Fourth Assignment

Due in ink at 1:25 p.m. on Wednesday, April 26, 2017

1. Use optimal control theory to show that the shortest path between any two points in a plane is a straight line.
2. Solve the problem of time-optimal control to the origin for

$$
\begin{equation*}
\dot{x}_{1}=x_{1}+2 x_{2}, \quad \dot{x}_{2}=4 x_{1}-x_{2}+u, \tag{10}
\end{equation*}
$$

where $|u| \leq 1$. Identify the region from which the system is controllable.
3. Solve the problem of time-optimal control to the origin for

$$
\dot{x}_{1}=e^{x_{2}}, \quad \dot{x}_{2}=u
$$

where $|u| \leq 1$. Identify the region $\mathfrak{S} \subset \Re^{2}$ from which the system is controllable, and find x^{*} and t_{1}^{*} for $x^{0} \in \mathfrak{S}$.
4. The system

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=u
$$

subject to $|u| \leq 1$ is to be controlled from $x(0)=(0,1)$ to $x\left(t_{1}\right)=(0, \beta)$ in such a way as to minimize

$$
J=\frac{1}{2} \int_{0}^{t_{1}}\left\{x_{2}^{2}-x_{1}^{2}\right\} d t
$$

for suitable t_{1}. The optimal trajectory is a concatenation of arcs from three different phase-planes.
(a) Describe each phase-plane.
(b) If it is known that there is no control switch for $\beta=-1$, what must be the optimal control?
(c) If it is known that there is precisely one control switch for $\beta=-\sqrt{2}$, what must be the optimal control sequence?

