
11. Arterial discharge: the area under a polynomial

In this lecture we show that the area enclosed by any nonnegative polynomial is readily
calculated by adapting the methods of Lecture 10.  In particular, we can use these methods
to calculate arterial discharge during the systolic phase of Lecture 1's cardiac cycle.

Figure 1 shows the graph of ventricular outflow f defined on [0.05, 0.3] by

  
f(x)=−2450

3+192500
9x−980000

9x
2

+1400000
9x

3
.(11.1)

The shaded area is F(t) = Area(f, [0.05, t]), which, as we will demonstrate in Lecture 12, is
the volume of blood discharged into aorta during [0.05, t].  To calculate this volume, it will
be convenient first to define constants c0, c1, c2, c3 by

  c0=−
2450

3,c1=
192500

9,c2=−
980000

9,c3=
1400000

9(11.2)

 and functions g, h, r, w and z by

  g(x)=1,r(x)=x,w(x)=x
2
,z(x)=x

3
(11.3)

and

  h(x)=c1r(x)+c2w(x)+c3z(x)(11.4)

for all x or, which is exactly the same thing, h = c1r + c2w + c3z.  Then, from (1)-(3),

  f=c0g+h,(11.5)

and so (9.17) with k = c0, q = 1, a = 0.05 and b = t  implies

        Area(f)=Area(c0g+h)=c0Area(g)+Area(h)(11.6)

on [0.05, t].  A similar argument reveals that

  

Area(h)=Area(c1r+c2w+c3z)
=c1Area(r)+Area(c2w+c3z)
=c1Area(r)+c2Area(w)+Area(c3z)
=c1Area(r)+c2Area(w)+c3Area(z)

(11.7)

on [0.05, t].  Combining (5)-(7), we have

     
  

Area(f,[0.05,t])=c0Area(g,[0.05,t])+c1Area(r,[0.05,t])+
c2Area(w,[0.05,t])+c3Area(z,[0.05,t]).

(11.8)

From (2) and (8), we know the shaded area in Figure 1 if we know Area(g),  Area(r),
Area(w) and Area(z) on [0.05, t].  Now, Area(g, [a, t]) is the darker area in Figure 2(a).  This
is the area of a rectangle with base t – a and height 1, implying

       Area(g,[a,t])=1⋅(t−a)=t−a(11.9)

(as we already know from Lecture 9).  In particular,

       Area(g,[0.05,t])=t−0.05.(11.10)
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That's one area down, three to go.
Area(r, [a, t]) is the darker area in Figure 2(b), which is total shaded area minus

lighter shaded area.  Total shaded area is that of a triangle with base t and height t, or

  t
2

/2.  Lighter shaded area is that of a triangle with base a and height a, or   a
2

/2.  Thus

     

  

Area(r,[a,t])=Area(r,[0,t])−Area(r,[0,a])

=
1
2

t
2

−
1
2

a
2

=
1
2

(t
2

−a
2
)

(11.11)

(as we already know from Lecture 9).  In particular,

     
  
Area(r,[0.05,t])=

1
2

(t
2

−0.05
2
).(11.12)

Two areas down, two to go.
We now turn to Figure 2(c), where the lighter shaded area is Area(w, [0, a]), the

darker area is Area(w, [a, t]) and the total shaded area is Area(w, [0, t]).  But we already
know from (10.24) that Area(w, [0, t])  =    t

3
/3, hence Area(w, [0, a])  =    a

3
/3.  Thus

     

  

Area(w,[a,t])=Area(w,[0,t])−Area(w,[0,a])

=
1
2

t
3

−
1
2

a
3

=
1
3

(t
3

−a
3
).

(11.13)

In particular,

     
  
Area(w,[0.05,t])=

1
3

(t
3

−0.05
3
).(11.14)

Three areas down, only one more to go.
Finally we turn to Figure 2(d), where the lighter shaded area is Area(z, [0, a]), the

darker area is Area(z, [a, t]) and the total shaded area is Area(z, [0, t]), so that

       Area(z,[a,t])=Area(z,[0,t])−Area(z,[0,a]).(11.15)

We define a new function Z by

  Z(t)=Area(z,[0,t]).(11.16)
Then (15) implies that

       Area(z,[a,t])=Z(t)−Z(a).(11.17)
In particular,
       Area(z,[0.05,t])=Z(t)−Z(0.05).(11.18)

So, from (8), (10), (12), (14) and (18), the shaded area in Figure 1 is

     
  

Area(f,[0.05,t])=c0(t−0.05)+
1
2c1(t

2
−0.05

2
)+

1
3c2(t

3
−0.05

3
)

+c4Z(t)−Z(0.05) {}.
(11.19)

But we don't yet have an expression for Z(t).
We do, however, know how to derive one.  We obtain Z(t) as the limit of a sequence

of approximations, just as we found G(t) in Lecture 10.  In Figure 3, the n-th approximation
to Z(t), denoted Zn(t), is the sum of n trapeziums, each of width t/n.  The base of the k-th
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trapezium stretches from x = (k–1)t/n to x = kt/n, as in Lecture 10.  So the k-th trapezium
has minimum height z((k–1)t/n) and maximum height z(kt/n).  Its area is therefore t/n
times {z((k–1)t/n) + z(kt/n)}/2.  The total shaded area is obtained by summing over all
such trapeziums, i.e., by summing over k from k = 1 to k = n.  Thus

  

  

Zn(t)=
1
2

t
n

z((k−1)t/n)+z(kt/n) {}
k=1

n

∑

=
1
2

t
n

(k−1)t/n ()
3

+(kt/n)
3

{} k=1

n

∑

=
1
2

t
n

t
3

n
3(k−1)

3
+k

3
{} k=1

n

∑

=
1
2

t
4

n
4(k−1)

3
+k

3
{} k=1

n

∑

  
  

=
1
2

t
4

n
4(k−1)

3

k=1

n

∑+k
3

k=1

n

∑








.(11.20)

By analogy with (10.17), we have

  

    

(k−1)
3

k=1

n

∑=(1−1)
3

+(2−1)
3

+(3−1)
3

+K+(n−1)
3

=0
3

+1
3

+2
3

+K+(n−1)
3

=0
3

+k
3

k=1

n−1

∑

=k
3

k=1

n−1

∑,

 (11.21)

which reduces (20) to

  
  
Zn(t)=

1
2

t
4

n
4k

3

k=1

n−1

∑+k
3

k=1

n

∑








.(11.22)

From Exercise 6.3, we have

  
k

3

k=1

M

∑=
1
4

M
2
(M+1)

2
(11.23)

for any positive integer M.  Setting M = n yields

  
k

3

k=1

n

∑=
1
4

n
2
(n+1)

2
,(11.24)

whereas setting M = n – 1 yields

  
k

3

k=1

n−1

∑=
1
4

(n−1)
2
(n−1+1)

2
=

1
4

(n−1)
2
n

2
.(11.25)

Substituting from (24)-(25) into (22), we find that
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Zn(t)=
1
2

t
4

n
4k

2

k=1

n

∑+k
2

k=1

n−1

∑








=
1
2

t
4

n
4

1
4

n
2
(n+1)

2
+

1
4

n
2
(n−1)

2 







=
1
2

t
4

n
4⋅

1
4

n
2

(n+1)
2

+(n−1)
2

{}
=

1
8

t
4

n
22n

2
+2 {}

=
1
4

t
44n

2
+2

4n
2









=
1
4

1+
1

n
2








t

4
.

   (11.26)

On letting n become indefinitely large in (26), we obtain

    
  
Z(t)=limn→∞Zn(t)=

1
4

t
4
.(11.27)

From (19) and (27), we finally deduce that the shaded area in Figure 1 is

     

  

F(t)=Area(f,[0.05,t])

=c0(t−0.05)+
1
2c1(t

2
−0.05

2
)+

1
3c2(t

3
−0.05

3
)+

1
4c4(t

4
−0.05

4
)

=c0(t−0.05)+
1
2c1(t

2
−0.05

2
)+

1
3c2(t

3
−0.05

3
)+

1
4c4(t

4
−0.05

4
)

=
35

432(20t−1)
2
(227−1000t+1200t

2
)

(11.28)

after much simplification, and on using (2); see Exercise 1.  In particular, stroke volume
(neglecting backflow) is F(0.3) = 70.9 ml.

This technique is readily adapted to yield the integral of any integer power function
(and hence of any polynomial).  For if we replace z(x) =   x

3
 by

  z(x)=x
s
,(11.29)

where s is a positive integer, then replacing third powers by s-th powers in (20) yields

  

Zn(t)=
1
2

t
s+1

n
s+1(k−1)

s

k=1

n

∑+k
s

k=1

n

∑








=
1
2

t
s+1

n
s+1k

s

k=1

n−1

∑+k
s

k=1

n

∑








=
1
2

t
s+1

n
s+1k

s

k=1

n−1

∑+k
s

k=1

n−1

∑+n
s 








=t
s+11

n
s+1k

s

k=1

n−1

∑+
1

2n








,

(11.30)

in place of (26).  But 1/2n approaches zero as n approaches ∞.  So, in place of (27), we get
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Z(t)=limn→∞Zn(t)=t

s+1
limn→∞

1
n

s+1k
s

k=1

n−1

∑








. (11.31)

This limit can be calculated by using formulae like those in Exercises 2-4.
Suppose, for example, that s = 4 or

  z(x)=x
4
.(11.32)

Then

  
Area(z,[0,t])=Z(t)=limn→∞Zn(t)=t

5
limn→∞

1
n

5k
4

k=1

n−1

∑








. (11.33)

From Exercise 6.4, however, we have

  
k

4

k=1

M

∑=
1

30
M(M+1)(2M+1)(3M

2
+3M−1)(11.34)

    

  

⇒k
4

k=1

n−1

∑=
1

30
(n−1)n(2n−1)(3n

2
−3n−1)

=
n

5

30
1−

1
n







2−
1
n







3−
3
n

−
1

n
2







(11.35)

and, substituting into (33), we obtain

  
Z(t)=t

5
limn→∞

1
30

1−
1
n







2−
1
n







3−
3
n

−
1

n
2





=t

51⋅2⋅3
30

=
1
5

t
5
. (11.36)

Similarly, it is shown in Exercises 2-4 that z(t) =   t
5
 implies Area(z, [0, t]) =   t

6
/6, that

z(t) =   t
6
 implies Area(z, [0, t]) =   t

7
/7 and that z(t) =   t

7
 implies Area(z, [0, t]) =   t

8
/8.  These

results suggest very strongly that

  
z(t)=t

s
⇒Area(z,[0,t])=

t
s+1

s+1
 (11.37)

for any positive integer s.  In fact, we will discover in a later lecture that (37) holds for any
integer, positive or negative, except s = –1.

Exercises 11

11.1*Verify (28).

11.2*Use the discrete c.d.f. defined by

  

Pn=
n

2
(n+1)

2
(2n

2
+2n−1)

M
2
(M+1)

2
(2M

2
+2M−1)

if0≤n≤M

1ifM+1≤n<∞






to establish (by the method of Lecture 6) that

  
n

5

n=1

M

∑=
1

12
M

2
(M+1)

2
(2M

2
+2M−1).

Hence show that z(t) =   t
5
 implies Area(z, [0, t]) =   t

6
/6.
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11.3Use the discrete c.d.f. defined by

  

Pn=
n(n+1)(2n+1)(3n

4
+6n

3
−3n+1)

M(M+1)(2M+1)(3M
4

+6M
3

−3M+1)
if0≤n≤M

1ifM+1≤n<∞






to establish that

  
n

6

n=1

M

∑=
1

42
M(M+1)(2M+1)(3M

4
+6M

3
−3M+1).

Hence show that z(t) =   t
6
 implies Area(z, [0, t]) =   t

7
/7

11.4Use the discrete c.d.f. defined by

  

Pn=
n

2
(n+1)

2
(3n

4
+6n

3
−n

2
−4n+2)

M
2
(M+1)

2
(3M

4
+6M

3
−M

2
−4M+2)

if0≤n≤M

1ifM+1≤n<∞







to establish that

  
n

7

n=1

M

∑=
1

24
M

2
(M+1)

2
(3M

4
+6M

3
−M

2
−4M+2).

Hence show that z(t) =   t
7
 implies Area(z, [0, t]) =   t

8
/8.

11.5 The probability density function of a size distribution for minnows is defined by

  

f(x)=
0

α(x+3)(125−30x+x
2
)

2

0








if0≤x≤5

if5≤x≤25

if25≤x≤27

What is the value of α?  Assume the result of Exercise 2.

11.6 The probability density function of a size distribution for minnows is defined by

  

f(x)=
0

αx
2
(200−30x+x

2
)

2

0








if0≤x≤10

if10≤x≤20

if20≤x≤27

What is the value of α?  Assume the results of Exercises 2-3.
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Answers and Hints for Selected Exercises

11.3First observe that

  
Pn=

Qn/QMif0≤n≤M
1ifM+1≤n<∞





where   Qn=   n(n+1)(2n+1)(3n
4

+6n
3

−3n+1).  For n = M we have   Pn=PM= 

  QM/QM=1.  For n ≥  M + 1 we have   Pn=1.  So for n ≥ M we have   Pn=1, hence 

  Pn−1=1 for n ≥ M + 1.  So for n ≥ M + 1 we have   Pn−Pn−1=1−1=0, and (6.16) 
implies

  
1={Pn−Pn−1}=

n=1

M

∑
Qn

QM

−
Qn−1

QM









=
1

QM

Qn−Qn−1 {} n=1

M

∑ n=1

M

∑,

or

  
Qn−Qn−1 {} n=1

M

∑=QM.

But straightforward expansion (for which mathematical software is highly 
recommended) yields

   Qn=n−7n
3

+21n
5

+21n
6

+6n
7

and hence

  

Qn−1={n−1}−7{n−1}
3

+21{n−1}
5

+21{n−1}
6

+6{n−1}
7

=n−7n
3

+21n
5

−21n
6

+6n
7
,

so that

  Qn−Qn−1=42n
6
.

Thus

  
42n

6

n=1

M

∑=QM=M(M+1)(2M+1)(3M
4

+6M
3

−3M+1),

from which the first result is immediate.
For the second result, set s = 6 in (29) and use (31) to yield

  
Area(z,[0,t])=Z(t)=t

7
limn→∞

1
n

7k
6

k=1

n−1

∑








.

Now, setting M = n – 1 above, we have

  

k
6

k=1

n−1

∑=
1

42
Qn−1=

1
42

n−7n
3

+21n
5

−21n
6

+6n
7

{}

=
n

7

7
1

6n
6−

7
6n

4+
7

2n
2−

7
2n

+1 






.

So

  

Z(t)=t
7

limn→∞

1
n

7

n
7

7
1

6n
6−

7
6n

4+
7

2n
2−

7
2n

+1 













=
t

7

7
limn→∞

1
6n

6−
7

6n
4+

7
2n

2−
7

2n
+1 













=
t

7

7
0+1 {}=

t
7

7
,

as required.
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11.5Straightforward expansion yields

  (x+3)(30x−125−x
2
)

2
=46875−6875x−4050x

2
+970x

3
−57x

4
+x

5
.

So, with functions g, r, w, z defined by (3) and p, s, φ  by p(x) =   x
4
, s(x) =   x

5
 and

           φ=46875g−6875r−4050w+970z−57p+s,
we have

  

f(x)=
0

αφ(x)
0








if0≤x≤5
if5≤x≤25
if25≤x≤27

implying

  
  

Area(f,[0,27])=Area(f,[0,5])+Area(f,[5,25])+Area(f,[25,27])
=0+αArea(φ,[5,25])+0

or

  
  
α=

Area(f,[0,27])
Area(φ,[5,25])

=
1

Area(φ,[5,25])
.

On [5, 25] we have

  
  

Area(φ)=46875Area(g)−6875Area(r)−4050Area(w)
+970Area(z)−57Area(p)+Area(s).

Using (9), (11), (13), (16), (17), (27), (29) and (36) with a = 5 and t = 25, we have
Area(g, [5, 25]) = 25 – 5 = 20, Area(r, [5, 25]) = (25

2
−5

2
)/2 = 300, Area(w, [5, 25]) = 

(25
3

−5
3
)/3 = 15500/3, Area(z, [5, 25]) = (25

4
−5

4
)/4 = 97500 and Area(p, [5, 25]) = 

(25
5

−5
5
)/5 = 1952500, whereas Exercise 2 yields Area(s, [5, 25]) = (25

6
−5

6
)/6 = 

40687500.   So

  

  

Area(φ,[5,25])=46875×20−6875×300−4050×15500/3

+970×97500−57×1952500+40687500

=1920000,
implying α = 1/1920000 ≈ 0.52 × 10

−6
.
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11.6Straightforward expansion yields
         x

2
(200−30x+x

2
)

2
=40000x

2
−12000x

3
+1300x

4
−60x

5
+x

6
.

So, with w, z defined by (3) and p, s, q, φ by p(x) =   x
4
, s(x) =   x

5
, q(x) =   x

6
 and

           φ=40000w−12000z+1300p−60s+q,
we have

  

f(x)=
0

αφ(x)
0








if0≤x≤10

if10≤x≤20

if20≤x≤27
implying

  
  

Area(f,[0,27])=Area(f,[0,10])+Area(f,[10,20])+Area(f,[20,27])
=0+αArea(φ,[10,20])+0

or

  
  
α=

Area(f,[0,27])
Area(φ,[10,20])

=
1

Area(φ,[10,20])
.

On [10, 20] we have
    Area(φ)=40000Area(w)−12000Area(z)+1300Area(p)−60Area(s)+Area(q).
Using (9), (11), (13), (16), (17), (27), (29) and (36) with a = 10 and t = 20, we have
Area(w, [10, 20]) = (20

3
−10

3
)/3 = 7000/3, Area(z, [10, 20]) = (20

4
−10

4
)/4 = 37500 

and Area(p, [10, 20]) = (20
5

−10
5
)/5 = 620000, whereas Exercises 2 and 3 yield 

Area(s, [10, 20]) = (20
6

−10
6
)/6 = 10500000 and Area(q, [10, 20]) = (20

7
−10

7
)/7 = 

1270000000/7.   So

  

  

Area(φ,[10,20])=40000×7000/3−12000×37500+1300×620000

−60×10500000+1270000000/7

=16000000/21,
implying α = 21/16000000 = 1.3125 × 10

−6
.


