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27. The variance.  More on improper integrals

In general, knowing only the mean of a distribution is not as useful as also knowing
whether the distribution is clumped near the mean or spread more evenly across the
sample space; in other words, whether the p.d.f. is sharply peaked or relatively flat.  For
that, we need an index of dispersion.  In this lecture, we define one.

Accordingly, consider the dispersion density D defined by

  D(x)=(x−µ)
2
f(x),(27.1)

where f is the p.d.f. of a random variable X on [0, ∞) and µ is its mean.  The function D
is never negative and has the property that its value is small either if x is very close to
µ or if f is very small.  Only if there is a significant probability of X being far from the
mean can Area(D, [0, ∞)) be large.  So a suitable index of dispersion is Int(D, [0, ∞)),
called the variance of the distribution and denoted by   σ

2
.  That is, the variance is

  
σ

2
=(x−µ)

2
f(x)

0

∞

∫dx.(27.2)

The notation indicates that variance is measured in squared units; e.g., if µ is in mm,
then   σ

2
 is in   mm

2
.  The square root of the variance, σ, is called the standard deviation.

It has the advantage of being in the same units as the mean.  Indeed for many purposes
a better index of dispersion than either σ or   σ

2
 is the coefficient of variation

κ=σ
µ

,(27.3)

which has the advantage of being a dimensionless ratio.
Variance is illustrated by Figure 1, where D is graphed next to the corresponding

p.d.f. for Weibull distributions with shape parameters 10, 3 and 2, respectively.  At each
level, the unshaded area in the left-hand panel is 1, whereas the shaded area in the
right-hand panel  – i.e., the variance – increases as the p.d.f. flattens out.

Although (2) defines the variance, it is rarely used to calculate it (unless, as we
will discuss in Lecture 28, the distribution is symmetric), because (12.25) implies

  

(x−µ)
2
f(x)

0

∞

∫dx=(x
2

−2xµ+µ
2
)f(x)

0

∞

∫dx

=x
2
f(x)

0

∞

∫dx−2µxf(x)
0

∞

∫dx+µ
2

f(x)
0

∞

∫dx

=x
2
f(x)

0

∞

∫dx−2µ⋅µ+µ
2

⋅1.

(27.4)

Hence, from (2) and Int(f, [0, ∞)) = 1,

  
σ

2
=x

2
f(x)

0

∞

∫dx−µ
2
.(27.5)

Variance is a well defined measure of dispersion for all commonly used distributions.
Nevertheless, there are well defined (and potentially useful) distributions for which σ

2

is not a finite quantity, even if µ is well defined.
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To illustrate this point, and at the same time show how a variance calculation
typically invokes the fundamental theorem of calculus, we consider the distribution
defined on [0, ∞) by

  

F(t)=

3θ+A(θ+2)
2(θ+1)

t
c





−A

t
c







2

+
A(θ+2)−θ

2(θ+3)
t
c







3

if0≤t≤c

1−
3−A

(θ+1)(θ+3)
c
t







θ

ifc≤t<∞










(27.6)

or

  

f(t)=′ F(t)=

3θ+A(θ+2)
2(θ+1)c

−
2At
c

2+
3{A(θ+2)−θ}t

2

2(θ+3)c
3if0≤t≤c

θ(3−A)
c(θ+1)(θ+3)

c
t







θ+1

ifc≤t<∞










(27.7)

with

   
  

θ
θ+2

<A<3 (27.8)

to ensure that f is a p.d.f. (see Exercise 1).  In Figure 2 this distribution is fitted to the
prairie-dog lifespan data from Table 19.1 with θ = 1.938, c = 2.805 and A = 1.476 (so that
θ/(θ+2) = 0.492, and (8) is satisfied).  Minimum total error, 0.46 × 10

−2
, is now more

than twice as large as in Figure 19.1 and almost three times as large as in Figure 24.10.
Nevertheless, the fit isn't wholly unreasonable.  It at least suggests that the distribution
is a potentially useful one, which is all that Figure 2 aims to achieve.

Before we can calculate the variance, we must first of all calculate the mean.  On
using (7), we have

  

tf(t)=

{3θ+A(θ+2)}t
2(θ+1)c

−
2At

2

c
2+

3{A(θ+2)−θ}t
3

2(θ+3)c
3if0≤t≤c

θ(3−A)
(θ+1)(θ+3)

c
t







θ

ifc≤t<∞










(27.9)

So, from (26.10) and (16.20) in conjunction with Table 18.1,

  
µ=tf(t)

0

∞

∫dt=tf(t)
0

c

∫dt+tf(t)
c

∞

∫dt

  
=

{3θ+A(θ+2)}t
2(θ+1)c

−
2At

2

c
2+

3{A(θ+2)−θ}t
3

2(θ+3)c
3







 0

c

∫dt+θ(3−A)c
θ

(θ+1)(θ+3)
t

−θ

c

∞

∫dt.(27.10)

The first integral in (10) is quite straightforward: by the fundamental theorem (in
Leibnitz notation), it reduces to

  

d
dt

{3θ+A(θ+2)}t
2

4(θ+1)c
−

2At
3

3c
2+

3{A(θ+2)−θ}t
4

8(θ+3)c
3







 0

c

∫dt

  

=
{3θ+A(θ+2)}t

2

4(θ+1)c
−

2At
3

3c
2+

3{A(θ+2)−θ}t
4

8(θ+3)c
3







0

c

=
{6A+(45−7A)θ+(9−A)θ

2
}c

24(θ+1)(θ+3)
.

(27.11)
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The second integral, however, requires some care.  In this regard, but also with a view
to obtaining a more general result for improper integrals, we define u on [c, ∞) by
     u(t)=t

−α
. (27.12)

Then, with α = θ, Int(u, [c, ∞)) is the quantity to be evaluated in (10).
For c = 2.805, u is graphed in Figure 3 on successively larger subdomains [c, K],

for α = 2 in the left-hand column, and for α = 1/2 in the right-hand column.  In the
each case, the shaded area is Int(u, [c, K]).  In the left-hand column, u decreases rapidly
enough that, as K increases, total shaded area remains finite.  In the right-hand
column, on the other hand, u decreases so slowly that, as K increases, total shaded area
keeps on growing.  In the first case, we say that the integral converges, and that the area
is finite.  In the second case, we say that the integral diverges, or that Int(u, [c, ∞)) = ∞.
We suspect that there is a critical value of α, between 1/2 and 2, at which the shaded
area ceases to grow without bound and instead converges.  To confirm this suspicion,
note that, by the fundamental theorem and (22.31),

   
  

u(t)
c

K

∫dt=t
−α

c

K

∫dt=
d
dt

−
t

−(α−1)

α−1







 c

K

∫dt=−
t

−(α−1)

α−1c

K

=−
K

−(α−1)

α−1
−−

c
−(α−1)

α−1







         
  

=
c

−(α−1)

α−1
−

1
(α−1)K

(α−1)  (27.13)

for any finite K.  Now allow K to become infinitely large.  If α > 1, then   K
(α−1)

 becomes
infinitely large as well, so that 1/  K

(α−1)
 approaches zero and (13) reduces to

          
  

t
−α

c

∞

∫dt=
c

−(α−1)

α−1
.   (27.14)

in the limit as Κ → ∞.  If α < 2, however, then (13) becomes

          
  

t
−α

c

K

∫dt=
c

−(α−1)

α−1
+

K
(1−α)

(1−α)
,  (27.15)

which grows without bound.  What happens if α is precisely equal to 1?  Then

   
  

t
−α

c

K

∫dt=
1
t c

K

∫dt=
d
dt

ln(t) {}
c

K

∫dt=ln(t)c

K
=ln(K)−ln(c);  (27.16)

and because the logarithm is a strictly increasing function, ln(K) becomes infinitely
large as K approaches infinity.  The upshot is that

   

  

t
−α

c

∞

∫dt=
∞ifα≤1

c
−(α−1)

α−1
ifα>1






   (27.17)

and hence, on setting α = θ, that µ is finite only if θ > 1.  Then, from (10), (11) and (17)
with α = θ, we have

  
µ=

{6A+(45−7A)θ+(9−A)θ
2
}c

24(θ+1)(θ+3)
+θ(3−A)c

θ

(θ+1)(θ+3)
⋅

c
−(θ−1)

θ−1
=

{9θ−A(θ+2)}c
24(θ−1)

,(27.18)

after simplification.  For example, according to the model of Figure 2, mean prairie-dog
lifespan is 1.449 years.

Having calculated the mean, we now proceed to calculate the variance.  From (7)
or (9), we have



M. Mesterton-Gibbons: Biocalculus, Lecture 27, Page 4

  

t
2

f(t)=

{3θ+A(θ+2)}t
2

2(θ+1)c
−

2At
3

c
2+

3{A(θ+2)−θ}t
4

2(θ+3)c
3if0≤t≤c

θ(3−A)c
(θ+1)(θ+3)

c
t







θ−1

ifc≤t<∞










(27.19)

Thus, on using (5),

   

  

µ
2

+σ
2

=t
2

f(t)
0

∞

∫dt=t
2

f(t)
0

c

∫dt+t
2

f(t)
c

∞

∫dt

=
{3θ+A(θ+2)}t

2

2(θ+1)c
−

2At
3

c
2+

3{A(θ+2)−θ}t
4

2(θ+3)c
3







 0

c

∫dt

   
  

+θ(3−A)c
θ

(θ+1)(θ+3)
t

−(θ−1)

c

∞

∫dt.(27.20)

On setting α = θ – 1 in (17), we find that σ
2
 is finite only if θ – 1 > 1, or θ > 2.  Then,

from (17), (20) and the fundamental theorem,

   
  
µ

2
+σ

2
=

d
dt

{3θ+A(θ+2)}t
3

6(θ+1)c
−

At
4

2c
2+

3{A(θ+2)−θ}t
5

10(θ+3)c
3







 0

c

∫dt+θ(3−A)c
θ

(θ+1)(θ+3)
c

−(θ−2)

θ−2

  

  

=
{3θ+A(θ+2)}t

3

6(θ+1)c
−

At
4

2c
2+

3{A(θ+2)−θ}t
5

10(θ+3)c
3







0

c

+θ(3−A)c
2

(θ+1)(θ+3)(θ−2)

=
{3A+4(9−2A)θ+(6−A)θ

2
}c

2

30(θ+1)(θ+3)
−0+θ(3−A)c

2

(θ+1)(θ+3)(θ−2)

          

  
=

{6θ−A(θ+2)}c
2

30(θ−2)
,(27.21)

after simplification.  Now, from (18), we obtain

 
  

σ
2

=
{6θ−A(θ+2)}

30(θ−2)
−

{9θ−A(θ+2)}
2

576(θ−1)
2





c

2
.(27.22)

Note in particular that if 1 < θ ≤ 2, as in Figure 2, then the mean exists, but not the
variance.

As we remarked above, however, mean and variance both exist for all of the
distributions we commonly use.  One example is the Weibull distribution.  Another
example is the Gamma distribution.  The p.d.f. of the Gamma with shape parameter c
and scale parameter s was defined in Exercise 26.9 by

  
f(x)=

x
c−1

e
−x/s

s
c
Γ(c)

.(27.23)

The Gamma distribution has numerous biological applications; for example, Troy and
Robson (1992, p. 540) used it to model variation among interspike intervals (times
between action potentials) for maintained discharges of cat retinal ganglion cells.
General expressions for its mean and variance are therefore of interest.  From (23) and
(26.10), the mean is

  
µ=xf(x)dx=

0

∞

∫
x

c
e

−x/s

s
c
Γ(c)

dx=
0

∞

∫
1

s
c
Γ(c)

x
c
e

−x/s
dx

0

∞

∫.(27.24)

Because (23) defines a distribution for any c (≥ 1) and s (> 0), however, we must always
have Int(f, [0, ∞)) = 1.  Hence
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1=

x
c−1

e
−x/s

s
c
Γ(c)

dx=
0

∞

∫
1

s
c
Γ(c)

x
c−1

e
−x/s

dx
0

∞

∫(27.25)

for any c or s, implying

 
  

x
c−1

e
−x/s

dx
0

∞

∫=s
c
Γ(c).(27.26)

But if (26) is true for c, then it must also be true for c + 1.  Therefore

 
  

x
c
e

−x/s
dx

0

∞

∫=s
c+1

Γ(c+1).(27.27)

Substituting in (24), we find that

  
µ=

s
c+1

Γ(c+1)
s

c
Γ(c)

=sc,(27.28)

on using the Gamma function's recursive property

  Γ(r+1)=rΓ(r)(27.29)
(with r = c).  Similarly, because (26) must hold for c + 2 if it holds for c,

 
  

x
c+1

e
−x/s

dx
0

∞

∫=s
c+2

Γ(c+2).(27.30)

Thus

  
x

2
f(x)dx=

0

∞

∫
x

c+1
e

−x/s

s
c
Γ(c)

dx=
0

∞

∫
1

s
c
Γ(c)

x
c+1

e
−x/s

dx
0

∞

∫=
s

c+2
Γ(c+2)

s
c
Γ(c)

.(27.31)

But setting r = c + 1 in (29) yields Γ(c + 2) = (c + 1)Γ(c + 1) = (c + 1)cΓ(c), because Γ(c + 1) =
cΓ(c).  So (30) implies

  
x

2
f(x)dx=

0

∞

∫s
2
c(c+1).(27.32)

Now (5), (28) and (32) imply
   σ

2
=s

2
c(c+1)−s

2
c

2
=s

2
c.(27.33)

Similarly, to calculate the variance of a Weibull distribution, for which

 
  
f(x)=

c
s

(x/s)
c−1

e
−(x/s)

c

,(27.34)

we first obtain

  

x
2
f(x)dx=

0

∞

∫cx(x/s)
c
e

−(x/s)
c

dx
0

∞

∫

=s
2
cu

c+1
e

−u
c

du=
0

∞

∫s
2
cx

c+1
e

−x
c

dx,
0

∞

∫
(27.35)

after using the substitution u = φ(x) = x/s as in Lecture 26; see Exercise 3.  Substituting u
=   x

c
 further reduces (35) to

  
x

2
f(x)dx=

0

∞

∫s
2

u
2/c

e
−u

du
0

∞

∫=s
2

u
(2/c+1)−1

e
−u

du
0

∞

∫=s
2
Γ(1+2/c),(27.36)

again as in Lecture 26, and again on using the definition of Γ; see Exercise 3.  Moreover,
µ = sΓ(1 + 1/c) from (26.34).  So (5) and (36) imply
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  σ
2

=s
2
Γ(1+2/c)−s

2
{Γ(1+1/c)}

2
.(27.37)

For example, if c = 10 then, from Figure 26.4, we have Γ(1 + 1/c) = Γ(1.1) = 0.95135
and Γ(1 + 2/c) = Γ(1.2) = 0.91817.  So (37) implies   σ

2
 = 0.91817  s

2
 –   0.90507s

2
 = 0.0131  s

2
.

That is, the top shaded area in Figure 1 is 0.0131  s
2

.  Similarly,   σ
2
 = 0.1053  s

2
 if c = 3

because Γ(4/3) = 0.89298 and Γ(5/3) = 0.90275; and   σ
2
 = 0.2146  s

2
 if c = 2 because Γ(1.5) =

0.88623 and Γ(2) = 1, so that the middle and bottom shaded areas in Figure 1 are,
respectively, 0.1053  s

2
 and 0.2146  s

2
.  Note that the variance increases as the shape

parameter decreases.
Collating our results, we find from (28) and (33) that 

  µ=sc,σ=sc(27.38)
for the Gamma distribution; whereas, from (26.34) and (37),

  µ=sΓ(1+1/c),σ=sΓ(1+2/c)−{Γ(1+1/c)}
2

(27.39)
for the Weibull.  In both cases, the coefficient of variation depends only on the shape
parameter: from (5) and (38)-(39),

  
κ=

1
c

(27.40)

for the Gamma distribution but

  
κ=Γ(1+2/c)

{Γ(1+1/c)}
2−1(27.41)

for the Weibull.  In either case, the coefficient of variation is a decreasing function of
the shape parameter; e.g., (41) yields κ = 0.5227 for c = 2, κ = 0.3634 for c = 3 and κ =
0.1203 for c = 10 (Figure 1).  In Figure 4, κ is plotted against c for both distributions.

Reference

Troy, J.B. & J.G.Robson (1992).  Steady discharges of X and Y retinal ganglion cells of cat
under photopic illuminance.  Visual Neuroscience 9, 535-553.
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Exercises 27

27.1Verify that (7) defines a p.d.f. if (8) is satisfied.  Hint: Establish that Min(f, [0, c]) ≥ 0.

27.2Show that both mean and variance of the distribution defined by (7) are positive
if they exist.

27.3Verify (35)-(36).

27.4A probability density function is defined on [0, ∞) by

  

f(t)=
2A(c−t)+θ(1−Ac

2
)

(θ+1)c
if0≤t≤c

θ(1−Ac
2
)

(θ+1)c
c
t







θ+1

ifc≤t<∞










where A, c and θ are positive numbers satisfying   Ac
2
 < 1.

(i)Does this distribution have a finite mean? If so, what is it?
(ii)Does this distribution have a finite variance?  If so, what is it?

27.5The probability density function of a distribution on [0, ∞) is f defined by

  

f(x)=

2
3x

1
3(3−x)

0








if0≤x<1
if1≤x<3
if3≤x<∞

(i)Find the mean, µ

(ii)Find the variance,   σ
2

(iii) Deduce that the coefficient of variation is

κ=
1
4

7
2

   = 0.468.

27.6Find both the variance and coefficient of variation of the distribution defined in
Exercise 26.6.

27.7Find both the variance and coefficient of variation of the distribution defined in
Exercise 26.7.
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27.8The p.d.f. of a distribution on [0, ∞) is f defined by

  

f(x)=

2
5x

1
10(5−x)

0








if0≤x<1

if1≤x<5

if5≤x<∞
Find

(i)the mean, µ
(ii)the variance,   σ

2

(iii)the median, M, and
(iv)the mode, m.
(v) Show that the coefficient of variation is

κ  =  
1
2

7
6

.

27.9The p.d.f. of a distribution on [0, ∞) is f defined by

  

f(x)=
1

15

2x
15−3x

0








if0≤x<3

if3≤x<5

if5≤x<∞
Find

(i)the mean, µ
(ii)the variance,   σ

2

(iii)the median, M, and
(iv)the mode, m.
(v) Show that the coefficient of variation is

κ  =  
1
8

19
2

.

27.10Find both the variance and coefficient of variation of the truncated exponential 
distribution defined in Exercise 26.10.
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27.11* The p.d.f. of a distribution on [0, ∞) is defined by

  
f(x)=

1
L

g(x)

where

  

g(x)=
x/2

3−x
0








if0≤x<2

if2≤x<3

if3≤x<∞
and L is a constant.

(i)  Find L
(ii) Find µ, the mean
(iii)Find   σ

2
, the variance

(iv)Show that the coefficient of variation is

  
κ=

1
5

7
2

(v)Find F, the cumulative distribution function, on [0, 3]
(vi)Show that the median is M =   3

27.12The p.d.f. of a distribution on [0, ∞) is defined by

  

f(x)=
x(4−x)/L
(6−x)/L

0








if0≤x<2

if2≤x<6

if6≤x<∞
where L is a constant.  Find
(i)L(iv)The coefficient of variation
(ii)The mean(v)The cumulative distribution function
(iii)The variance(vi)The median

27.13A smooth probability density function f is defined on  [0, ∞) by

  

f(t)=
At+0.01t

3

Bt
2

+Ct
0









if0≤t<2

if2≤t≤4

if4≤t<∞
(i)Find the values of A, B and C
(ii)Find the mean of the distribution
(iii)Find the median of the distribution, at least approximately
(iv)Find the cumulative distribution function
(v)Find the variance
(vi)Find the coefficient of variation
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27.14The p.d.f. of a size distribution on [0, ∞) is defined by  
  
f(x)=

1
L

g(x) where

  

g(x)=

x
2

2(5−x)
0










if0≤x<2

if2≤x<4

if4≤x<5

if5≤x<∞
and L is a constant.

(i)  What must be the value of L?
(ii)Find M, the median
(iii) Find µ, the mean
(iv)Find   σ

2
, the variance

(v)Show that the coefficient of variation is κ = 1/  6.
(vi)Find F, the cumulative distribution function, on [0, ∞)
(vii)What is the probability of a size between 1 and 3?

27.15The p.d.f. of a distribution on [0, ∞) is defined by  
  
f(x)=

1
L

g(x) where

         

  

g(x)=

5
4x

2−
3
4x

1−
1
4x

0










if0≤x<1

if1≤x<2

if2≤x<4

if4≤x<∞
and L is a constant.

(i)  What must be the value of L?
(ii)Find M, the median
(iii) Find µ, the mean
(iv)Find   σ

2
, the variance

(v)Show that the coefficient of variation is κ =   2/3 ()
3/2

(vi)Find F, the cumulative distribution function, on [0, ∞)
(vii)What is the probability of a size between 1 and 3?
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Answers and Hints for Selected Exercises

27.2The mean exists if θ > 1, in which case, (18) has the sign of 9θ – A(θ+2).  Because
A < 3, by (8), this quantity must exceed 9θ – 3(θ+2) = 6(θ–1), which is positive.  
Similarly for the variance.

27.4 (i)  
  
µ=tf(t)

0

∞

∫dt=tf(t)
0

c

∫dt+tf(t)
c

∞

∫dt

                   
  

=A(2ct−2t
2
)+θ(1−Ac

2
)

(θ+1)c
t 






 0

c

∫dt+θ(1−Ac
2
)c

θ

(θ+1)
t

−θ

c

∞

∫dt

So, setting α = θ in (17), the mean is finite only if θ > 1.  Then

  

µ=
d
dt

Act
2

−
2
3t

3
()+θ(1−Ac

2
)

2(θ+1)c
t

2 





 0

c

∫dt+θ(1−Ac
2
)c

θ

(θ+1)
t

−θ

c

∞

∫dt

=Act
2

−
2
3t

3
()+θ(1−Ac

2
)

2(θ+1)c
t

2 





0

c

+θ(1−Ac
2
)c

θ

(θ+1)
⋅

c
−(θ−1)

θ−1

=
1
3

Ac
3

+θ(1−Ac
2
)c

2(θ+1)
+θ(1−Ac

2
)c

(θ+1)(θ−1)
=

3θc−Ac
3
(θ+2)

6(θ−1)
.

(ii)  
  
µ

2
+σ

2
=t

2
f(t)

0

∞

∫dt=t
2

f(t)
0

c

∫dt+t
2

f(t)
c

∞

∫dt

                   
  

=A(2ct
2

−2t
3
)+θ(1−Ac

2
)

(θ+1)c
t

2 





 0

c

∫dt+θ(1−Ac
2
)c

θ

(θ+1)
t

−(θ−1)

c

∞

∫dt

So, setting α = θ–1 in (17), the variance is finite only if θ–1 > 1, or θ > 2.  Then

   
  
µ

2
+σ

2
=

d
dt

A
2
3ct

3
−

1
2t

4
()+θ(1−Ac

2
)

3(θ+1)c
t

3 





 0

c

∫dt+θ(1−Ac
2
)c

θ

(θ+1)
c

−(θ−2)

θ−2

  

  

=A
2
3ct

3
−

1
2t

4
()+θ(1−Ac

2
)

3(θ+1)c
t

3 





0

c

+θ(1−Ac
2
)c

2

(θ+1)(θ−2)

=
1
6

Ac
4

+θ(1−Ac
2
)c

2

3(θ+1)
−0+θ(1−Ac

2
)c

2

(θ+1)(θ−2)

          

  
=

1
6

Ac
4

+θ(1−Ac
2
)c

2

3(θ−2)
,

after simplification, implying

 
  

σ
2

=
{2θ−(θ+2)Ac

2
}c

2

6(θ−2)
−

{3θ−(θ+2)Ac
2
}

2
c

2

36(θ−1)
2.
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27.5(i)Define g on [0, ∞) by

  

g(x)=
2x

3−x
0








if0≤x<1
if1≤x<3
if3≤x<∞

Then f(x) = g(x)/3, and so

     
  
µ=xf(x)dx

0

∞

∫=xf(x)dx
0

3

∫+xf(x)dx
3

∞

∫=xf(x)dx
0

3

∫+0=
1
3

xg(x)dx
0

3

∫.

But

  

xg(x)dx
0

3

∫=2x
2
dx+(3x−x

2
)dx

1

3

∫ 0

1

∫

=
d

dx
{

2
3x

3
}dx+

d
dx

3
2x

2
−

1
3x

3
{}dx

1

3

∫ 0

1

∫

=
2
3x

3

0

1
+

3
2x

2
−

1
3x

3
{}1

3

=
2
3⋅1

3
−0+

27
2−9 ()−

3
2−

1
3 ()

=
2
3+

9
2−

7
6=4.

So µ = 4/3.

(iii)Similarly,

  

x
2
g(x)dx

0

3

∫=2x
3
dx+(3x

2
−x

3
)dx

1

3

∫ 0

1

∫

=
d

dx
{

1
2x

4
}dx+

d
dx

x
3

−
1
4x

4
{}dx

1

3

∫ 0

1

∫

=
1
2x

4

0

1
+x

3
−

1
4x

4
{}1

3

=
1
2−0+27−

81
4 ()−1−

1
4 ()

=
1
2+26−

80
4=

1
2+6=

13
2.

So

  

σ
2

=x
2

f(x)dx−
0

6

∫µ
2

⇒

σ
2

+µ
2

=x
21

3
g(x) 








dx
0

3

∫=
1
3

x
2
g(x)dx

0

6

∫=
1
3

⋅
13
2

=
13
6

⇒σ
2

=
13
6

−
4
3







2

=
39−32

18
=

7
18

(iv)σ=
7

18
=

1
3

7
2

    κ = σ/µ  =  
1
4

7
2

 =  0.468

27.6
  
σ

2
=

4
25

, 
  
κ=

1
3



M. Mesterton-Gibbons: Biocalculus, Lecture 27, Page 13

27.7
  
σ

2
=

4
25

, 
  
κ=

1
2

27.8(i)Define g on [0, ∞] by

  

g(x)=
4x

5−x
0








if0≤x<1

if1≤x<5

if5≤x<∞

Then f(x) = g(x)/10, implying  
  
µ=xf(x)dx

0

∞

∫=
1

10
xg(x)dx

0

5

∫.  But

  

xg(x)dx
0

5

∫=4x
2
dx+(5x−x

2
)dx

1

5

∫ 0

1

∫

=
d

dx
{

4
3x

3
}dx+

d
dx

5
2x

2
−

1
3x

3
{}dx

1

5

∫ 0

1

∫

=
4
3x

3

0

1
+

5
2x

2
−

1
3x

3
{}1

5

=
4
3−0+

125
6−

13
6=20.

So µ =  20/10 = 2.

(ii)Similarly,

  

x
2
g(x)dx

0

5

∫=4x
3
dx+(5x

2
−x

3
)dx

1

5

∫ 0

1

∫

=
d

dx
{x

4
}dx+

d
dx

5
3x

3
−

1
4x

4
{}dx

1

5

∫ 0

1

∫

=x
4

0

1
+

5
3x

3
−

1
4x

4
{}1

5

=1−0+
625
12−

17
12=

155
3.

So

  
σ

2
=

1
10

x
2
g(x)dx

0

5

∫−µ
2

=
155
30

−4=
31−24

6
=

7
6

(iii)Because

    
  
Int(f,[1,∞))=Areaoftriangleofheightf(1)withbase5−1=

1
2

⋅4⋅
2
5

=
4
5

exceeds 1/2, implying M > 1, to find the median we solve 1/2 =  Int(f, [M, ∞)) = 
Int(f, [M, 5]) = (5–M)f(M)/2 =  (5−M)

2
/20.  So 5 – M = 10, or M = 5 – 10 ≈ 1.84.

(iv)From the triangular shape of the graph of f, it is clear that m = 1.

(v)σ=
7
6

⇒    κ = σ/µ  =  
1
2

7
6

   =  0.54.
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27.9(i)Define g on [0, ∞] by

  

g(x)=
2x

15−3x
0








if0≤x<3

if3≤x<5

if5≤x<∞

Then f(x) = g(x)/15, implying  
  
µ=xf(x)dx

0

∞

∫=
1

15
xg(x)dx

0

5

∫.  But

  

xg(x)dx
0

5

∫=2x
2
dx+(15x−3x

2
)dx

3

5

∫ 0

3

∫

=
d

dx
{

2
3x

3
}dx+

d
dx

15
2x

2
−x

3
{}dx

3

5

∫ 0

3

∫

=
2
3x

3

0

3
+

15
2x

2
−x

3
{}3

5

=18−0+
125

2−
81
2=40.

So µ =  40/15 = 8/3.

(ii)Similarly,

  

x
2
g(x)dx

0

5

∫=2x
3
dx+(15x

2
−3x

3
)dx

3

5

∫ 0

3

∫

=
d

dx
{

1
2x

4
}dx+

d
dx

5x
3

−
3
4x

4
{}dx

3

5

∫ 0

3

∫

=
1
2x

4

0

3
+5x

3
−

3
4x

4
{}3

5

=
81
2−0+

625
4−

297
4=

245
2.

So

  
σ

2
=

1
15

x
2
g(x)dx

0

5

∫−µ
2

=
245
30

−
64
9

=
147−128

18
=

19
18

(iii)Because

    
  
Int(f,[0,3))=Areaoftriangleofheightf(3)withbase3=

1
2

⋅3⋅
2
5

=
3
5

exceeds 1/2, implying M < 1, to find the median we solve 1/2 =  Int(f, [0, M]) =  
Mf(M)/2.  So Mf(M) = 1 or 2  M

2
/15 = 1, implying M =   15/2 ≈ 2.74.

(iv)From the triangular shape of the graph of f, it is clear that m = 3.

(v)σ=
19
18

=
1
3

19
2

⇒    κ = σ/µ  =  
1
3

19
2

÷
8
3

=
1
8

19
2

   =  0.385.

27.11Go to http://www.math.fsu.edu/~mm-g/QuizBank/mac3311.f96.html  (Problem #1)
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27.12(i)Define g on [0, ∞] by

  

g(x)=
x(4−x)
(6−x)

0








if0≤x<2

if2≤x<6

if6≤x<∞
Then f(x) = g(x)/L, and Int(f, [0, ∞]) = 1, so

  

L=g(x)dx
0

∞

∫=g(x)dx
0

6

∫={4x−x
2
}dx+(6−x)dx

2

6

∫ 0

2

∫

=
d

dx
{2x

2
−

1
3x

3
}dx+

d
dx

{−
1
2(6−x)

2
}dx

2

6

∫ 0

2

∫
=2x

2
−

1
3x

3

0

2
+{−

1
2(6−x)

2
}2

6

=2⋅2
2

−
1
3⋅2

3
−

1
2(6−6)

2
−{−

1
2(6−2)

2
}

=
16
3−0+8=

40
3

(ii)
  
µ=xf(x)dx

0

6

∫=x
g(x)

L








dx
0

6

∫=
1
L

xg(x)dx
0

6

∫=
3
40

xg(x)dx
0

6

∫.

But

  

xg(x)dx
0

6

∫={4x
2

−x
3
}dx+(6x−x

2
)dx

2

6

∫ 0

2

∫

=
d

dx
{

4
3x

3
−

1
4x

4
}dx+

d
dx

{3x
2

−
1
3x

3
}dx

2

6

∫ 0

2

∫
=

4
3x

3
−

1
4x

4

0

2
+{3x

2
−

1
3x

3
}2

6

=
4
3⋅2

3
−

1
4⋅2

4
+3⋅6

2
−

1
3⋅6

3
−{3⋅2

2
−

1
3⋅2

3
}

=
20
3+36−

28
3=

100
3.

So µ =   
3
40

100
3=

5
2.

(iii)Similarly,

  

x
2
g(x)dx

0

6

∫={4x
3

−x
4
}dx+(6x

2
−x

3
)dx

2

6

∫ 0

2

∫

=
d

dx
{x

4
−

1
5x

5
}dx+

d
dx

{2x
3

−
1
4x

4
}dx

2

6

∫ 0

2

∫
=x

4
−

1
5x

5

0

2
+{2x

3
−

1
4x

4
}2

6

=2
4

−
1
5⋅2

5
+2⋅6

3
−

1
4⋅6

4
−{2⋅2

3
−

1
4⋅2

4
}

=
48
5+108−12=

528
5.

So
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σ
2

=x
2
f(x)dx−

0

6

∫µ
2

⇒

σ
2

+µ
2

=x
2g(x)

L








dx
0

6

∫=
1
L

x
2
g(x)dx

0

6

∫=
3
40

528
5

=
198
25

⇒σ
2

=
198
25

−
5
2







2

=
792−625

100
=1.67

(iv)
  
σ=

1
10

167⇒    κ = σ/µ  =    167/25 =  0.517

(v)Suppose 0 ≤ t ≤ 2.  Then

  

F(t)=f(x)dx
0

t

∫=
1
L

g(x)dx
0

t

∫=
3
40

{4x−x
2
}dx

0

t

∫

=
3
40

d
dx

{2x
2

−
1
3x

3
}dx

0

t

∫=
3
40

2x
2

−
1
3x

3

0

t

()
=

3
40

2⋅t
2

−
1
3⋅t

3
()=

t
2

40
6−t ()

Note in particular that F(2) = 2/5.  Thus, for 2 ≤ t ≤ 6,

  

F(t)=f(x)dx
0

t

∫=f(x)dx
0

2

∫+f(x)dx
2

t

∫=F(2)+
1
L

g(x)dx
2

t

∫

=
2
5

+
3

40
(6−x)dx

2

t

∫=
2
5

+
3

40
d

dx
{−

1
2(6−x)

2
}dx

2

t

∫

=
2
5

+
3

40
{−

1
2(6−x)

2
}2

t
=

2
5

+
3

40
−

1
2(6−t)

2
−{−

1
2(6−2)

2
} {}

=1−
3

80
(6−t)

2
.

(vi)F(2) = 2/5 is less than 1/2, so 2 < M < 6.  Thus 1 – F(M) = 1/2 ⇒

  
1−

3
80

(6−t)
2

=
1
2

⇒(6−M)
2

=
40
3

⇒M=6−
40
3

=2.35.



M. Mesterton-Gibbons: Biocalculus, Lecture 27, Page 17

27.14(i)L = Int(g, [0,5]) = Area under quadrilateral = 7
(ii)M = 11/4
(iii)µ = 19/7
(iv)  µ

2
 +   σ

2
 = 361/42, implying   σ

2
 = 361/294

(v)σ  =  19/  294  =  19/7  6, implying  κ  =  σ/µ  =  1/  6

(vi)From

  

f(x)=

1
7x

2
7

2
7(5−x)

0










if0≤x<2
if2≤x<4
if4≤x<5
if5≤x<∞

and F(x) = Int(f, [0, x]) we have

  

F(x)=

1
14x

2

2
7(x−1)

1−
1
7(5−x)

2

1











if0≤x<2
if2≤x<4
if4≤x<5
if5≤x<∞

(vii)F(3) – F(1) = 4/7 – 1/14 = 1/2

27.15L = Int(g, [0,4]) = Area under re-entrant quadrilateral = 2
(ii)M = 4/3
(iii)µ = 3/2
(iv)  µ

2
 +   σ

2
 = 35/12, implying   σ

2
 = 2/3

(v)σ  =    2/3, implying  κ  =  σ/µ  =  1/  6

(vi)From

  

f(x)=

5
8x

1−
3
8x

1
8(4−x)

0










if0≤x<1
if1≤x<2
if2≤x<4
if4≤x<∞

and F(x) = Int(f, [0, x]) we have

  

F(x)=

5
16x

2

x−
3

16x
2

−
1
2

1−
1

16(4−x)
2

1











if0≤x<1
if1≤x<2
if2≤x<4
if4≤x<∞

(vii)F(3) – F(1) = 13/16 – 5/16 = 1/2


