
10 An Overview of Basic Concepts in Game Theory

Analysis of strategic questions—such as whether or to form an alliance, and whether to
go to war in the first place—typically requires the use of game-theoretic models. We will
exemplify in later lectures. Meanwhile, however, we set the scene by reviewing basic
concepts in game theory.

Strategic behavior arises when the outcome of an individual’s actions depends on ac-
tions taken by other individuals. For example, whether it is advantageous for drivers
negotiating a 4-way junction to assume right of way depends on whether other drivers
concede right of way. Likewise, whether one prospers from moral behavior depends on
whether others do the right thing. If an interaction among individuals gives rise to strate-
gic behavior and can be described mathematically, then we call this description a game,
and each individual a player. Thus a game in the mathematician’s sense is a model of
strategic interaction, and game-theoretic modelling is the process by which such games
are constructed. Correspondingly, game theory is a diverse assemblage of ideas, theo-
rems, analytical methods and computational tools for the study of social interaction—
according to Samuelson (1997, p. 4), more appropriately viewed as a language than as a
theory. By using a variety of approaches, each with its own advantages and limitations,
it aims to achieve a much better understanding of underlying processes and resulting
patterns than is possible within a single modelling framework.

The players

A game has four key ingredients. First, there are at least two players, who may be ei-
ther specific actors or individuals drawn randomly from a large population: drivers at
a 4-way junction may be either neighbors or strangers. Correspondingly, the game is a
either a community game or a population game. Often there are precisely two players,
unsurprisingly called Player 1 and Player 2, whom we shall frequently denote by P1 and
P2 for short, especially in tables. If the game is a community game, then these two players
are specific individuals. If, on the other hand, the game is a population game, then Player
1 is an arbitrary focal individual, and Player 2 represents every other individual in the
population.

The strategy set

Second, each player has a set of feasible plans of action—or strategies. For example,
drivers at a 4-way junction can either Go or Wait; and that may be all they can do (in a
model). Whenever (as in this particular example) the number of strategies is finite, we
say that the game is discrete, and that each strategy is a pure strategy. If the number of
possible pure strategies is small, then typically we distinguish them by letters or labels
(e.g., G for Go, W for Wait); otherwise, we call them strategy 1, strategy 2, and so on. For a
discrete community game (between specific actors), it makes sense to suppose that Player
1 has m1 pure strategies and Player 2 has m2 pure strategies, where in general m1 ̸= m2;
whereas, for a discrete population game, we would always set m1 = m2 = m. Although
individuals may have a different number of options in a different role, it is assumed that



individuals are ultimately1 equally likely to occupy any role, and a strategy is a plan of
action that prescribes what to do in every possible role.

Strategies are constrained by the information structure of an interaction. For example,
drivers at a 4-way junction can condition their behavior on their lateness relative to others,
but only if sufficiently aware of it. Let the latenesses of two such drivers, who wish to turn
left simultaneously, be random variables X and Y taking values between 0 (unbelievably
early) and 1 (desperately late); the sample space for their joint distribution is the unit
square, 0 ≤ x, y ≤ 1. Then it is possible for the first driver, or P1, to play a strategy u
defined by “Go if X > u, Wait if X ≤ u” while the other driver, or P2, plays strategy
v (Go if Y > v, Wait if Y ≤ v). Such strategies are often called threshold strategies. In
general, we use Si to denote the strategy set for Pi and D to denote the set of all feasible
strategy combinations, which we call the decision set.2 Usually, though not invariably,3

D is a Cartesian product; in particular, for two players,

D = S1 × S2. (10.1)

For example, in the case of the threshold strategies discussed above, D = [0, 1]× [0, 1].
Here four remarks are in order. First, when lateness enters the picture, the strategy set

becomes infinite: the game is no longer discrete. Instead we call it continuous. Second, Go
(strategy 0) and Wait (strategy 1) both belong to the new continuous strategy set defined
above. But we can extend a strategy set from discrete to continuous in more than one
way—fortunately, because threshold strategies like u and v cannot be played by drivers
who have no information about lateness. However, they still have the option of random-
izing or “mixing” between their pure strategies. Specifically, it is possible for P1 to play
a strategy p defined as selecting Go with probability p (and hence Wait with probability
1−p), while P2 plays strategy q, that is, selects Go with probability q (and hence Wait with
probability 1− q). We call such strategies mixed strategies. Now we have two continuous
strategy sets for our example, a mixed strategy set (in which Go is 1 and Wait is 0) and a
threshold strategy set (in which Go is 0 and Wait is 1). Let us call the continuous game
Crossroads I or Crossroads II, according to whether the strategies are mixed strategies or
threshold strategies.

Third, any discrete game can be extended to a continuous game by mixing between
the pure strategies of both players. We refer to the new continuous game as the mixed
extension of the old discrete game. In this regard, it is convenient to define

si = mi − 1, i = 1, 2. (10.2)

Then P1’s strategy set consists of probability vectors forming the s1-dimensional simplex

∆s1 = {p ∈ R
m1 |pi ≥ 0 for i = 1, . . . , m1 and

∑m1

i=1 pi = 1}. (10.3a)

Correspondingly, P2’s strategy set is the s2–dimensional simplex

∆s2 = {q ∈ R
m2 |qj ≥ 0 for j = 1, . . . , m2 and

∑m2

j=1 qj = 1} (10.3b)

1That is, sufficiently far back in time: You may be either male or female now, but way back in time—just
before you were a twinkle in your parents’ eyes—you could have turned out to be either.

2Simply because this phrase is so much less cumbersome than “strategy combination set.”
3For an exception, see, e.g., Mesterton-Gibbons (2001, §1.5).
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(and so the decision set is D = ∆s1 ×∆s2). Fourth, we have already implicitly adopted a
convention of using consecutive letters of the alphabet for the players’ strategies, p and q
for mixed strategies, u and v for thresholds or other continuous strategies. We abide by
this convention throughout.

Nevertheless, with regard to mixed strategies, we find it convenient to exploit the nat-
ural one-one correspondence between the simplex ∆s1 and its projection onto the plane
pm1

= 0 (which forms a face of that simplex) by redefining P1’s strategy as a vector in Rs1 .
As soon as the probabilities with which P1 selects strategies 1 to s1 have been specified,
the probability that P1 selects strategy m1 is necessarily determined as

pm1
= 1−

s1
∑

i=1

pi. (10.4)

So it suffices to keep track of the first s1 such probabilities. Thus Player 1’s strategy set
becomes an s1-dimensional subset of Rs1 , as opposed to an s1-dimensional subset of Rm1 .
It is convenient to adopt notation for this modified strategy set that suppresses its depen-
dence on m1 or s1 (which is anyhow fixed at the outset). Accordingly, we adopt

∆1 = {p ∈ R
s1|pi ≥ 0 for i = 1, . . . , s1 and

∑s1
i=1 pi ≤ 1}. (10.5a)

Correspondingly, P2’s strategy set becomes

∆2 = {q ∈ R
s2|qi ≥ 0 for i = 1, . . . , s2 and

∑s2
i=1 qi ≤ 1}, (10.5b)

the probability that P2 selects strategy m2 is necessarily determined as

qm2
= 1−

s2
∑

i=1

qi (10.6)

and the decision set becomes D = ∆1 × ∆2. Often s1 = s2 = s, in which case we write
∆1 = ∆2 = ∆ with D = ∆×∆. Moreover, in the important special case of only two pure
strategies apiece for which m = 2 or s = 1, it is standard practice to use p and q in place
of p1 and q1 (as for Crossroads I above).

The rewards

The third key ingredient of any game is a well defined reward to each player from every
potential strategy combination. For a 2-player discrete community game, the rewards are
given by two m1 × m2 payoff matrices A and B, where aij and bij are the payoffs to P1

and P2, respectively, from pure strategy combination (i, j); for illustration, see Tables 10.1
and 10.2 below. For a 2-player discrete population game, however, a single payoff matrix
A suffices, because B = AT by symmetry (as in Tables 10.1 and 10.2 with τ1 = τ2).

For a 2-player continuous community game, on the other hand, the rewards are given
by a pair of functions defined on the set of all feasible strategy combinations. For the
mixed extension of a discrete community game, the reward to Pi from strategy combina-
tion (p, q) is denoted by fi(p, q). Because P1’s reward from pure strategy i when P2 adopts
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strategy j is aij , and because P2 adopts strategy j with probability qj , the unconditional
reward to P1 from strategy i when P2 adopts mixed strategy q = (q1, . . . , qs2) is

m2
∑

j=1

aijqj (10.7)

with qm2
determined by (10.4). Player 1 obtains the above reward with probability pi

when adopting mixed strategy p = (p1, . . . , ps1), with pm1
defined by (10.4), and so the

unconditional reward to P1 from mixed strategy p when P2 adopts mixed strategy q is

f1(p, q) =
m1
∑

i=1

{ m2
∑

j=1

aijqj

}

pi =
m1
∑

i=1

m2
∑

j=1

aijpiqj = (p, pm1
)A(q, qm2

)T (10.8a)

where a superscripted T denotes transpose and we are using (p, pm1
) and (q, qm2

) to denote
(p1, p2, . . . , ps1, pm1

) ∈ Rm1 and (q1, q2, . . . , qs2 , qm2
) ∈ Rm2 , respectively. Correspondingly,

the unconditional reward to P2 from mixed strategy combination (p, q) is

f2(p, q) =
m2
∑

j=1

{ m1
∑

i=1

bijpi

}

qj =
m1
∑

i=1

m2
∑

j=1

bijpiqj = (p, pm1
)B(q, qm2

)T . (10.8b)

For any other continuous game, however, we instead use fi(u, v) to denote the reward to
Player i from strategy combination (u, v).4 Moreover, for a 2-player continuous popula-
tion game, a single reward function suffices because f2(u, v) = f1(v, u) by symmetry, and
it is usual to denote this function simply by f (as opposed to f1).

To illustrate: For Crossroads II regarded as a population game, let τ be the time it
takes a driver to traverse the junction, and suppose that drivers discount this delay by a
fraction η of their earliness. Thus if X ≤ u and Y > v, then the delay of τ as P2 traverses
the junction is experienced as −τ{1− η(1−X)} by P1; whereas if X > u and Y ≤ v, then
the delay of τ is experienced as −τ{1−η(1−Y )} by P2, but is 0 for P1. If both drivers either
Go or Wait in the first instance, then there is an additional delay of δ or ϵ, respectively, with
δ > ϵ, as they sort out who will subsequently drive away first. Assuming that it is equally
likely to be either driver and that delays should be as short as possible, so that negatives
of delays serve as payoffs, P1’s payoff is the random variable

F1(X, Y, u, v) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−τ{1 − η(1−X)} if X ≤ u, Y > v

−
(

δ + 1
2τ{1− η(1−X)}

)

if X > u, Y > v

−
(

ϵ+ 1
2τ{1 − η(1−X)}

)

if X ≤ u, Y ≤ v

0 if X > u, Y ≤ v.

(10.9)

P1’s reward from the strategy combination (u, v) is the expected value of F1, which we
denote by f1(u, v). That is, using E to denote expectation,

f1(u, v) = E[F1(X, Y, u, v)] =

1
∫

0

1
∫

0

F1(x, y, u, v)g(x)g(y) dx dy (10.10)

4These functions are typically continuous, although in some instances they have isolated discontinuities
(that is, are discontinuous across a set of measure zero).
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where g is the probability density function of X and Y ’s common distribution. By sym-
metry, P2’s reward is f2(u, v) = f1(v, u).

For Crossroads I regarded as a community game, we must replace (10.9) by

F1 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−δ − 1
2τ2 if Π1 = G,Π2 = G

0 if Π1 = G,Π2 = W

−τ2 if Π1 = W,Π2 = G

−ϵ− 1
2τ2 if Π1 = W,Π2 = W

and (10.10) by

f1(p, q) = E[F1] = (−δ − 1
2τ2) · Prob(F1 = −δ − 1

2τ2) + 0 · Prob(F1 = 0)

+ (−τ2) · Prob(F1 = −τ2) + (−ϵ− 1
2τ2) · Prob(F1 = −ϵ− 1

2τ2)

=
(

ϵ+ 1
2τ2 − {δ + ϵ}q

)

p+
(

ϵ− 1
2τ2

)

q − ϵ− 1
2τ2

(10.11)

where τ2 is how long it takes P2 to traverse the junction and Πi is the pure strategy selected
by Player i, a random variable with binomial distribution having parameter p or q, so
that Prob(Π1 = G,Π2 = G) = p · q, and so on: we assume that strategies are chosen
independently. Likewise, the reward to P2 from strategy combination (p, q) is

f2(p, q) =
(

ϵ+ 1
2τ1 − {δ + ϵ}p

)

q +
(

ϵ− 1
2τ1

)

p− ϵ− 1
2τ1 (10.12)

where τ1 is how long it takes P2 to traverse the junction. Note that if τ1 = τ2 (as when
Crossroads I is instead regarded as a population game), then f2(p, q) = f1(q, p).

Nash equilibrium: A solution concept

The last main ingredient of any game is a solution concept. An appropriate solution
concept for community games is that of Nash equilibrium, a strategy combination from
which no individual has a unilateral incentive to depart. Equivalently, a Nash equilibrium
is a combination of mutual best replies.

For a 2-player discrete community game in which P1 is the row player and P2 is the
column player, strategy combination (i, j) is a Nash equilibrium if

aij ≥ akj (10.13a)

for all k = 1, . . . , m1 and
bij ≥ bil (10.13b)

for all l = 1, . . . , m2. If (10.13a) is satisfied with strict inequality for all k ̸= i and (10.13b) is
satisfied with strict inequality for all l ̸= j (a total of m1+m2−2 conditions), then the Nash
equilibrium is said to be strong; otherwise (that is, if even a single one of the m1 +m2 − 2
conditions is satisfied with equality), the Nash equilibrium is said to be weak. A special
case of a strong Nash equilibrium occurs when both strategy i is a “strongly dominant”
strategy for P1 and strategy j is a strongly dominant strategy for P2, that is, when both
ail > akl for all k ̸= i for all l = 1, . . . , m2 (not only l = j) and bkj > akl for all l ̸= j for
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Table 10.1: Payoff matrix A

P2

P1

G W

G −δ− 1
2
τ2 0

W −τ2 −ϵ− 1
2
τ2

Table 10.2: Payoff matrix B

P2

P1

G W

G −δ− 1
2
τ1 −τ1

W 0 −ϵ− 1
2
τ1

all k = 1, . . . , m1 (not only k = i). For example, if we restrict Crossroads I to the two pure
strategies G and W , then G is a strongly dominant strategy for P1 when δ < 1

2τ2 because
a11 > a21 and a12 > a22; see Table 10.1. Likewise, G is a strongly dominant strategy for
P2 when δ < 1

2τ1 because b11 > b12 and b21 > b22 (Table 10.2). Thus strategy combination
(G,G) is a strong Nash equilibrium for δ < 1

2 min(τ1, τ2).
Correspondingly, for the mixed extension with mi pure strategies for Player i, strategy

combination (p∗, q∗) ∈ ∆1 ×∆2 is a Nash equilibrium if

f1(p
∗, q∗) ≥ f1(p, q

∗) (10.14a)

for all p ∈ ∆1 and
f2(p

∗, q∗) ≥ f2(p
∗, q) (10.14b)

for all q ∈ ∆2, where ∆1, ∆2, f1 and f2 are defined by (10.5) and (10.8). If (10.14a) is
satisfied with strict inequality for all p ̸= p∗ and (10.14b) is satisfied with strict inequality
for all q ̸= q∗, then the Nash equilibrium is said to be strong; otherwise it is said to be
weak. At least one Nash equilibrium always exists for such a game (Nash, 1951), so
existence is never an issue—but uniqueness frequently is. Even for moderate values of
m1 and m2, there can exist numerous Nash equilibria, and often it is not considered useful
to find and characterize them all; rather, which ones are worth examining is determined
by the particular question for which the game was constructed in the first place.
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