
8 Optimal Defense Positioning

Stability of a conventional military balance between two nations requires either nation’s
defense to be assured of victory if the other nation attacks, so that there exists no incentive
to attack in the first place.1 How should a defense be positioned to achieve this objective?
Following the recipe advanced in Lecture 1, we broach this question here with a highly
idealized model.

We begin by making the following four assumptions. First, an attacker’s objective is to
maximize territory gained, and correspondingly that a defender’s objective is to minimize
territory lost. Second, Side 1’s territory lies in the half-space where x > 0, Side 2’s territory
lies in the half-space where x < 0 and their territories are separated by a linear boundary
or front—whose length we regard as the unit of distance—extending along the line x = 0
from the origin (0, 0) to the point with coordinates (0, 1). Third, the characteristics of the
battlefield do not vary parallel to this front—if, for example, we were concerned with
naval warfare, then there would be no intervening island. Fourth, each side has perfect
information about positioning (of either side’s forces) and other conditions on its own side
of the front, but only highly imperfect or no information about conditions on the other
side. These are extremely bold assumptions—but we did say highly idealized model! Let
us denote by “station x” the line that extends from (x, 0) to (x, 1), where x may be either
positive or negative, and by “station y” the line that extends perpendicularly on either
side of the front from (0, y), where 0 ≤ y ≤ 1.

Without loss of generality—in view of the symmetry between sides—we now assume
that Side 1 is the defender and Side 2 is the attacker. We also assume—for the sake of
simplicity—that each side will deploy a single unit of force, Side 1 for defense, Side 2 for
attack. Further assumptions are as follows. First, Side 1’s force unit is positioned at (α, β).
Thus optimal defense positioning means optimal choice of α and β. Second, Side 2’s force
unit attacks by crossing the front perpendicularly and moves into Side 1’s territory at
(mean) speed va. Third, Side 1’s force unit—by virtue of having perfect information on its
own side of the front—moves instantly at speed vd directly towards Side 2’s force unit to
intercept it. Fourth, the station at which Side 2’s force unit crosses the front, denoted by
Y , is a random variable distributed between 0 and 1 with density function p. That is,

Prob(y1 < Y < y2) =

∫ y2

y1

p(y) dy (8.1)

with
∫ 1

0

p(y) dy = 1 (8.2)

for any 0 ≤ y1 < y2 ≤ 1.
Let I denote the depth of incursion by Side 2 into Side 1’s territory. Then Side 2

will intercept Side 1 at the point with coordinates (I, Y ), whose distance from (α, β) is
√

(I − α)2 + (Y − β)2. The time taken by Side 2 to reach (I, Y ) is I/va. The time taken by

1See Gupta (1993, p. 41), on which this lecture is based.



Side 1 to reach (I, Y ) is
√

(I − α)2 + (Y − β)2/vd. These two times must be equal. Hence

I

va
=

√

(I − α)2 + (Y − β)2

vd
(8.3)

implying

λI =
√

(I − α)2 + (Y − β)2 (8.4)

where
λ =

vd
va

(8.5)

denotes the ratio of speed of intercepton to speed of incursion. We assume that

λ ≥ 1 (8.6)

(consistent with our assumption that Side 1 has perfect information about conditions
where x > 0, but Side 2 has only highly imperfect information).

Two cases arise, according to whether λ = 1 or λ > 1. We deal with them separately.

8.1 Equally rapid defending and attacking force units: λ = 1

Solving (8.4) for I , in this case the depth of incursion at station Y is

I = I(α, β, Y ) =
α2 + (Y − β)2

2α
=

α2 + β2 − 2βY + Y 2

2α
≥ 1

2α. (8.7)

Hence the mean depth of incursion is

c(α, β) = E[I(α, β, Y )] =

∫ 1

0

I(α, β, y)p(y) dy

=
α2 + β2

2α

∫ 1

0

p(y) dy −
β

α

∫ 1

0

yp(y) dy +
1

2α

∫ 1

0

y2p(y) dy

(8.8)

where E denotes expected value. It is reasonable to interpret this expression as the cost of
incursion, which we therefore seek to minimize. Thus the cost of incursion is

c(α, β) =
α2 + β2

2α
−

β

α
µ+

1

2α
{σ2 + µ2} (8.9)

where

µ = E[Y ] =

∫ 1

0

yp(y) dy (8.10)

and

σ2 = E[(Y − µ)2] =

∫ 1

0

y2p(y) dy − µ2 (8.11)

are, respectively, the mean and variance of the distribution of Y . Elementary calculus
reveals that this expression is minimized where ∂c/∂α = 0 = ∂c/∂β or α2 = σ2 + (µ− β)2

and β = µ. So the optimal position, (α∗, β∗), for Side 1’s force unit is

(α∗, β∗) = (σ, µ). (8.12)
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A Side-2 attack at Y = y that penetrates to an incursion depth of I = x will be intercepted
by an optimally positioned Side-1 defense at the point with coordinates (x, y), where

x = I(α∗, β∗, y) = 1
2α

∗ + 1
2α∗ (y − β∗)2 = 1

2σ + 1
2σ (y − µ)2 (8.13)

by (8.7) and (8.12). The locus of all such points—the defense locus—is a parabola with
vertex at (12σ, µ), halfway between Side 1’s base and the front. The smaller the variance
of Y , the nearer the front the force unit should be positioned, and the faster the defense
locus will bow away from the front.2 Moreover, the smaller the variance, the smaller the
(expected) cost of incursion. Indeed cost precisely equals standard deviation, since (8.9)
and (8.12) imply

c(α∗, β∗) =
α∗2 + β∗2

2α∗ −
β∗

α∗µ+
1

2α∗{σ
2 + µ2} = σ. (8.14)

In particular, for a uniform distribution

c(α∗, β∗) = σ =

√

∫ 1

0

(y − µ)2 p(y) dy =

√

∫ 1

0

(y − 1
2)

2 · 1 dy =
1

2
√
3
. (8.15)

8.2 Defending force unit more rapid than and attacking unit: λ > 1

Solving (8.4) for I , in this case the depth of incursion at station Y is

I = I(α, β, Y ) =

√

λ2α2 + (λ2 − 1)(Y − β)2 − α

λ2 − 1
≥

α

λ+ 1
(8.16)

and the cost (mean depth) of incursion is

c(α, β) =

∫ 1

0

I(α, β, y) p(y) dy =

∫ 1

0

√

λ2α2 + (λ2 − 1)(y − β)2 − α

λ2 − 1
p(y) dy. (8.17)

We obtain

∂c

∂α
=

∫ 1

0

∂I

∂α
p(y) dy =

1

λ2 − 1

∫ 1

0

{

λ2α
√

λ2α2 + (λ2 − 1)(y − β)2
− 1

}

p(y) dy (8.18)

and
∂c

∂β
=

∫ 1

0

∂I

∂β
p(y) dy =

∫ 1

0

(β − y)p(y)
√

λ2α2 + (λ2 − 1)(y − β)2
dy (8.19)

with

∂2c

∂α2
= λ2

∫ 1

0

(y − β)2 p(y)

{λ2α2 + (λ2 − 1)(y − β)2}3/2
dy (8.20)

and
∂2c

∂β2
= λ2α2

∫ 1

0

p(y)

{λ2α2 + (λ2 − 1)(y − β)2}3/2
dy (8.21)

2As illustrated below by Figure8.2(a).
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both positive. Hence c is minimized where ∂c/∂α = 0 = ∂c/∂β or

∫ 1

0

{

λ2α√
λ2α2+(λ2−1)(y−β)2

− 1
}

p(y) dy = 0 (8.22a)

∫ 1

0

(β−y)p(y)√
λ2α2+(λ2−1)(y−β)2

dy = 0. (8.22b)

Hence, in view of (8.2), the optimal position (α∗, β∗) is determined by

∫ 1

0

p(y)
√

λ2α∗2 + (λ2 − 1)(y − β∗)2
dy =

1

λ2α∗ (8.23a)

and
∫ 1

0

y p(y)
√

λ2α∗2 + (λ2 − 1)(y − β∗)2
dy =

β∗

λ2α∗ (8.23b)

In the important special case where Y is uniformly distributed between 0 and 1 or
p(y) = 1, so that uncertainty about the point of incursion is maximal, (8.22b) implies

∫ 1

0

(λ2 − 1)(y − β)
√

λ2α2 + (λ2 − 1)(y − β)2
dy =

∫ 1

0

∂

∂y

√

λ2α2 + (λ2 − 1)(y − β)2 dy

=
√

λ2α2 + (λ2 − 1)(y − β)2
∣

∣

1

0
=

√

λ2α2 + (λ2 − 1)(1− β)2

−
√

λ2α2 + (λ2 − 1)β2 = 0 (8.24)

and hence (1− β)2 = β2, so that the optimal β is

β∗ = 1
2 (8.25)

The integral on the left-hand side of (8.23a) is now readily evaluated via the substitution

u =
√
λ2−1
λα∗ (y − 1

2) =⇒ du =
√
λ2−1
λα∗ dy (8.26)

to yield

1

λ2α∗ =
1√

λ2 − 1

∫
{λ2−1}1/2

2λα∗

− {λ2−1}1/2

2λα∗

du√
1 + u2

=
1√

λ2 − 1
arcsinh(u)

∣

∣

∣

∣

{λ2−1}1/2

2λα∗

− {λ2−1}1/2

2λα∗

(8.27)

or
2λ2α∗

√
λ2 − 1

arcsinh
(

√
λ2 − 1

2λα∗

)

= 1. (8.28)

This is a transcendental equation, which cannot be solved analytically to obtain α∗. Nev-
ertheless, it is readily solved numerically, for any value of λ, and the resultant plot of α∗

against λ is the topmost curve in Figure 8.1.
More generally, (8.23) are simultaneous nonlinear equations for α∗ and β∗, which can-

not be solved analytically, but are readily solved numerically, for any distribution of Y ,
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Figure 8.1: Optimal defense position (α∗, β∗) as a function of λ for a symmetric Beta distri-
bution of incursion point with parameter a. The green curves show how α∗ varies with λ
for a = 1 (uniform distribution, uppermost curve, variance σ2 ≈ 0.0833), a = 2 (variance
σ2 ≈ 0.05) and a = 10 (lowermost curve, variance σ2 ≈ 0.0119). The red curve indicates
the optimal value of β∗ for every value of λ.
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for any value of λ. Suppose, for example, that Y has a symmetric Beta distribution on
[0, 1] with density defined by

p(y) =
Γ(2a)

{Γ(a)}2
ya−1 (1− y)a−1 (8.29)

where Γ denotes the Euler gamma function, i.e., Γ(η) =
∫∞
0 e−ξξη−1 dξ. For a = 1 this dis-

tribution is uniform, because (8.29) then reduces to p(y) = 1; and for a > 1 the distribution
is unimodal, with variance

σ2 =
1

4(1 + 2a)
(8.30)

The resultant dependence of α∗ on λ is plotted in Figure 8.1 for three different values of
a. We see that, the smaller the variance of incursion point, or the faster the speed of inter-
ception relative to that of incursion, the nearer the position of the force unit to the front.
Numerical solutions strongly suggest that (8.25) continues to hold for any value of a, for
every value of λ, as indicated by the red line in Figure 8.1. Indeed it seems reasonable to
conjecture that (8.23) implies (8.25) not only for a symmetric Beta distribution of Y with
a > 1, but also for any symmetric distribution on [0, 1] such that p(0) = 0 = p(1).

The corresponding defense locus is now obtained from (8.16) as

x = I(α∗, β∗, y) =

√

λ2α∗2 + (λ2 − 1)(y − β∗)2 − α∗

λ2 − 1
(8.31)
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and is plotted in Figure 8.2 for four values of λ for three representative variances of Y ,
a low value (red curves), an intermediate value (blue) and a high value (green). Again
we see that, the smaller the variance of incursion point, the nearer the front the force unit
should be positioned, and the faster the defense locus will bow away from the front.

Gupta (1993, pp. 64-75) supplements this basic model with a verbal argument that a
border between nations can be regarded as composed of a finite number of contiguous
fronts separated by geographical features, and that for each such front the N-unit de-
fense positioning problem reduces to N identical 1-unit problems, each of which has the
solution we have just obtained. Thus, for example, in the case where N = 10, if Side 2
attacks at three different points—say, y = y1, y = y2 and y = y3—with forces of 2, 2 and
3 units, respectively, then Side 1 should respond by sending two units from (α∗, β∗) to
(I(y1,α∗, β∗), y1) to intercept the first incursion, another two to (I(y2,α∗, β∗), y2) to inter-
cept the second incursion and three units to (I(y3,α∗, β∗), y3) to intercept the third—and
keep the remaining three force units in reserve at (α∗, β∗) to deal with any possible later
incursion by Side 2. Furthermore, it does not matter whether the three separate incursions
are simultaneous or occur at different times.

The logic is sound if the assumptions hold. But as we have noted, the assumptions
are extremely bold. According to Gupta (1993, p. 75), “The problems associated with
our force-positioning algorithm are twofold: the vulnerability to preemption of any large
force localization and the dangerously generous incursions permitted by the defense lo-
cus. These problems are a consequence of the fact that our optimization of defensive force
location has not imposed any upper bound on the local concentration of forces” and po-
tentially leaves a high-density headquarters in the same location highly vulnerable to a
“surreptitious, preemptive, selective air raid” (Gupta, 1993, p. 71).

Gupta proceeds to apply his model with constraints on concentration of force units.
The simplest possibility is that λ = 1 (interception speed equals incursion speed), p(y) = 1
(uniform distribution of Y ) and the total defense force is constrained to be positioned at
two separate locations (as opposed to more than two separate locations), with half of
all total force units at each location defending one half of the front. The optimization
formula can now be applied separately to each half of the front. Appropriate rescaling by
a factor of 2—both parallel and perpendicular to the front—moves the optimal position
from (α∗, β∗) to (12α

∗, 1
2β

∗) for the force units defending the lower half of the front and to
(12α

∗, 3
2β

∗) for those defending the upper half. Correspondingly, we substitute 1
2α

∗ and
1
2β

∗ or 3
2β

∗ for α∗ and β∗ in (8.13) to obtain the defense locus as

x = I
(

1
2α

∗, 1
2β

∗, y
)

= 1
4α

∗ + 1
α∗

(

y − 1
2β

∗)2 = 1
4σ + 1

σ

(

y − 1
2µ

)2

= 1
8
√
3
+ 2

√
3
(

y − 1
4

)2 (8.32a)

for 0 ≤ y ≤ 1
2 and

x = I
(

1
2α

∗, 3
2β

∗, y
)

= 1
4α

∗ + 1
α∗

(

y − 3
2β

∗)2 = 1
4σ + 1

σ

(

y − 3
2µ

)2

= 1
8
√
3
+ 2

√
3
(

y − 3
4

)2 (8.32b)

for 1
2 ≤ y ≤ 1. So, on using (8.15), we find that the (expected) cost of incursion is halved
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Figure 8.2: Defense locus given by (8.13) for Panel (a) and (8.31) for Panels (b)—(d) for
a symmetric Beta distribution of incursion point with parameter values a = 1 (uniform
distribution, green curves, variance σ2 ≈ 0.0833), a = 2 (blue curves, variance σ2 ≈ 0.05)
and a = 10 (red curves, variance σ2 ≈ 0.0119) for four different values of the ratio λ
of interception to incursion speed. The correspondingly colored dots show the optimal
defense position (α∗, β∗).
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from 1
2
√
3

for the green curve in Figure 8.3 to

∫ 1

0

I(y)p(y) dy =

∫ 1
2

0

{

1
8
√
3
+2

√
3
(

y− 1
4

)2}
dy+

∫ 1

1
2

{

1
8
√
3
+2

√
3
(

y− 3
4

)2}
dy = 1

4
√
3

(8.33)

for the blue curve in Figure 8.3. Even if force unit totals for Side 1 equal those for Side 2,
however, because we assume that enemy forces may readily be moved up and down the
entire front, either half of the defending force units may now have to contend with all of
the attacking ones (at least until the other half arrives at a later time).

With further verbal and graphical reasoning, Gupta (1993) is able to tease out several
further insights towards a theory of defense positioning and geometry from little more
than the above analysis. Indeed it is quite remarkable how much mileage he gets from so
simple a model. If any of you is sufficiently interested, perhaps his work could form the
basis of a more in-depth investigation leading to an end-of-term presentation.

For the rest of us, however, this is as far as we go. Gupta’s model is an example
of a so-called “decision-theoretic” model, which does not explicitly allow for interde-
pendence between the best option for one decision-maker and the best options for other
decision-makers, because only one decision-maker is given options to choose from within
the model. Models that do allow for such interdependence—and hence the possibility of
a more complete analysis—are known as “game-theoretic” models, and will be explored
in Lecture 10 and later lectures. In between, however, there is a kind of mushy region
in which it is hard to know whether what you are dealing with is truly a game-theoretic
model or a de facto decision-theoretic model, or some combination of the two—which
may be why some political scientists and others will tend to refer to either type as a
“choice-theoretic” model.

Such a model will be the subject of Lecture 9.
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Figure 8.3: Unconstrained (green) and constrained (blue) defense locus for a uniform dis-
tribution of incursion point with equal interception and incursion speeds (λ = 1). Colored
dots indicate the corresponding optimal defense positions.
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