by f(t) = ¢(t — 1)(2t* — 19t 4 41).

(a) Find an expression for f’(t).
(b) Hence find all local extrema.
(c) Where is f concave up? Where is f concave down?

(d) Find both the minimum and the maximum of f on [0, 7].

11. A function f is defined on [2, 8] by f(t) = (27t — 2¢* — 108). Where is it concave up?
Where is it concave down? Find its global maximum.

Suitable problems from standard calculus texts
Stewart (2003): p. 287, ## 47-62; pp. 304-306, ## 1, 11-20 and 31-52; p. 323, ## 1-52.

Reference

Stewart, J. 2003 Calculus: early transcendentals. Belmont, California: Brooks/Cole, 5th edn.



Solutions or hints for selected exercises

6.

11.

We have v'(t) = —17%0(240¢* — 112t + 11). Let the maximizer be ¢t = ¢. Then 240¢* —

112¢+11 = 0 = ¢ = Y581 e ¢
so ¢ = M3l

~ 0.326 or c =

— 1408000 V31 < 0, confirming that ¢ is the maximizer.

Note that f'(t) = 6(t — 3)(6 — t) and f"(¢)

and concave down on (2, 8] with max(,

10

(t
£,2,8

)

6

(9 —2t). So f is concave up on |2,

£(6) = —108.

0.141. But 0.141 ¢ [0.28,0.35],
is the only possibility; and v"(t) = —5%(480¢ — 112) = v"(c)

N [©



