
2 Lanchestrian Models of Human Combat

Although verbal models of war and military strategy have been around for centuries,1

it is conventionally agreed that truly mathematical models of war did not appear until
about 100 years ago.2 The models first independently developed by Lanchester (1916) and
Osipov (1995) around that time have since been embellished and extended by numerous
others, and it will help to introduce them here in a relatively recent guise. Accordingly,
we adopt the notation of Adams and Mesterton-Gibbons (2003) and Johnson and MacKay
(2015), and refer to these models collectively as Lanchestrian models.3

In Lanchester’s models, of which there are two, each army is assumed to consist of in-
dividuals with equivalent fighting abilities. Because these models do not include recruit-
ment or reinforcement, group sizes decline from their original values. The first model
yields what Lanchester called his “square law.” The second yields his “linear law.” We
deal with each model in turn.

Lanchester’s square law arises when two armies fight in such a way that individuals
on either side can concentrate their attacks on their opponents. Let m(t) and n(t) be the
number of surviving individuals in Group 1 and Group 2, respectively, at time t. Group
sizes at the start of the fight are m0 = m(0) and n0 = n(0). Let αm be the fighting ability of
each individual in Group 1, and αn be the fighting ability of each individual in Group 2.
The fighting ability expresses the rate at which an individual can kill opponents within a
particular context. Under Lanchester’s first model, rates of mortality are described by the
following pair of ordinary differential equations or ODEs:

dm

dt
= −αn n (2.1a)

dn

dt
= −αm m (2.1b)

Absent any recruitment, both dm
dt and dn

dt are negative, so that m and n both approach
zero—until one of them actually reaches zero and the other one stops decreasing.

These equations can be interpreted as saying that armies are reduced according to the
rate of incoming fire from the opposing army,4 but are perhaps easier to interpret when

1See, e.g., Cioffi-Revilla (1989); McNeilly (2001); Howard (2002).
2Although the equation 4x = 15y appears—in the context of what is arguably a simple mathematical

model—in Chapter 2 of Book 14 of Tolstoy’s War and Peace, which was published in 1869.
3Mindful that a Russian might rather call them Osipovian models.
4See Karr (1983). More specifically, two interpretations of (2.1) are consistent with the assumption of

concentrated fire. The first is that targets must be destroyed individually but are either sufficiently numer-
ous or sufficiently easy to identify that each surviving attacker locates them at a constant rate. The second is
that although (surviving) targets may be destroyed more than one at a time, they are dispersed over an area
that decreases in proportion to their number, and each attacker destroys all targets in a certain “lethal” area
per unit time. If the constant of proportionality and lethal area per weapon are An and an, respectively, so
that n surviving Group 2 attackers generate lethal area ann per unit time for m surviving Group 1 defenders
occupying area Anm, then we would expect the per capita death rate − 1

m
dm
dt for Group 1 to equal the ratio

of ann to Anm, which produces (2.2a) with αn = an/Am (Karr, 1983, p. 92).



first rewritten as
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Then each equation states that the instantaneous per capita death rate or attrition rate ex-
perienced by a fighting group equals the ratio of the number of opponents to the number
of comrades, multiplied by the individual fighting ability of each opponent. Either way,
integration of −αmmdm = −αnn dn leads to the state equation

αm(m
2
0 −m2) = αn(n

2
0 − n2) (2.3a)

or
αmm

2
0 + αnn

2 = αmm
2 + αnn

2
0, (2.3b)

which is satisfied at any time during the battle. Moreover, because (2.1) are linear ODEs,
they are readily solved to yield5
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by (2.2). So, in a fully escalated fight, n will reach zero before m. In fact, at time
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(2.8)

5Differentiation of (2.1a) with respect to time and substitution from (2.1b) yields the homogeneous

second-order linear ODE d2m
dt2 − αmαn m = 0 for m, whose characteristic equation has roots ±{αmαn}1/2,

and so its solution is a linear combination of e±{αmαn}
1/2 t. Differentiation and division by −αm yields n,

and the values of the two coefficients are determined by the initial conditions.
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Group 2 will be eliminated, while Group 1 still has

m0

√

αm

αn
−

n2
0

m2
0

(2.9)

survivors.6 We therefore interpret the left-hand side of (2.5) as the (initial) fighting abil-
ity of Group 1, the right-hand side as the fighting ability of Group 2, and (2.5) itself as
stating that the fighting strength of Group 1 is higher—because its attrition rate is lower.
Thus, group fighting ability is proportional to the square of the size of the fighting group
but is only linearly related to individual fighting ability. It is therefore more important
to enter battle with a large army than with fighters of high prowess. Although a smaller
force can still win,7 if Group 1 is smaller than Group 2, that is, if m0 < n0, then a win for
Group 1 requires its relative fighting ability αm/αn to exceed not only its relative numer-
ical disadvantage n0/m0, but also the square of that number, because with m0 < n0 we
require

αm

αn
>

(

n0

m0

)2

(2.10)

for (2.5) to hold. Hence the phrase “square law.” For example, defeating an adversary
that is three times as numerous requires fighters to be at least nine times as effective.

Under Lanchester’s second model, death rates are proportional to the product of the
sizes of the two armies:

dm

dt
= −αn mn (2.11a)

dn

dt
= −αm mn (2.11b)

More transparently, per capita death rate is proportional to size of enemy army:

−
1

m

dm

dt
= αn n (2.12a)

−
1

n

dn

dt
= αmm (2.12b)

This model was intended for circumstances in which “there is no direct value in concen-
tration” (Lanchester, 1916, p. 30), which can result if it becomes more difficult to acquire
a target in the opposing group as the size of the opposing group is reduced.8 Integration

6Where (2.8) follows from (2.4).
7And often has—Epstein (1997, p. 21) cites a dozen examples from the 19th and 20th centuries alone.
8See Karr (1983). More specifically, two interpretations of (2.12) are consistent with the assumption that

it is difficult or impossible to concentrate fire. The first is that targets must be destroyed individually but
are either sufficiently few or sufficiently difficult to identify that each surviving attacker locates them at a
rate proportional to the number of targets still present—as opposed to at a constant rate, as in the case of
the square law (Footnote 4). The second is that although (surviving) targets may be destroyed more than
one at a time, they are dispersed over an area that does not vary over time, targets “redisperse between
shots” (Karr, 1983, p. 94), and each attacker destroys all targets in a certain “lethal” area per unit time. If
the area over which shots redisperse and the lethal area per weapon are An and an, respectively, so that
n surviving Group 2 attackers generate lethal area ann per unit time for m surviving Group 1 defenders
occupying area An, then we would expect the per capita death rate − 1

m
dm
dt for Group 1 to equal the ratio of

ann to An, which produces (2.12a) with αn = an/Am.
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of −αm dm = −αn dn now leads to the state equation

αm(m0 −m) = αn(n0 − n) (2.13a)

or
αmm0 + αnn = αmm+ αnn0 (2.13b)

Moreover, even though (2.11) are nonlinear ODEs, they can be solved to yield9

m(t) =
βm0

β + αnn0(1− e−βt)

n(t) =
βn0

β + αmm0(eβt − 1)

(2.14)

where
β = αmm0 − αnn0 (2.15)

whenever β ̸= 0 (or

m(t) =
m0

1 +m0αmt
, n(t) =

n0

1 + n0αnt
(2.16)

in the unlikely event that β = 0, in which case, αmm = αnn for all t ≥ 0). Note that, in
theory, the losers no longer die out in finite time; rather, by (2.14), m(∞) > 0, n(∞) = 0 if
β > 0, whereas m(∞) = 0, n(∞) > 0 if β < 0.

Group 1 has the greater fighting ability and is expected to win a fully escalated fight if

αmm0 > αnn0 (2.17)

because then (2.13b) implies αn n < αmm so that (2.12) implies (2.7). In these conditions,
a smaller Group 1 will win—with

m(∞) = m0

(

1−
αn

αm

n0

m0

)

(2.18)

survivors—if its relative fighting ability αm/αn merely exceeds its relative numerical dis-
advantage n0/m0, because with m0 < n0 we obtain

αm

αn
>

n0

m0
(2.19)

in place of (2.10). Thus, group strength is equally sensitive to the size of the army and to
individual fighting abilities.

Lanchester’s laws are most frequently stated in terms of the initial balance that would
yield a stalemate, that is, as

αmm
2
0 = αnn

2
0 (2.20)

9Using (2.11a) to write n in terms of m and dm
dt and substituting into (2.11b) yields d

dt

{

1
m

dm
dt +αmm

}

= 0,
which readily integrates to 1

m
dm
dt + αmm = C = constant. Division by m and the substitution u = 1

m now
yield du

dt +Cu = αm, which readily integrates to u = αm/C+De−Ct for C ̸= 0 or to u = αmt+D for C = 0,
where D is another constant. The values of the two constants are determined by the initial conditions.
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for his square law and
αmm0 = αnn0 (2.21)

for his linear law.10 Lanchester (1916, p. 48) himself expressed his square law by saying
that “the fighting strengths of the two forces are equal when the square of the numerical
strength multiplied by the fighting value of the individual units are equal” (the emphasis being
his). For an intuitive sense of what it means, it is helpful to ask how many machine guns
are equivalent to a given number of rifles. Let us follow Bellany (2002) in comparing 1000
rifles on one side with 200 machine guns having 25 times the firing power of a rifle on the
other side. It might at first be thought that the 200 machine guns should overpower the
rifles by 5 to 1. If the rifles can concentrate their fire, however, then 5 rifles attack each
machine gun, which therefore lasts on average only a fifth as long as a rifle and hence
does only five times the damage of a rifle—instead of 25 times, as supposed at first. So in
fact the fighting strength of 1000 rifles is precisely equal to that of 200 machine guns, as
follows from (2.20) with αm = 1, m0 = 1000, αn = 25 and n0 = 200.

Indeed we can obtain (2.20) for any values of m0, n0, αm and αn via a generalization of
the above argument. Compare m0 rifles to n0 machine guns and let

k =
αn

αm
(2.22)

be the firepower of a machine gun relative to that of a rifle. Then fire from m0/n0 rifles
is concentrated on each machine gun, reducing its relative advantage in firepower from
k to k · n0/m0. So the effective fighting power of a machine gun is not αm · k but rather
αm ·k ·n0/m0. Hence the total effective firepower of the rifles is m0 ·αm, that of the machine
guns is n0 · αm · k · n0/m0, and these two quantities are equal when (2.20) holds. If, on the
other hand, fire cannot be concentrated, perhaps because the two sides are too far apart,
then the total firepower of the machine guns is not reduced from n0 · αm · k and equals
the total firepower m0 · αm of the rifles when (2.21) holds instead. The two sides are then
said to engage in “positional fire”—each fires into a region believed occupied by the other
side, but without aiming at specific targets.

Lanchester’s second model is not, however, the only one that yields the linear law. A
second such model derives from assuming that all fighting is in one-to-one contests:

dm

dt
= −αn min(m,n) (2.23a)

dn

dt
= −αm min(m,n) (2.23b)

(Franks and Partridge, 1993). For both groups, mortality rates are proportional to number
of survivors in the smaller group, since excess members of the larger group do not partic-
ipate until there is an opportunity to replace a member of their own army—because, e.g.,
the battlefield geometry does not allow simultaneous attacks of many against one. Now

−
1

m

dm

dt
=

αn n

m
(2.24a)

−
1

n

dn

dt
= αm (2.24b)

10Which is not what Lanchester called it—the word “linear” does not appear in his book.
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if m > n but

−
1

m

dm

dt
= αn (2.24c)

−
1

n

dn

dt
=

αm

n
(2.24d)

if n > m. Because (2.23) or (2.24) still yields −αm dm = −αn dn, the state equation is
still (2.13) and the condition under which Group 1 wins is still (2.17), because (2.17) still
implies αn n < αmm, so that (2.24) implies (2.7), regardless of whether m < n or m > n.11

Collectively, the three Lanchestrian models indicate that concentrated fire favors a
square-law outcome, whereas positional fire and one-to-one combat favor a linear-law
outcome. How should an invading army use these results to choose or seek to influence
mode of battle? Let us suppose that Side 1 is the attacker and Side 2 is the defender.
Then, from Side 1’s perspective, the fighting-ability ratio is αm/αn and the numerical-
disadvantage ratio is n0/m0. Winning (n0/m0,αm/αn) pairs are points in Figure 2.1 that
lie above the darker shaded region (in which neither (2.10) nor (2.19) is satisfied, so that
Side 1 is eliminated). Inspection of this diagram reveals that if Side 1 is heavily outnum-
bered, then it should favor positional fire or one-to-one combat over concentrated fire,
because if it can win at all then it is only if the linear law applies. On the other hand,
if Side 1 is greatly favored numerically, then it should also favor concentrated fire, be-
cause even if its fighting abilities are weak enough for αm/αn to be smaller than n0/m0,
which is a small number, they will be strong enough for victory as long as αm/αn exceeds
only (n0/m0)2—which is very much smaller. Curiously, there are two regions—indicated
by lighter shading in Figure 2.1—where although Side 1 wins either way, it has fewer
casualties when the linear law applies than when the square law applies.12

11Note that both models yielding the linear law involve nonlinear differential equations, whereas the
square law involve linear differential equations—the phrase “linear law” refers to the linear relationship
between group fighting ability and group size (as opposed to the underlying ODEs).

12If we temporarily set r = n0/m0, k = αm/αn and use sS , sL to denote the survivor numbers given by
(2.9) and (2.18), respectively, then Figure 2.1 becomes a quadrant of the r-k plane, (2.10) and (2.19) are both
satisfied where 0 < r < min(k,

√
k) and sS > sL or sS < sL according to whether

√
k − r2 > 1 − r

k or√
k − r2 > 1 − r

k . Also, sS and sL both decrease with r, increase with k and are equal where (1 + k2)r =

k{k±
√

k(k2 − k + 1)}. The upper branch of this curve forms the left-hand boundary of the long and narrow
lighter shaded region for k ≥ 1, while its lower branch forms the right-hand boundary of the shorter and
wider lighter shaded region for 0 ≤ k ≤ 1. We can now verify that sL > sS within the lighter shaded
regions by evaluating

√
k − r2 and 1 − r

k at any suitable points within them—e.g., (0, k) for 0 < k < 1 and

(12
√
2 + 1

5 (1 +
√
6), 2) for k > 1—and comparing the results.
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Figure 2.1: Winning combinations of (initial) numerical disadvantage ratio n0/m0 and
fighting ability ratio αm/αn for Side 1 in the (n0/m0)-(αm/αn) plane. In the darker shaded
region, Side 1 is eliminated. Above the dashed curve, Side 1 wins only by the linear law
in the unshaded region marked L or by the square law in the unshaded region marked S;
above this curve, Side 1 wins by either law. The lighter shading indicates where Side 1
wins either way, but there are more survivors according to the linear law.
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Although different armies may have different sizes and fighting abilities, all three
models considered so far are symmetric with regard to role. In contrast, Deitchman (1962)
has explored an asymmetric Lanchestrian model in which Group 1 has the role of am-
busher while Group 2 has the role of ambushed. Deitchman (1962) begins by restating
the conditions for (2.1) or (2.11) to apply as follows: (2.1) applies when each side is visible
to the other, and each individual on each side is able to fire on any opposing individual,
because then the loss rate on one side is proportional to the number of opponents firing,
whereas (2.11) applies when each side is invisible to the other, and each fires into the area
believed to be occupied by the other, because then the loss rate on one side is proportional
to the number of men on the other and to the number of men occupying the area under
fire. When Group 1 is an ambusher, the inherent symmetry is broken. Now Group 2 is
visible to Group 1, but Group 1 is invisible to Group 2. Thus (2.1b) applies to Group 2,
all of whose members are visible to Group 1, whereas (2.11a) applies to Group 1, whose
members are invisible to Group 2. We obtain

dm

dt
= −αn mn (2.25a)

dn

dt
= −αm m (2.25b)

In place of (2.3) or (2.13) we obtain the state equation

2αm(m0 −m) = αn(n
2
0 − n2) (2.26a)

or
2αmm0 + αnn

2 = 2αmm+ αnn
2
0, (2.26b)

and in place of (2.10) or (2.19) the condition for Group 1 to win an all-out fight becomes

αm

αn
>

n2
0

2m0
= 1

2m0

(

n0

m0

)2

. (2.27)

Even if n0/m0 is large, it is possible that an ambusher has sufficient advantage for (2.27)
to hold. For example, if each individual in a group of 10 has a thousandfold advantage
in combative effectiveness (ability to hit an opponent) over each individual in a group of
100 by virtue of being hidden from them, then the smaller group would defeat the larger
group despite being ten times smaller—although only m0− 1

2n
2
0 αn/αm = 1

2×1002×10−3 =
5 or half its members would survive.

According to Epstein (1985, p. 13), this “so-called ambush variant . . . may well be the
most plausible of all Lanchester variants.” Nevertheless, he has criticized Lanchester’s
models on at least three grounds.13 First, the models do not allow an army to reduce its
rate of attrition by withdrawing—on the contrary, they assume a fight to the death. Sec-
ond, and as a consequence of the first assumption, there is no trading of space for time—
because expression (2.8) for tf does not account for withdrawal, the duration of war does

13See Epstein (1985, pp. 4–13). At least to my reading, he suggests that the degree of reliance of military
analysts on Lanchester’s equations—see, e.g., Lepingwell (1987, p. 89)—is truly alarming (Epstein, 1985,
pp. 3–4), given “little historical or empirical evidence to support their use” (Lepingwell, 1987, p. 127).
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not depend on how much space is traded away. Third, the models do not account for
diminishing marginal returns. For the square-law model, by (2.1), the “instantaneous
casualty-exchange ratio”

dm

dn
=

αn

αm

n

m
(2.28)

(that is, the limiting ratio of Group-1 members killed per Group-2 member killed) grows
at a constant—as opposed to diminishing—rate with respect to the force ratio n/m as the
force ratio grows: no crowding or force-to-space constraint ever moderates the extent to
which Group 2 can concentrate its force.14 For the linear-law models, the absence of di-
minishing returns is even more striking, since the instantaneous casualty-exchange ratio
is just the constant αn/αm, by (2.11) and (2.23). Epstein (1997) has addressed these three
issues by constructing an adaptive model of war, which we will discuss in Lecture 4.
Meanwhile, in Lecture 3, we focus on only the third issue—diminishing returns—with a
view to extending the scope of Lanchestrian models from humans to non-human animals.

Despite Epstein’s criticisms, the extensive literature related to Lanchestrian models
continues to grow with few signs of abating,15 perhaps because they are “useful as a
heuristic for thinking about combat interactions, albeit a heuristic with distinct limita-
tions” (Lepingwell, 1987, p. 127). Moreover, the central insights of these models continue
to guide strategic analysis. For example, Bellany (2002, p. 74) argues that in asymmetric
warfare among humans, a more weakly armed but numerically strong side will seek out
engagements that permit aimed fire, with a preference for daylight, engaging the enemy
closely and a relative absence of cover; whereas a strongly armed but more casualty-
conscious side will seek engagements that permit positional fire, with a preference for
withdrawing to a longer range and engaging the enemy less closely. Similarly, Franks
and Partridge—after first noting that if the attacking side “is in the majority it should
try to fight a battle using its numerical superiority to minimize casualties by concentrat-
ing its attack” whereas if it “is greatly in the minority it should try to fight a series of
one-to-one duels”—argue that army ants and obligate slave-making ants have evolved
what might be called, respectively, square-law and linear-law strategies: “By concentrat-
ing their attack army ants are likely to minimize their casualties by dividing and con-
quering each nest the instant it is detected” whereas to “avoid concentrated attack from
the more numerous defenders they encounter on a slave-raid . . . many slave-making ants
have independently and convergently evolved propaganda substances” that “enable the
slave-makers to reorganize the battle into a series of one-to-one duels as predicted by
Lanchester’s Linear Law” (Franks and Partridge, 1993, p. 198).

14More rigorously, ∂2

∂(n/m)2

{

dm
dn

}

= 0, as opposed to ∂2

∂(n/m)2

{

dm
dn

}

< 0.
15See, e.g., Kress and MacKay (2014) and Lin and MacKay (2014) for recent contributions.
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