
13. From ventricular volume to inflow: the derivative as rate of change

Although we can determine approximately where an ordinary function V increases or
decreases by looking at its graph, there are times when greater accuracy is needed.  We
then use algebraic methods based on the index function DQ.  So first recall from
Lecture 8 that

  
DQV,[a,b] ()=

V(b)−V(a)
b−a

(13.1)

is the average net rate of increase of V over the interval [a, b].
For the sake of simplicity, we assume in this lecture that V is a function of time

(although in Lecture 16 our method will apply with equal force to functions of other
variables, e.g., mass, temperature, or CO2 concentration).  Thus increase or decrease
means growth or decay.  Moreover, we consider only smooth functions (although in
Lecture 15 our method will apply with equal force to piecewise-smooth functions,
which are smooth on various subdomains).

A quantity is growing or decaying at any given time if it is bigger or smaller soon
afterwards.  So V is increasing at time t if V(t + h) > V(t) when h is very small and
positive, whereas V is decreasing at time t if V(t + h) < V(t) when h is very small and
positive.  For example, if V is ventricular volume, then V(t + h) > V(t) if the ventricle
is refilling at time t but V(t + h) < V(t) if the ventricle is discharging.  Note that h ≠ 0,
because we must compare different times to know whether V is growing or decaying.

In other words, V is increasing at time t if

  DiffV,[t,t+h] ()=V(t+h)−V(t)>0(13.2a)
for all positive and very small h, whereas V is decreasing at time t if

  DiffV,[t,t+h] ()=V(t+h)−V(t)<0(13.2b)
for all positive and very small h.  Because h > 0, however, Diff(V, [t, t +h]) invariably
has the same sign as

    
  

Diff(V,[t,t+h])
h

=
V(t+h)−V(t)

(t+h)−t
=DQV,[t,t+h] ().(13.3)

Hence, from (2), V is increasing at time t if

  DQV,[t,t+h] ()>0(13.4a)
for all positive and very small h, whereas V is decreasing at time t if

  DQV,[t,t+h] ()<0(13.4b)
for all positive and very small h.  Moreover, because DQ(V, [t, t + h]) is the average net
growth rate over the interval [t, t + h] and h is very small, we regard DQ(V, [t, t + h]) as
an approximation to the net growth rate of V at time t.  The smaller the value of h, the
better this approximation.

For example, suppose that V is ventricular volume during the systolic phase of
our cardiac cycle.  Then Diff(V, [t, t + h]) is net recharge (positive or negative) between
time t and time t + h, so that DQ(V, [t, t + h]) is average rate of recharge over [t, t + h];
the ventricle is refilling if DQ(V, [t, t + h]) > 0 and discharging if DQ(V, [t, t + h]) < 0.
But rate of recharge equals inflow.  So DQ(V, [t, t + h]) is average inflow over [t, t + h];
and because h is very small, DQ(V, [t, t + h]) approximates inflow at time t.  The
smaller the value of h, the better this approximation.

For the sake of definiteness, we now restrict our attention to the last 0.07 seconds
of the systolic phase.  Then V has domain [0.28, 0.35], on which it is defined by

  V(t)=c0+c1t+c2t
2

+c3t
3

+c4t
4

(13.5)
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with
                 c0=

43895
432,c1=

2450
3,c2=−

96250
9,c3=

980000
27,c4=−

350000
9,(13.6)

from (12.19).  So

          

  

V(t+h)=c0+c1(t+h)+c2(t+h)
2

+c3(t+h)
3

+c4(t+h)
4

=c0+c1t+c1h+c2(t
2

+2th+h
2
)

+c3(t
3

+3t
2
h+3th

2
+h

3
)+c4(t

4
+4t

3
h+6t

2
h

2
+4th

3
+h

4
)

(13.7)

and, subtracting (5) from (7),

          
  

V(t+h)−V(t)=c1h+2c2th+c2h
2

+3c3t
2
h+3c3th

2
+c3h

3

+4c4t
3
h+6c4t

2
h

2
+4c4th

3
+c4h

4
.

(13.8)

Dividing by h, we find that

          

  

DQ(V,[t,t+h])=
V(t+h)−V(t)

h
=c1+2c2t+c2h+3c3t

2
+3c3th+c3h

2

+4c4t
3

+6c4t
2
h+4c4th

2
+c4h

3
.

(13.9)

Rearranging terms, we have

          
  

DQ(V,[t,t+h])=c1+2c2t+3c3t
2

+4c4t
3

+

h{3c3t+c3h+c2+6c4t
2

+4c4th+c4h
2
}.

(13.10)

Observe that DQ(V, [t, t + h]) consists of a first term or leading term that is
independent of h plus a second term or error term that depends on h.  This error term
has the nice property that it can be neglected if h is sufficiently small.  Why?  We argue
as follows.  Because the domain of V is [0.28, 0.35], we have

             
  
t≤

7
20

.(13.11)

Because h is very small, it is safe to assume that
               h≤1(13.12)
is very comfortably satisfied.  So

          
  
3t+h≤3×

7
20

+1=
41
20

(13.13)

and

          
  
6t

2
+4th+h

2
≤6×

7
20 ()

2
+4×

7
20×1+1

2
=

627
200

(13.14)

Now, because the magnitude of a sum cannot exceed the sum of the magnitudes, the
magnitude of the error term satisfies

          

  

h3c3t+c3h+c2+6c4t
2

+4c4th+c4h
2

=hc2+(3t+h)c3+(6t
2

+4th+h
2
)c4

≤h|c2|+(3t+h)|c3|+(6t
2

+4th+h
2
)|c4| {}

≤h|c2|+
41
20|c3|+

627
200|c4| {}

≤h
96250

9+
41
20

980000
27+

627
200

350000
9 {}

=5589500h
27=207018.5h.

(13.15)

Thus the magnitude of the error term in (10) cannot possibly exceed 207019h, and we
can make 207019h negligibly small by making h sufficiently small.  For example, if
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numbers less than   10
−6

 are considered neglibly small, then we can neglect 207019h (and
anything smaller) if h is less than  4.83×10

−12
.  If, on the other hand, only numbers less

than   10
−12

 are considered negligibly small, then we can neglect 207019h if h is less than

  4.83×10
−18

; and so on.  A small enough h (> 0) can always be found to make 207019h
negligible, no matter how small we consider negligible to mean.  If, however, the sign
of DQ(V, [t, t+h]) determines whether V is increasing or decreasing and the error term
can always be neglected, then the leading term must completely determine whether V
is increasing or decreasing at time t.  That is, if we define a function v on [0.28, 0.35] by
            v(t)=c1+2c2t+3c3t

2
+4c4t

3
,(13.16)

then V is increasing at time t if v(t) > 0 but decreasing at time t if v(t) < 0.  The graph of
v is plotted in Figure 1, directly below the graph of V.  Note that v(t) < 0 if t < 0.3 but
v(t) > 0 if t > 0.3.  Thus V is increasing on subdomain [0.28, 0.3], but V is decreasing on
subdomain [0.3, 0.35].

Furthermore, because DQ(V, [t, t + h]) approximates ventricular inflow at time t,
and because this approximation gets better and better as h gets smaller and smaller, if h
is so small that the error term can be neglected then whatever is left must completely
determine inflow at time t .  In other words, v(t) must be the inflow at time t, not
approximately, but precisely.  As indicated by dashed lines in Figure 1, for example,
after 0.29 seconds ventricular volume is 49.2 ml and decreasing at 22.4 ml/s, because
V(0.29) = 49.2 and v(0.29) = –22.4.  Similarly, after 0.32 s the volume is 49.4 ml and
increasing quite rapidly at 25.2 ml/s, because V(0.32) = 49.4 and v(0.32) = 25.2; and after
0.34 s the volume is 49.9 ml and increasing more slowly at 18 ml/s, because V(0.34) =
49.9 and v(0.34) = 18.0.

Our discussion of leading term and error term is perfectly general, in the sense
that it applies to any smooth function.  It is therefore convenient to introduce some
general notation.  Accordingly, let V be any smooth function; let   ′ V(t) denote the
leading term of DQ(V, [t, t + h]), i.e., the part of the difference quotient that depends
only on t; and let εV(h, t) denote the error term of DQ(V, [t, t + h]), i.e., the part of the
difference quotient that depends on h but which can be neglected if h is sufficiently
small.  Then

  DQV,[t,t+h] ()=′ V(t)+εV(h,t).(13.17)
For example, in the case of Figure 1, (10) implies that
            ′ V(t)=c1+2c2t+3c3t

2
+4c4t

3
(13.18)

and
            εV(h,t)=h(3c3t+c3h+c2+6c4t

2
+4c4th+c4h

2
).(13.19)

The notation εv(h, t) is a very precise one, and usually precision is valued in
mathematics.  There are times, however—and this is one of them—when it is possible
to have too much precision.  For the purpose of this lecture, we do not really care how
the error term depends on h and t; all we care about is that it can be neglected if h is
sufficiently small.  So we adopt notation that retains no more information than we
actually need.  We define "big oh" by

         O[h]    =     ANYTHING  WHOSE MAGNITUDE APPROACHES
ZERO AS  h APPROACHES ZERO(13.20)

so that εV(h, t) = O[h], implying
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  DQV,[t,t+h] ()=′ V(t)+O[h].(13.21)

Then why bother with εV at all?  The answer is that on rare occasions we need some
extra precision.  In this course, the only such time will be in Appendix 20.  Accordingly,
we will use εV  in Appendix 20, but O[h] everywhere else.

The function   ′ V defined by
     ′ V(t)=THATPARTOFDQV,[t,t+h] ()WHICHISINDEPENDENTOFh(13.22)

is called the derivative of V.  It determines not only whether V is growing or decaying
at time t, but also the rate at which V is growing or decaying; in other words,   ′ V(t) is
the instantaneous net growth rate.  An alternative definition of   ′ V emerges from (21),
in which we can allow h to become arbitrarily close to zero, as long as h never actually
reaches zero itself.  We call this process taking the limit as h tends to zero.  If h
approaches zero, however, then O[h] must also approach zero, and so DQ(V, [t, t + h]) =
  ′ V(t) + O[h] must approach   ′ V(t).  In mathematical shorthand,

  
limh→0O[h]=0(13.23)

and
   

  
limh→0DQV,[t,t+h] ()=′ V(t).            (13.24)

Either (22) or (24) defines a new function, which we have agreed to call the derivative.
No, wait a minute.  A function isn't properly defined until we have identified

its domain.  So what is the domain of   ′ V?  It is essentially the same as that of V; but
not quite, because DQ(V, [t, t + h]) is well defined only if [t, t + h] is a subdomain of V,
which requires

  a≤t<t+h≤b(13.25).

and hence t < b (because h > 0).  Even though t may be arbitrarily close to b as h → 0, we
must insist on t ≠ b because h ≠ 0.  So, strictly speaking, the domain of   ′ V is not [a, b],
but rather [a, b), and   ′ V(b) is undefined.  On the other hand,   ′ V(t) is well defined for
any t < b, and all such values become arbitrarily close together as t approaches b from
below.  Accordingly, we regard their common limit as the definition of   ′ V(b).  In other
words, we extend the domain of   ′ V from [a, b) to [a, b] by defining

   
  

′ V(b)=limt→b−′ V(t),            (13.26)

where   t→b− signifies that t approaches b from below (or, if you prefer, from the left,
because t increases horizontally to the right).

We conclude this lecture with a few remarks about big oh.  It is important to
understand that O is not  a function, because O[h] does not label h unambiguously; for
example, h = O[h] and 2h = O[h] are both true, hence O[h] – O[h] = 0 is false.  Rather,
O[h] is a catchall for terms that approach zero as h → 0.  So big oh yields some strange
equations.  Quite apart from

O[h]  +  O[h]  =  O[h],(13.27)
which does not imply O[h] = 0, we have

  {O[h]}
2
  =  O[h],(13.28)

which implies neither O[h] = 0 nor O[h] = 1.  Furthermore, for any Z we have
Z(t)O[h] =  O[h],(13.29)

which does not imply Z(t) = 1.  These strange equations make perfect sense as soon as
we learn how to interpret them properly.  Because O is not a function, we never write
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equations of the form O[h] = SOMETHING; rather, we write SOMETHING = O[h], and we
interpret this equation to mean that SOMETHING reduces to O[h] if all we are interested
in is its behavior as h approaches zero.  Thus, intuitively, (27) says that if you add two
numbers of negligible magnitude then the result is still of negligible magnitude (even
if this magnitude is bigger than that of the numbers you added). Again, intuitively, (28)
says that if you if you multiply two numbers of negligible magnitude, then the result is
still of negligible magnitude (in fact, its magnitude is even smaller than that of the
numbers you multiplied).  Finally, the intuitive interpretation of (29) is that you can't
prevent something from approaching zero as h → 0 by multiplying it by something
independent of h.  We will find these results especially useful in Lectures 17 and 20.

Exercises 13

13.1The power function defined by f(t) =   t
m

 is an increasing function on [0, ∞) for all
m > 0.  Use DQ to establish this result for m = 1, 2, 3, 4 and 5, and in each case 
obtain an explicit expression for   ′ f(t).

13.2The function F is defined on [a, b] by F(t) = C, where C is a constant.  Prove that 
  ′ F(t) = 0, a ≤ t < b.

13.3For f defined on [0.05, 0.35] in Appendix 2B, use Mathematica to find an 
expression for DQ(f, [t, t+h]).  Deduce an expression for   ′ f(t).
Hint:  Think of DQ(f, [t, t+h]) as a polynomial in h with coefficients that depend on t, and employ
Mathematica's Coefficient function in an appropriate way.

13.4*For f defined on [0.4, 0.75] in Appendix 2B, use Mathematica to find an 
expression for DQ(f, [t, t+h]).  Deduce an expression for   ′ f(t).

13.5For f defined on [0.75, 0.9] in Appendix 2B, use Mathematica to find an 
expression for DQ(f, [t, t+h]).  Deduce an expression for   ′ f(t).

13.6*For V defined on [0.4, 0.75] in Appendix 2B, use Mathematica to find an 
expression for DQ(V, [t, t+h]).  Deduce an expression for   ′ V(t).

13.7For V defined on [0.75, 0.9] in Appendix 2B, use Mathematica to find an 
expression for DQ(V, [t, t+h]).  Deduce an expression for   ′ V(t)..

13.8For W defined on [0, 3.001] in Appendix 3, use Mathematica to find an 
expression for DQ(W, [t, t+h]).  Deduce an expression for   ′ W(t).

13.9For W defined on [3.001, 12] in Appendix 3, use Mathematica to find an 
expression for DQ(W, [t, t+h]).  Deduce an expression for   ′ W(t).

13.10For S defined on [3, 3.002] in Appendix 3, use Mathematica to find an 
expression for DQ(S, [t, t+h]).  Deduce an expression for   ′ S(t).

13.11For F defined by

  F(t)=At+Bt
2

where A and B are arbitrary parameters, show that
       DQ(F,[t,t+h])=A+2Bt+Bh,

and deduce an expression for   ′ F(t).
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13.12For F defined on [A, ∞) by

  
F(t)=

1
t

with A > 0, show that

     
  
DQ(F,[t,t+h])=−

1
t

2+
h

t
2
(t+h)

.

Deduce an expression for   ′ F(t), and show that the magnitude of the error term 
cannot exceed   A

−3
h.

13.13For G defined on [2, ∞) by

  
G(t)=1−

C
t

2

where C is an arbitrary positive parameter, show that

     
  
DQ(G,[t,t+h])=

2C
t

3−
Ch(2h+3t)

t
3
(t+h)

2.

Deduce an expression for   ′ G(t), and show that the magnitude of the error term 
cannot exceed Ch/4 on [2, ∞). Hint: Why can you assume 2h ≤ t?

13.14Which of the following equations are true?  Why?

(i)     h
2
  =  O[h]      (ii)   hO[h]  =  O[h]      (iii)    

  
1
h  =  O[h]

13.15For Q defined on [b + 1, ∞) by

  
Q(t)=

1
t−b

,

show that

     
  
DQ(Q,[t,t+h])=−

1
(t−b)

2+
h

(t+h−b)(t−b)
2.

Deduce an expression for   ′ Q(t), and show that the magnitude of the error term 
cannot exceed h on [b+1, ∞).

13.16For Q defined on [0, ∞) by

  
Q(t)=

c−t
c+t

where c is any positive constant, show that

  
DQ(Q,[t,t+h])=−

2c
(c+t)

2+
2ch

(t+h+c)(t+c)
2.

Deduce an expression for   ′ Q(t), and show that the magnitude of the error term 
cannot exceed 2  c

−2
h on [0, ∞).

13.17For R defined on [1, ∞) by

  
R(t)=

C
t

3,

show that

     
  
DQ(R,[t,t+h])=−

3C
t

4+
Ch(3h

2
+8ht+6t

2
)

t
4
(t+h)

3.

Deduce an expression for   ′ R(t), and show that the magnitude of the error term 
cannot exceed 17Ch.
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Answers and Hints for Selected Exercises

13.1Suppose, e.g., that f(t) =   t
3
.  Then f(t+h) =   (t+h)

3
 and, on by binomial expansion,

  

DQ(f,[t,t+h])=
f(t+h)−f(t)

h
=

(t+h)
3

−t
3

h

=
t

3
+3t

2
h+3th

2
+h

3
−t

3

h
=

3t
2
h+3th

2
+h

3

h
which must be positive for h > 0 when t ≥ 0.  So f is increasing on [0, ∞).  Further
simplification yields DQ(f, [t, t+h]) =    3t

2
+h(3t+h) =   3t

2
 + O[h], so that   ′ f(t) =   3t

2

on extracting the leading term.

13.13From G(t) = 1 – C/  t
2

, we have 
  
G(t+h)=1−

C
(t+h)

2.  Therefore

  

DQ(G,[t,t+h])=
1
h

G(t+h)−G(t) {}=
1
h

1−
C

(t+h)
2




−1−
C
t

2














=
1
h

1−
C

(t+h)
2−1+

C
t

2








=
C
h

1
t

2−
1

(t+h)
2









=
C
h

(t+h)
2

−t
2

t
2
(t+h)

2









=
C
h

2th+h
2

t
2
(t+h)

2









=
C(2t+h)
t

2
(t+h)

2.

Also,

      

  

2C
t

3−
Ch(2h+3t)

t
3
(t+h)

2=
2C(t+h)

2
−Ch(2h+3t)

t
3
(t+h)

2

=
2C(t

2
+2th+h

2
)−2Ch

2
−3Cht

t
3
(t+h)

2

=
2Ct

2
+Cht

t
3
(t+h)

2=
Ct(2t+h)
t

3
(t+h)

2=
C(2t+h)
t

2
(t+h)

2.

So

     
  
DQ(G,[t,t+h])=

2C
t

3−
Ch(2h+3t)

t
3
(t+h)

2,

as required.  Extracting the leading term,   ′ G(t) = 2C/  t
3
.

The magnitude of the error term is

     
  
ε=−

Ch(2h+3t)
t

3
(t+h)

2=
Ch(2h+3t)

t
3
(t+h)

2,

because h > 0 and t ≥ 2 (and therefore, in particular, t > 0).  Because h is so small, 
we can at least assume h ≤ 1, hence 2h ≤ 2.  But t ≥ 2.  Therefore 2h ≤ 2 ≤ t, 
implying 2h ≤ t.  Thus 2h + 3t ≤ t + 3t = 4t, implying

  
  
ε=

Ch(2h+3t)
t

3
(t+h)

2≤
Ch⋅4t

t
3
(t+h)

2=
4Ch

t
2
(t+h)

2=
4Ch

{t(t+h)}
2.

But h > 0 and t ≥ 2 implies t + h > 2, hence t(t+h) > 4.  Therefore   {t(t+h)}
2
 > 16, 

implying 1/  {t(t+h)}
2
 < 1/16 and

  
ε=

Ch(2h+3t)
t

3
(t+h)

2≤
4Ch

{t(t+h)}
2=

1
{t(t+h)}

2⋅4Ch<
1

16
⋅4Ch=

1
4

Ch.

In other words, the magnitude of the error term cannot exceed Ch/4 on [2, ∞).
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13.15From Q(t) = 1/(t–b), we have Q(t+h) = 1/(t + h – b).  Therefore

  

DQ(Q,[t,t+h])=
1
h

Q(t+h)−Q(t) {}=
1
h

1
t+h−b

−
1

t−b








=
1
h

t−b−(t+h−b)
(t+h−b)(t−b)









=
1
h

t−b−t−h+b
(t+h−b)(t−b)









=−1
(t+h−b)(t−b)

.

Also,

    

  

h
(t+h−b)(t−b)

2−
1

(t−b)
2=

h−(t+h−b)
(t+h−b)(t−b)

2=
h−t−h+b

(t+h−b)(t−b)
2

=−(t−b)
(t+h−b)(t−b)

2=−1
(t+h−b)(t−b)

.

So

    
  
DQ(Q,[t,t+h])=−

1
(t−b)

2+
h

(t+h−b)(t−b)
2,

as required.  Extracting the leading term,

  
′ Q(t)=−

1
(t−b)

2.

Also, the magnitude of the error term is

     
  
ε=

h
(t+h−b)(t−b)

2=
h

(t+h−b)(t−b)
2.

Because h > 0 and t ≥ b+1, we have t – b ≥ 1 and t +h – b > 1.  So the denominator
exceeds 1, implying ε < h.

13.16Go to http://www.math.fsu.edu/~mm-g/QuizBank/mac3311.s97.html  (Assignment B, #2)
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13.17From R(t) = C/  t
3

, we have R(t+h) = C/  (t+h)
3
  Therefore

  

DQ(R,[t,t+h])=
1
h

R(t+h)−R(t) {}=
1
h

C
(t+h)

3−
C
t

3









=
C
h

t
3

−(t+h)
3

(t+h)
3
t

3


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as required.  Extracting the leading term,   ′ R(t) = –3C/  t
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The magnitude of the error term is

     
  
ε=

Ch(3h
2

+8ht+6t
2
)

t
4
(t+h)

3=
Ch(3h

2
+8ht+6t

2
)

t
4
(t+h)

3,

because h > 0 and t ≥ 1 (and therefore, in particular, t > 0).  Because h is so small, 
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