
29. Differential equations.  The conceptual basis of allometry

Did it occur to you in Lecture 3 why Fibonacci would even care how rapidly a rabbit
population grows?  Maybe he wanted to eat the rabbits.  If so, then he would be less
concerned about total number of rabbit pairs than total weight of rabbit meat, which
varies continuously (as opposed to discretely).  Let W(t) be weight at time t. Then W is
an ordinary function.  But what kind of function is W?  In this lecture we investigate.

Over a very short time interval [t, t + h], weight increases by Diff(W, [t, t+h]) =
W(t+h) – W(t), with average rate of increase DQ(W, [t, t+h]) = Diff(W, [t, t+h])/h.
Although weight changes on [t, t+h], it changes only a little, so it is always W(t) + O[h].
Therefore average increase per rabbit  on [t, t+h] is DQ(W, [t, t+h])/{W(t) + O[h]}.  As h
approaches zero, this expression approaches

    
  
limh→0

DQ(W,[t,t+h])
W(t)+O[h]

=′ W(t)
W(t)

=r(t),(29.1)

say, where r has the same domain as W and   ′ W.  We call r the relative growth rate.
The preceding argument applies virtually without change to the growth of any

mass of tissue.  In particular, it applies to the growth of a single organ or organism.
That is, if W(t) denotes size at time t of an organ or organism, then

            ′ W(t)=r(t)W(t)(29.2)

where r is relative growth rate.  Equation (2) embodies Julian Huxley's first "essential
fact" about growth, namely, "that it is a process of self-multiplication of living
substance—i.e. that the rate of growth of an organism growing equally in all its parts is
at any moment proportional to the size of the organism" (Huxley, 1932, p. 6).

What kind of function is r?  Taking our cue from Lecture 5, where Fibonacci
rabbit pairs reproduce at a constant rate (of 12 times per annum), we conjecture that r
may be constant, say r = λ (> 0).  Then (2) implies   ′ W(t) = λW(t) or, if y = W(t),

  

dy
dt

=λy.(29.3)

This is a very simple example of an ordinary differential equation, or ODE.
How do we "solve" this ODE?  In other words, how do we find y if we know

dy/dt?  Hitherto we have used the fundamental theorem.  But we cannot apply it to
(3), because the right-hand side is an unknown function of time.  On the other hand, if
W is invertible with inverse U, so that y = W(t) is exactly the same thing as t = U(y),
then from (20.39) we have

 
  

dt
dy

=
dy
dt









−1

.(29.4)

So we can rewrite (3) as

 
  

dt
dy

=
1

λy
,(29.5)

and now it follows from the fundamental theorem that

  
t=U(y)=C+

1
λu a

y

∫du=C+
1
λ

1
ua

y

∫du,(29.6)

where C is a constant.  To obtain the value of C, we set
    a=W(t0),(29.7)
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where t0 is initial time, and so a is initial weight.  Then (6), with y = a, implies

  
U(a)=C+

1
λu a

a

∫du=C+0.(29.8)

But a = W(t0) implies U(a) = t0, because U and W are inverses functions.  So (8) implies
C = t0, from which (6) implies

  

t=t0+
1
λ

1
ua

y

∫du

=t0+
1
λ

ln(u)a

y

=t0+
1
λ

{ln(y)–ln(a)}

=t0+
1
λ

ln(y/a)

(29.9)

on using Table 22.6 and Exercise 22.1.  So λ{t–t0} = ln(y/a), or exp(λ{t–t0}) = y/a.  That is,

  y=aexp(λ{t−t0})=ae
λ(t−t0)

=ae
λt

e
−λt0

.(29.10)
In other words,

  y=W(t)=Ae
λt

(29.11)
with

  A=ae
−λt0

.(29.12)
When W(t) = A  e

λt
, it is traditional to say that W exhibits exponential growth at

rate λ (although what is actually meant is that W has relative growth rate λ).  There is
evidence that organisms do grow exponentially during early development, although
relative growth rate appears to decrease later on.  The crux of the evidence is that (11)
implies

  

lny()=lnW(t) ()=lnAe
λt

()=ln(A)+ln(e
λt

)

=ln(A)+λt.
(29.13)

That is, if growth is exponential, then ln(y) is a linear function of t.  So we can test an
exponential growth hypothesis by plotting (t, ln(y)) data pairs and drawing the straight
line that fits them best.  The closer the fit, the more confident we are in the hypothesis.

TIME t (days)WEIGHT y (grams)ln( y)TIME t (days)WEIGHT y (grams)ln( y)

61053423.738
1841.38660624.127
3092.19774714.263
39172.83393744.304
46263.258

Table 29.1  Backman's data on growth in weight of maize.  Source: Exercise 5.10

For example, from Thompson (1942, p. 115) we have Backman's data on weight
y (grams) of maize at time t (days); see Table 1.  From Figure 1(a), where ln(y) is plotted
against t, the data points fall very close to a straight line for times between 18 and 60
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days.  This six-week period is an exponential growth phase.  The dotted line in Figure
1(a), determined by the method of Appendix 2A, has equation

  ln(y)=0.2279+0.06574t.(29.14)
Comparing with (13), λ = 0.06574, ln(A) = 0.2279 and so A = exp(0.2279) = 1.256.  Thus

  W(t)=1.256e
0.06574t

(29.15)
provides an excellent description of growth in weight of maize on [18, 60]; see Figure
1(b).  On the other hand, (15) provides a very poor description at later times.

It isn't difficult to see why.  By (2), a constant relative growth rate implies that
  ′ W keeps increasing.  But the data in Figure 1 and Table 1 imply that   ′ W eventually
approaches zero, in which case, r approaches zero, too.  Intuitively, growth per unit
weight declines with weight because more cells compete for the same resources.  The
simplest possibility is that r decreases linearly with W, say

  
r(t)=λ1−

W(t)
K







(29.16)

where K is another parameter.  We assume that

  W(t0)<K,(29.17)
where t0 is the initial time; i.e., W has domain [t0, ∞).  Then r is positive and decreases
toward zero as W(t) increases toward K.

Substituting (16) into (2) and setting y = W(t), we obtain a new ODE

  

dy
dt

=λy1−
y
K







(29.18)

in place of (3).  Assuming as before that W is invertible with inverse U, we have

  

dt
dy

=
K

λy(K−y)
,(29.19)

in place of (5), and it follows from the fundamental theorem that

     
  
t=U(y)=C+

K
λu(K−u) a

y

∫du,(29.20)

where C is a constant.  Exactly as above, a = W(t0) implies C = t0.  Thus

     
  
t=U(y)=t0+

1
λ

K
u(K−u) a

y

∫du.(29.21)

Table 22.6 and Exercise 22.1 now imply that

  

t=t0+
1
λ

ln
u

K−u




a

y

=t0+
1
λ

ln
y

K−y




−ln

a
K−a



















=t0+
1
λ

ln
{K−a}y
a{K−y}





.

(29.22)

So λ{t–t0} = ln({K–a}y/a{K–y}), implying

  

{K−a}y
a{K−y}

=e
λ(t−t0)

(29.23)

or, after straightforward algebraic manipulations (Exercise 1),
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y=

aKe
λ(t−t0)

ae
λ(t−t0)

+K−a
.(29.24)

In other words,

  
W(t)=

K
1+Ae

−λt(29.25)

where

  A={K/a−1}e
λt0

.(29.26)
Note that

  W(t0)=a,(29.27)
as required.  Correspondingly,

  
′ W(t)=λW(t)1−

W(t)
K





=λKAe

−λt

(1+Ae
−λt

)
2(29.28)

from (18) and (25).
Growth according to (24) is traditionally called logistic growth.  From (17) and

(28), K/a > 1, implying A > 0.  So W(t) is less than K but approaches K asymptotically as
t → ∞  because   e

−λt
 → 0 as t → ∞.  We interpret K as maximum possible weight.  In

Figure 2, the functions W and   ′ W are plotted against Backman's data with A = 389, K =
75.5 and λ = 0.119 (values were obtained by a method similar to that of Appendix 2A).
We find that the logistic model provides a much better overall fit, with maximum
growth during day 51; see Exercise 2.

We conclude this lecture by observing that Huxley used a pair of ODEs to secure
a conceptual foundation for allometry.  He reasoned that "the growth-rate of any
particular organ is proportional simultaneously (a) to a specific constant characteristic
of the organ in question, (b) to the size of the organ at any instant, and (c) to a general
factor dependent on age and environment which is the same for all parts of the body"
(Huxley, 1932, p. 6).  If y is the size of an allometric organ and x the size of its body, and
if k2, k1 are the specific constants for part and body, respectively, then because both
organ and body are exposed to the same environment, (a)–(c) imply

  

dx
dt

=k1xG(t)(29.29)

and

  

dy
dt

=k2yG(t)(29.30)

where t denotes time and G is some unknown function.  Dividing (30) by (29), we have

  

dy
dt

dx
dt









−1

=β
y
x

(29.31)

where

  
β=

k2

k1

.(29.32)

Note that the organ is positively or negatively allometric according to whether k2 > k1

or k1 > k2, and hence according to whether β > 1  or β < 1, as in Lecture 22.  Assuming
that x is an invertible function of time, and hence t an invertible function of x,

 
  

dt
dx

=
dx
dt









−1

(29.33)
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by analogy with (4).  So (31) can be rewritten as

  

dy
dt

dt
dx

=β
y
x

.(29.34)

If y is a function of t, however, and t is a function of x, then y is also a function of x.  So
the chain rule reduces (34) to

  

dy
dx

=β
y
x

,(29.35)

another ODE.  Comparing with (3) and (18), we find that the right-hand sides of (3) and
(18) involve only the dependent variable, whereas the right-hand side of (35) involves
the independent variable as well; nevertheless, (35) is no more difficult to solve.  We
proceed as follows.

According to the chain rule, if y is a positive function of x then

  z=ln(y)(29.36)
defines a composition with derivative

 
  

dz
dx

=
dz
dy

dy
dx

=
d

dy
ln(y) {}

dy
dx

=
1
y

dy
dx

,(29.37)

on using Table 22.6.  So (36) reduces (35) to

  

dz
dx

=β
x

.(29.38)

It now follows from the fundamental theorem that     

  

z=C+β
1
ua

x

∫du=C+βln(u)a

x

=C+β{ln(x)−ln(a)},

(29.39)

so that (36) and properties of the logarithm imply

  
ln(y)=C+βln

x
a





=C+ln

x
a







β

.(29.40)

Properties of the exponential now imply that

  

y=expC+ln({x/a)}
β

()=exp(C)expln({x/a)}
β

()
=

exp(C)
a

βx
β
.

(29.41)

On setting   a
−β

exp(C) = α we have y =   αx
β
, agreeing with (22.32).
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Exercises 29

29.1Verify (24)-(27).

29.2Show that the logistic growth curve y = W(t) defined by (25) has an inflection 
point at t = t*, defined by t* = ln(A)/λ.  Verify that W(t*) = K/2.

29.3Show that (28) implies

  
′′′ W(t)=λ

3
W(t)1−

W(t)
K









1−
6W(t)

K
1−

W(t)
K















.

Hence show that the curve y =   ′ W(t) has inflection points where

  
t=

1
λ

ln2±3 {}A (),

i.e., where t = 39 and t = 61 in Figure 2(b).
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Answers and Hints for Selected Exercises

29.2From (28), we have

  
′ W(t)=λW(t)1−

W(t)
K







.

So

  

′′ W(t)=
d
dt

′ W(t) {}=λ
d
dt

W(t)1−
W(t)

K














=λ′ W(t)⋅1−
W(t)

K




+W(t)⋅

d
dt

1−
W(t)

K














=λ′ W(t)⋅1−
W(t)

K




+W(t)⋅0−

1
K

′ W(t) 













=λ′ W(t)⋅1−
W(t)

K




−

1
K

W(t)′ W(t) 







=λ′ W(t)1−
2W(t)

K








=λ
2
W(t)1−

W(t)
K







1−
2W(t)

K








,

implying   ′′ W(t*) = 0 where W(t*) = 0 or 1 – W(t*)/K = 0 or 1 – 2W(t*)/K = 0.  
From (25), however, we have W(t*) = K/{  1+Ae

−λt*
}, so that W(t*) = 0 is 

impossible, and

  
1−

W(t*)
K

=1−
1

Ae
−λt*

+1
=

Ae
−λt*

1+Ae
−λt*,

so that 1 – W(t*)/K = 0 is impossible (except in the limit as t* → ∞).  So the 
inflection point must be determined by 1 – 2W(t*)/K = 0.  But

  
1−

2
K

W(t*)=1−
2

Ae
−λt*

+1
=

Ae
−λt*

−1
1+Ae

−λt*.

Thus  1 – 2W(t*)/K = 0 implies   Ae
−λt*

= 1 or   e
−λt*

= 1/A.  Hence –λt* = ln(1/A) = 
–ln(A), and λt* = ln(A) or t* = ln(A)/λ.

Note that, because 0 < W(t) < K, the sign of   ′′ W(t) is completely 
determined by 1 – 2W(t)/K, which is positive if t < t* but negative if t > t*.  Thus
  ′ W has maximum  ′ W(t*).  You can verify that   ′′ W(t*) = 0 corresponds to a 
minimum (as opposed to a maximum) of   ′ W by checking the sign of   ′′′ W(t*): 
from Exercise 3,

  
′′′ W(t*)=λ

3
W(t*)1−

W(t*)
K









1−
6W(t*)

K
1−

W(t*)
K















=−λ
3
K

8
,

which is negative.


