
12. From ventricular inflow to volume: integration

Figure 1 shows ventricular inflow in our cardiac cycle at the end of the ejection phase.
The graph is that of v defined on [0.28, 0.35] by

v(t)  =  2450/3 – 192500t/9 + 980000  t
2
/9 – 1400000  t

3
/9(12.1a)

=      350(20t – 1)(3 – 10t)(7 – 20t)/9,(12.1b)

i.e., it is the restriction to [0.28, 0.35] of the function v whose graph is sketched in Figure
1.4.  On [0.28, 0.3) we have v(t) < 0, corresponding to arterial outflow.  On (0.3, 0.35) we
have v(t) > 0, corresponding to arterial backflow, which closes the aortic valve.  In 0.07
seconds, inflow increases from v(0.28) = –50.1 ml/s to v(0.3) = 0 to v(0.326) = 26.8 ml/s,
before decreasing again to zero at t = 0.35 s.  For the first fiftieth of a second, blood flows
out of the ventricle; but for the next twentieth of a second, blood flows back in.  So how
much blood flows in or out, overall?  In other words, what is net  transport of blood by
the flow?  The purpose of this lecture is to answer that question.

First of all, an inflow of –50.1 ml/s at t = 0.28 s means that if  flow continued at
this rate for the next 0.01 s then –50.1 × 0.01 = –0.501 ml of blood would flow into the
ventricle.  In other words, 0.501 ml of blood would be discharged into the aorta.  This
volume of discharge equals the area of the shaded rectangle below [0.28, 0.29] in Figure
2(a).  Its signed area is –0.501 ml, which is the blood volume that would be transported
into the ventricle, or ventricular recharge.

Flow does not continue at –50.1 ml/s for a hundredth of a second, however,
because by t = 0.29 s it has already increased to v(0.29) = –22.4 ml/s.  If this higher rate
were maintained on [0.28, 0.29], then the ventricular recharge would instead be –22.4 ×
0.01 = –0.224 ml.  In other words, 22.4 × 0.01 = 0.224 ml of blood would be discharged
into the aorta.  This volume equals the area of the shaded rectangle below [0.28, 0.29] in
Figure 2(b).  Its signed area is –0.224 ml, which is the recharge.

The true volume of blood transported into the ventricle during [0.28, 0.29] must
be somewhere in between: It is underestimated by –0.501 ml, but it is overestimated by
–0.224.  That is,

–0.501  <  NET TRANSPORT OF BLOOD DURING [0.28, 0.29]  <  –0.224

A similar analysis applies to [0.29, 0.3], on which flow increases from –22.4 ml/s to
zero: recharge is underestimated by –0.224 ml (signed area of shaded rectangle under
[0.29, 0.3] in Figure 2(a)) but overestimated by  zero (no shaded rectangle over [0.29, 0.3]
in Figure 2(b)).  In other words,

–0.224  <  NET TRANSPORT OF BLOOD DURING [0.29, 0.3]  <  0

Thus net recharge during [0.28, 0.3], on which v increases with respect to time but flow
is never positive, is greater than –0.501  – 0.224 = –0.725 ml but less than –0.224 + 0 =
–0.224 ml.  That is,

–0.725  <  NET TRANSPORT OF BLOOD DURING [0.29, 0.3]  <   –0.224

On [0.3, 0.3131], v still increases with respect to time but inflow is nonnegative,
so that net recharge is underestimated by zero (no shaded rectangle over [0.3, 0.3131] in
Figure 2(a)).  Moreover, v cannot exceed v(0.3131) = 19.7 ml/s, so that 19.7 × 0.0131 =
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0.258 ml overestimates the net recharge.  This overestimate is the area of the shaded
rectangle above [0.3, 0.3131] in Figure 2(b), which is also its signed area.  Thus

0   <  NET TRANSPORT OF BLOOD DURING [0.3, 0.313]  <   0.258

Similarly, on [0.3131, 0.3261], flow must exceed 19.7 ml/s but cannot exceed v(0.3261) =
26.8 ml/s, so that net recharge is underestimated by 0.258 ml but overestimated by 26.8
× 0.013 = 0.35 ml.  In other words,

0.258   <  NET TRANSPORT OF BLOOD DURING [0.313, 0.326]  <   0.35

So during [0.3, 0.326], when v is nonnegative and increases with respect to time, net
recharge exceeds 0 + 0.258 = 0.258 ml but is less than 0.258 + 0.35 = 0.608 ml:

0.258   <  NET TRANSPORT OF BLOOD DURING [0.3, 0.326]  <   0.608

The underestimate is the (signed) shaded area above [0.313, 0.326] in Figure 2(a), and
the overestimate is the corresponding (signed) area in Figure 2(b).

Similar considerations apply to [0.3261, 0.35], on which flow is still nonnegative
but v decreases with respect to time.  Because v(0.3261) = 26.8 and v(0.33805) = 20.37, net
recharge on  [0.3261, 0.33805] is overestimated by 26.8 × 0.01195 = 0.320 ml  but
underestimated by 20.37 × 0.01195 = 0.243 ml; whereas net recharge on [0.33805, 0.35] is
overestimated by 0.243 ml but underestimated by zero.  So net recharge during [0.326,
0.35] exceeds 0.243  + 0 = 0.243 ml but is less than 0.320 + 0.243 = 0.563 ml.  That is,

0.243   <  NET TRANSPORT OF BLOOD DURING [0.326, 0.35]  <   0.563

Again, the underestimate is the shaded area over [0.326, 0.35] in Figure 2(a), whereas
the overestimate is the corresponding area in Figure 2(b).

Thus an underestimate of total net recharge into the ventricle during [0.28, 0.35]
is obtained by signing the shaded area in Figure 2(a), and an overestimate is obtained
by signing the area in Figure 2(b).  These two estimates are –0.725 + 0.258 + 0.243 = –0.22
ml and –0.224 + 0.608 + 0.563 = 0.95 ml, respectively.  In other words,

–0.22   <  NET TRANSPORT OF BLOOD DURING [0.28, 0.35]  <   0.95

These are very crude estimates of total net recharge, but we obtained them by
dividing each of [0.28, 0.3], [0.3, 0.326] and [0.326, 0.35] into only two subintervals.  We
can improve our estimates by doubling the number of subintervals, from two to four,
but otherwise proceeding as before.  The result is shown in Figure 3.  We can obtain
even more accurate estimates if we double the number of subintervals again, to eight,
as shown in Figure 4.  In fact, we can improve the accuracy indefinitely, by continually
increasing the number of doublings, say n, of the original three subintervals, as Figure
5 illustrates.  At each of these doublings, net recharge of blood into the ventricle during
[0.28, 0.35] is underestimated by the signed area with darker shading but overestimated
by the signed area with lighter shading.  In the limit as n → ∞, however, the two
signed areas must coincide, with true net recharge sandwiched between them.  Thus
true net recharge is the limit of both an increasing sequence of underestimates and a
decreasing sequence of overestimates; see Tables 1-2 (and Appendix 12).  Either way,
true net recharge equals signed area between the horizontal axis and the graph of v on
[0.28, 0.35].  Of course, the numbers in Tables 1-2 are just toy numbers – most of the
"significant figures" have no physiological significance – but with their help we can
more readily understand the mathematics behind the physiology.
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NUMBER OFRECTANGULAR UNDERESTIMATES OF NET DISCHARGE DURING [0.28, 0.35]
SUBINTERVAL

DOUBLINGS
Int(v, [0.28, 0.3])Int(v, [0.3, 0.326])Int(v, [0.326, 0.35])Int(v, [0.28, 0.35])

0-1.00200 -1.002
1-0.72490.25800.2430-0.2239
2-0.59310.36620.34370.1169
3-0.52880.41520.38890.2752
4-0.49710.43830.41010.3514
5-0.48130.44960.42050.3887
6-0.47350.45520.42550.4072
7-0.46950.45790.42810.4164
8-0.46760.45930.42930.4210
9-0.46660.46000.42990.4233
10-0.46610.46030.43020.4244
11-0.46590.46050.43040.4250
12-0.46580.46060.43050.4253
13-0.46570.46060.43050.4254
14-0.46570.46060.43050.4255
15-0.46560.46060.43050.4255
16-0.46560.46060.43060.4256

  Table 12.1  Rectangular underestimates of net backflow into ventricle during [0.28, 0.35]

NUMBER OFRECTANGULAR OVERESTIMATES OF NET DISCHARGE DURING [0.28, 0.35]
SUBINTERVAL

DOUBLINGS
Int(v, [0.28, 0.3])Int(v, [0.3, 0.326])Int(v, [0.326, 0.35])Int(v, [0.28, 0.35])

000.70000.63951.340
1-0.22400.60800.56270.9467
2-0.34260.54120.50360.7022
3-0.40360.50270.46880.5679
4-0.43450.48210.45010.4977
5-0.45000.47150.44040.4619
6-0.45780.46610.43550.4438
7-0.46170.46340.43300.4347
8-0.46370.46200.43180.4301
9-0.46470.46130.43120.4279
10-0.46510.46100.43090.4267
11-0.46540.46080.43070.4261
12-0.46550.46070.43060.4259
13-0.46560.46070.43060.4257
14-0.46560.46070.43060.4256
15-0.46560.46070.43060.4256
16-0.46560.46070.43060.4256

Table 12.2  Rectangular overestimates of net backflow into ventricle during [0.28, 0.35]

We have thus established net recharge of blood during [0.28, 0.35] must equal
Int(v, [0.28, 0.35]).  But net recharge of blood during [0.28, 0.35] must also equal increase
of ventricular volume during the same interval, and so

  

Intv,0.28,0.35 [] ()=V(0.35)−V(0.28)

=DiffV,0.28,0.35 [] ().
(12.2)

Furthermore, the arguments above do not depend in any way on choosing [0.28, 0.35]
as the subdomain of v: they would apply with equal force to any other subdomain.  So,
for arbitrary times a and b, net recharge during the interval [a, b] equals Int(v, [a, b]) and
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Intv,a,b [] ()=V(b)−V(a)

=DiffV,a,b [] (),
(12.3)

or, equivalently,

  V(b)=V(a)+Intv,a,b [] ().(12.4)
Because b is arbitrary, we can set b = t to reveal a fundamental relationship between
ventricular volume V and inflow v:

  V(t)=V(a)+Intv,a,t [] ().(12.5)
Physiologically speaking, ventricular volume at the current time equals ventricular
volume at any earlier time plus subsequent net recharge.

By interpreting Int(v, [a, b]) as net recharge from inflow v, we can deduce some
important properties of the integral.  First, if v is net inflow, then –v is net outflow
(Figure 1.4).  Hence Int(–v, [a, b]) is net discharge from the ventricle during [a, b].  But
net discharge on [a, b] must equal V(a) – V(b) = –{V(b) – V(a)}.  Therefore, from (3):

  Int−v,a,b [] ()=−Intv,a,b [] ().(12.6)

Second, because, e.g., doubling or tripling an inflow will double or triple the associated
net recharge, we have Int(2v, [a, b])  =  2 Int(v, [a, b]) and Int(3v, [a, b])  =  3 Int(v, [a, b]).
More generally, changing the flow by a factor of k will change the associated recharge
by a factor of k or

  Intkv,a,b [] ()=kIntv,a,b [] ().(12.7)

Third, suppose that two venules converge at C to form a vein, as cartooned in Figure 6.
At time t, let u(t) ml/s and v(t) ml/s be the outflows from the venules at C.  Then total
flow into the vein at C must be u(t) + v(t), because there is nowhere else for blood to
go.  For the same reason, discharge into the vein during any interval [a, b] must equal
total discharge out of the venule, or

  Intu+v,a,b [] ()=Intu,a,b [] ()+Intv,a,b [] ().(12.8)

Note that, even if u or v were not a flow, we could pretend that u and v are flows, and
none of their properties could thereby change.  Thus (6)-(8) are general properties of
integrals.  Furthermore, by the method of Lecture 9, they are easily combined into a
single result, namely,

       Int(ku+qv,[a,b])=kInt(u,[a,b])+qInt(v,[a,b]),(12.9)

agreeing with (9.17) in the special case where u, v and ku + qv are all nonnegative.
These results enable us to obtain an explicit formula for ventricular volume at

any time during our cardiac cycle.  Suppose, for example, that 0.05 ≤ t ≤ 0.35, and define
constants c0, c1, c2, c3 and functions g, r, w, z  by

  c0=
2450

3,c1=−
192500

9,c2=
980000

9,c3=−
1400000

9(12.10)
and

       g(x)=1,r(x)=x,w(x)=x
2
,z(x)=x

3
,(12.11)

so that

  v=c0g+c1r+c2w+c3z(12.12)

from (1).  Now, by analogy with (11.1)-(11.8), successively applying (9) with b = t yields
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Int(v,[a,t])=Int(c0g+c1r+c2w+c3z,[a,t])
=c0Int(g,[a,t])+c1Int(r,[a,t])+

c2Int(w,[a,t])+c3Int(z,[a,t]).
(12.13)

Because Int = Area for a nonnegative function, however, from Lecture 11 we have

       Int(g,[a,t])=t−a(12.14)
       Int(r,[a,t])=

1
2(t

2
−a

2
)(12.15)

       Int(w,[a,t])=
1
3(t

3
−a

3
)(12.16)

       Int(z,[a,t])=
1
4(t

4
−a

4
).(12.17)

So, from (5) and (13)-(17),

  

V(t)=V(a)+Intv,a,t [] ()
=V(a)+c0(t−a)+

1
2c1(t

2
−a

2
)+

1
3c2(t

3
−a

3
)+

1
4c3(t

4
−a

4
)

=V(a)−c0a−
1
2c1a

2
−

1
3c2a

3
−

1
4c3a

4

+c0t+
1
2c1t

2
+

1
3c2t

3
+

1
4c3t

4
.

(12.18)

For example, because V(0.05) = 120 from Figure 3, with a = 0.05 we have

  
V(t)=

43895
432

+2450
3t−96250

9t
2

+980000
27t

3
−350000

9t
4

(12.19)

for any t ∈ [0.05, 0.35].  In particular, from (19), net recharge on [0.28, 0.35] is Int(v, [0.28,
0.35]) = V(0.35) – V(0.28) = 50 – 49.5744 = 0.4256ml.  Corresponding expressions for the
rest of the cardiac cycle are similarly obtained; see Exercise 1.

We conclude by discussing notation.  In Figures 2-5 we found Int(v, [a, b]) as the
limit of either the sum of signed areas of a large number of overestimating rectangles
or the sum of signed areas of a large number of underestimating rectangles, as the
number of rectangles became infinitely large.  If the number approaches infinity,
however, then the width of each rectangle approaches zero.  Now, in mathematics, the
Greek letter δ is traditionally used to denote "infinitesimal change in" (maybe because
it resembles an upside-down tadpole).  Thus δx stands for a small change in x, and a
typical approximating rectangle has height v(x) and signed area v(x)⋅δx.  So integration
means summing a large number of signed areas of the form v(x)⋅δx and finding the
limit of the sum as δx → 0.  Symbolically, we have

  
Int(v,[a,b])=limδx→0v(x)δx

[a,b] ∑,(12.20)

where [a, b] under the Σ sign indicates that every piece of the interval [a, b] must be
covered by some δx.  It is often useful to have a mathematical shorthand that evokes
the right-hand side of (19), and so we define

  
v(x)dx

a

b

∫=limδx→0v(x)δx
[a,b] ∑.(12.21)

Immediately, we have an alternative notation for the integral of v over [a, b].  That is,
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v(x)dx

a

b

∫=Int(v,[a,b]).(12.22)

The left-hand side of (22) is usually read as the "integral of v(x) with respect to x
between x = a and x = b" – from which, given that   ""∫  is an integral sign, we read "dx"
as "with respect to x."  Note, however, that the right-hand side of (22) does not depend
in any way on x, and so any letter except  a or b can be used in lieu of x on the left-hand
side of the equation.  For example,

  
v(t)dt

a

b

∫=Int(v,[a,b])(12.23)

is exactly the same statement as (22).  Henceforeward, we will refer to   ""∫ as Leibniz
notation (because Leibniz introduced it) and to "Int" as standard notation.

For every statement in standard notation there is an identical statement in
Leibniz notation, and vice versa.  For example, (5), (9) and (14)-(17) are identical to

  
V(t)=V(a)+v(x)dx

a

t

∫,(12.24)

  
{ku(x)+qv(x)}dx

a

b

∫=ku(x)dx+
a

b

∫qv(x)dx
a

b

∫,(12.25)

and

  

1dx
a

t

∫=t−a,xdx
a

t

∫=
1
2

(t
2

−a
2
)

x
2

dx
a

t

∫=
1
3

(t
3

−a
3
),x

3
dx

a

t

∫=
1
4

(t
4

−a
4
),

(12.26)

respectively; and (8.25), i.e., Int(f, [a, b]) =  Int(f, [a, c]) +  Int(f, [c, b]), becomes

  
f(x)dx

a

b

∫=f(x)dx
a

c

∫+f(x)dx
c

b

∫,(12.27)

for any c satisfying a ≤ c ≤ b.
Each notation has its advantages and disadvantages.  In particular, standard

notation makes clearer that Int(v, [a, b]) depends only on v, a and b: it does not depend
in any way on t, x, or anything else.  On the other hand, with Leibniz notation, we can
go straight from v to V without steps (10)-(12): from (24), (1), successive application of
(25) and (26)-(27), we have

  

V(t)=V(0.05)+v(x)dx
0.05

t

∫

=120+{
2450

3+
192500

9x+
980000

9x
2

+
1400000

9x
3
}dx

0.05

t

∫

=120+
2450

31dx
0.05

t

∫+
192500

9xdx
0.05

t

∫+
980000

9x
2

dx
0.05

t

∫+
1400000

9x
3

dx
0.05

t

∫
=120+

2450
3(t−1)+

96250
9(t

2
−0.05

2
)+

980000
27(t

3
−0.05

3
)+

350000
9(t

4
−0.05

4
),

(12.28)

which reduces to (19).
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Exercises 12

12.1Verify the expression for ventricular volume V(t) in Appendix 2B.  Also verify 
that (19) is consistent with (11.28).

12.2The functions g and G are defined on [0, 3] by

  
g(t)=

4−3tif0≤t≤1
2−t

3
if1≤t<3





   and
  
G(t)=g(x)dx

0

t

∫.

Find an explicit formula for G(t).

12.3The functions g and G are defined on [0, 4] by

  

g(t)=
4−t

2
if0≤t≤1

t
3

+2if1≤t≤3
10t−1if3≤t≤4









   and
  
G(t)=g(x)dx

0

t

∫.

Find an explicit formula for G(t).

12.4*The functions ξ and φ are defined on [0, 3] by

  

ξ(t)=
−2if0≤t≤1

7t−9if1≤t≤2
3t−1if2≤t≤3








and

  
φ(t)=ξ(x)dx

0

t

∫.

Find an explicit formula for φ(t).  Plot the graphs of ξ and φ.

Hint: Use Int(ξ, [0, t]) =  Int(ξ, [0, a]) +  Int(ξ, [a, t]) with appropriate values of a.

12.5The functions ξ and φ are defined on [0, ∞) by

  

ξ(t)=
4−2tif0≤t≤3
t−5if3≤t≤6

1if6≤t<∞








and

  
φ(t)=ξ(x)dx

0

t

∫.

Find an explicit formula for φ(t).  Plot the graphs of ξ and φ.

12.6A piecewise-linear function g is defined on [0, 12] by the graph in Figure 8.  A
function G is defined on [0, 12] by G(t) = Int(g, [0, t]).  Obtain an explicit formula 
for G(t).
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12.7The functions g and G are defined on [0, 3] by

  

g(t)=
5−8t
t

3
−4

2t
2

+3t−10








if0≤t≤1
if1≤t≤2
if2≤t≤3

   and
  
G(t)=g(x)dx

0

t

∫.

Find an explicit formula for G(t).

12.8Calculate Int(W, [1, 3]) for W is defined on [1, 3] by

   
  
W(t)=

4t
3

+52if1≤t<2
3t

2
+36tif2≤t≤3





12.9Calculate Int(W, [0, 2]) for W is defined on [0, 2] by   

  
W(t)=

3t
2

−4tif0≤t<1
4t

3
−5t

2
if1≤t≤2





12.10Calculate Int(W, [2, 4]) for W is defined on [2, 4] by   

  
W(t)=

4t
3

+6t
2

+2t+240if2≤t<3

3t
2

+128t−3if3≤t<4




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Appendix 12: Rectangular versus trapezoidal approximation of integrals

Table 1 shows the sequence {Uk} of underestimates obtained by summing the darker
signed areas in Figures 2-5.  The sequence {Uk} is seen to be increasing, i.e., Uk+1 > Uk
for all k ≥ 1.  Table 2 shows the sequence {Ok} of overestimates obtained by summing
the lighter signed areas in Figures 2-5.  The sequence {Ok} is seen to be decreasing, i.e.,
Ok+1 < Ok for all k ≥ 1.  Furthermore, both sequences converge.  Thus if O∞ and U∞ are,
respectively, the greatest lower bound for Ok  and the least upper bound for Uk, then

  U1<U2<U3<U4<U5<...<U∞=O∞<...<O5<O4<O3<O2<O1.(12.A1)
That is, regardless of whether we overestimate or underestimate, our approximations
converge to Int(f, [0.28, 0.35]).  In fact, 

  U∞=O∞=
22981
54000=0.4256ml.(12.A2)

Although Int(-v, [0.28, 0.3]) = 0.4656 ml of blood is discharged into the aorta during the
first 0.02 s of the interval, there is a reverse discharge of Int(v, [0.3, 0.35]) = 0.8912 ml
during the last 0.05s, and the net effect over 0.07 s is that ventricular volume has
increased by 0.4256 ml.

NUMBER OFTRAPEZOIDAL ESTIMATES OF NET DISCHARGE DURING [0.28, 0.35]
SUBINTERVAL

DOUBLINGS
Int(v, [0.28, 0.3])Int(v, [0.3, 0.326])Int(v, [0.326, 0.35])Int(v, [0.28, 0.35])

0-0.50090.350.31980.1689
1-0.47440.4330.40290.3614
2-0.46780.45370.42360.4095
3-0.46620.45890.42880.4216
4-0.46580.46020.43010.4246
5-0.46570.46050.43040.4253
6-0.46560.46060.43050.4255
7-0.46560.46060.43050.4256
8-0.46560.46060.43060.4256

Table 12.3  Trapezoidal estimates of net backflow into ventricle during [0.28, 0.35]

Both {Uk} and {Ok} converge too slowly to be useful in practice.  Nevertheless,
we can speed convergence by the simple expedient of averaging the signed areas of the
light and dark rectangles in Figures 2 - 5.  In other words, to speed convergence we
define a sequence {Tk} by

  
Tk=

1
2

Uk+Ok {}(12.A3)

and calculate net backflow from

  
Int(v,[0.28,0.35])=T∞=limk→∞Tk=

1
2

{U∞+O∞}=U∞=O∞(12.A4)

instead.  Table 3 illustrates the faster convergence.
Note that {Tk} is an underestimating sequence throughout [0.28, 0.35].  Why?  Let

a function f be either nonnegative or nonpositive, and define φ on [L, R] by

  

φ(x)=f(L)+
f(R)−f(L)

R−L







(x−L)

=
Rf(L)−Lf(R)

R−L
+

f(R)−f(L)
R−L









x.
  (12.A5)

Then, because φ is linear, with φ(L) = f(L) and φ(R) = f(R), the graph of φ is a straight line
from (L, φ(L)) to (R, φ(R)) , i.e., from (L, f(L)) to (R, f(R)).  Thus
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Int(φ,[L,R])=

1
2

(R−L)φ(L)+φ(R) {}=
1
2

(R−L)f(L)+f(R) {}  (12.A6)

is the signed area of a trapezium represented by a lighter shaded area in Figure 7, above
or below the axis according to whether f is positive or negative on [L, R]).  A darker
shaded area represents Int(f, [L, R}).  So Int(φ, [L, R}) overestimates Int(f, [L, R}) if f is
concave up (top half of diagram) but underestimates Int(f, [L, R}) if f is concave down
(bottom half), regardless of whether f ≥ 0 (left-hand column) or f ≤ 0 (right-hand
column).  Accordingly, if f is concave up or concave down on [a, b], then Int(f, [a, b]) can
be accurately overestimated or underestimated, respectively, by decomposing [a, b] into
several subdomains and applying (A6) to each.

Furthermore, in Figures 2-5, both the underestimating rectangle and the
overestimating rectangle for Int(f, [L, R]) have base R – L; one has signed altitude f(L),
the other has signed altitude f(R), and so their signed areas are (R–L)f(L) and (R–L)f(R),
respectively.  The average of these two quantities is the right-hand side of (A6).  Thus
averaging the two rectangular estimates is equivalent to trapezoidal approximation.  In
particular, (A3) defines a trapezoidal approximation.  We can now answer the question
that began the previous paragraph: {Tk} is an underestimating sequence on [0.28, 0.35]
because f is concave down throughout that interval (see Figure 1).

Answers and Hints for Selected Exercises

12.2 Suppose that 0 ≤ t ≤ 1.  Then, because 0 ≤ x ≤ t implies g(x) = 4–3x, we have

  

G(t)=g(x)dx
0

t

∫={4−3x}dx
0

t

∫=41dx
0

t

∫−3xdx
0

t

∫

=4(t−0)−
3
2

(t
2

−0
2
)=4t−

3
2t

2
,

on using (25)-(26).  In particular, G(1) = 5/2.  Now suppose that 1 ≤ t ≤ 3.  Then, 
because 1 ≤ x ≤ t implies g(x) =   2−x

3
, we have

  

G(t)=g(x)dx
0

t

∫=g(x)dx
0

1

∫+g(x)dx
1

t

∫

G(1)+{2−x
3
}dx

1

t

∫

=
5
2

+21dx
1

t

∫−x
3

dx
1

t

∫

=
5
2

+2(t−1)−
1
4

(t
4

−1
4
)=

3
4

+2t−
1
4

t
4
,

on using (25)-(26) again.  In sum,

  
G(t)=

4t−
3
2t

2
if0≤t≤1

3
4+2t−

1
4t

4
if1≤t≤3




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12.3Suppose that 0 ≤ t ≤ 1.  Then, because 0 ≤ x ≤ t implies g(x) =   4−x
2
, we have

  

G(t)=g(x)dx
0

t

∫={4−x
2
}dx

0

t

∫=41dx
0

t

∫−x
2

dx
0

t

∫

=4(t−0)−
1
3

(t
3

−0
3
)=

1
3

t(12−t
2
),

on using (25)-(26).  In particular, G(1) = 11/3.  Now suppose that 1 ≤ t ≤ 3.  Then, 
because 1 ≤ x ≤ t implies g(x) =   x

3
+2, we have

  

G(t)=g(x)dx
0

t

∫=g(x)dx
0

1

∫+g(x)dx
1

t

∫

G(1)+{x
3

+2}dx
1

t

∫

=
11
3

+x
3
dx

1

t

∫+21dx
1

t

∫

=
11
3

+
1
4

(t
4

−1
4
)+2(t−1)=

1
4

t
4

+2t+
17
12

,

on using (25)-(26) again.  In particular, G(3) = 83/3.  Finally, suppose that 3 ≤ t ≤ 4.
Then, because 3 ≤ x ≤ t implies g(x) = 10x – 1, we have

  

G(t)=g(x)dx
0

t

∫=g(x)dx
0

3

∫+g(x)dx
3

t

∫

G(3)+{10x−1}dx
3

t

∫

=
83
3

+10xdx
3

t

∫−1dx
3

t

∫

=
83
3

+10⋅
1
2

(t
2

−3
2
)−(t−3)=5t

2
−t−

43
3

.

In sum,

  

G(t)=

1
3t(12−t

2
)

1
4t

4
+2t+

17
12

5t
2

−t−
43
3









if0≤t≤1
if1≤t≤3
if3≤t≤4

12.7G is defined on [0, 3] by

  

G(t)=g(x)dx
0

t

∫=
5t−4t

2

1
4t

4
−4t+

19
4

2
3t

3
+

3
2t

2
−10t+

29
3









if0≤t≤1
if1≤t≤2
if2≤t≤3
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12.8Int(W, [1, 3])   =   Int(W, [1, 2])   +   Int(W, [2, 3])   =

  
(4t

3
+52)

1

2

∫dt+(3t
2

+36t)
2

3

∫dt   =

  
4t

3

1

2

∫dt+521
1

2

∫dt+3t
2

2

3

∫dt+36t
2

3

∫dt=

  

4⋅
1
4

(2
4

−1
4
)+52⋅(2−1)+3⋅

1
3

(3
3

−2
3
)+36⋅

1
2

(3
2

−2
2
)=

=15+52+19+90=176

12.9Int(W, [0, 2])   =   Int(W, [0, 1])   +   Int(W, [1, 2])   =

  
(3t

2
−4t)

0

1

∫dt+(4t
3

−5t
2
)

1

2

∫dt   =

  
3t

2

0

1

∫dt−4t
0

1

∫dt+4t
3

1

2

∫dt−5t
2

1

2

∫dt=

  

3⋅
1
3

(1
3

−0
3
)−4⋅

1
2

(1
2

−0
2
)+4⋅

1
4

(2
4

−1
4
)−5⋅

1
3

(2
3

−1
3
)=

=1−2+15−35/3=7/3

12.10Int(W, [2, 4])   =   Int(W, [2, 3])   +   Int(W, [3, 4])   =

  
(4t

3
+6t

2
+2t+240)

2

3

∫dt+(3t
2

+128t−3)
3

4

∫dt   =

  

4t
3

2

3

∫dt+6t
2

2

3

∫dt+2t
2

3

∫dt+2401
2

3

∫dt+

3t
2

3

4

∫dt+128t
3

4

∫dt−31
3

4

∫dt=

  

4⋅
1
4

(3
4

−2
4
)+6⋅

1
3

(3
3

−2
3
)+2⋅

1
2

(3
2

−2
2
)+240⋅(3−2)

3⋅
1
3

(4
3

−3
3
)+128⋅

1
2

(4
2

−3
2
)−3⋅(4−3)=

=65+38+5+240+37+448−3=830


