Third Assignment

Due in ink at 1:25 p.m. on Monday, March 27, 2017

1. Find all admissible extremals for

$$
\begin{equation*}
J[y]=\int_{0}^{b}(x+1) y^{\prime 2} d x \tag{10}
\end{equation*}
$$

with $y(0)=0$ and $b>0$ when (b, β) must lie on $y=1+\ln (x+1)$.
2. Find all admissible extremals for

$$
J[y]=\int_{0}^{1}\left\{y^{\prime 2}+y y^{\prime}+y^{\prime}+\frac{1}{2} y\right\} d x
$$

when
(a) $y(0)=0$ but $y(1)=\beta$ is free.
(b) $y(1)=0$ but $y(0)=\alpha$ is free.

In each case, discuss whether a minimum is achieved.
3. Find an admissible extremal for the problem of minimizing

$$
J[y]=\int_{0}^{1}\left\{y^{2}+y^{\prime 2}+2 y e^{2 x}\right\} d x
$$

with $y(0)=\frac{1}{3}, y(1)=\frac{1}{3} e^{2}$. Show that it satisfies the sufficient condition, explicitly identifying both a suitable field of extremals and its associated direction field. [10]
4. Find an admissible extremal for the problem of minimizing

$$
\text { (a) } \quad J[y]=\int_{0}^{2} y^{\prime 2} d x \quad \text { subject to } \quad \int_{0}^{2} y d x=8
$$

with $y(0)=1, y(2)=3$ and for the problem of minimizing
(b) $\quad J[y]=\int_{1}^{3} y^{\prime 2} d x \quad$ subject to $\quad \int_{1}^{3} y d x=2$
with $y(1)=2, y(3)=4$.
5. For the problem of minimizing

$$
J[y]=\int_{0}^{2} \sqrt{1+y^{2} y^{\prime 2}} d x
$$

with $y(0)=1$ and $y(2)=3$, obtain two fields of extremals containing the admissible extremal. Show that their direction fields satisfy (12.2) identically.
[Perfect score: $5 \times 10=50]$

