
12 War Over an Internal Prize. Conditions for Peace

In Lecture 11 we assumed that Nation i controls resources of value bi for i = 1, 2, and
that these two nations are in dispute over a prize b external to their dyad. We continue to
make the first assumption, and we continue to interpret u and v as the efforts that Nations
1 and 2, respectively, expend on war, although we now measure effort in terms of its cost
and we strengthen (11.13) to

b1 > b2 (12.1)

(so that we can definitely regard Nation 1 as the rich nation and Nation 2 as the poor
one). However, we now follow Beviá and Corchón (2010) in assuming that the prize over
which Nations 1 and 2 are contemplating war is the collective resources of both nations,
and hence is no longer external. Rather, if these two nations do go to war, then one of
them ultimately acquires all of the resources that either one controls. So

b = b1 + b2. (12.2)

As in Lecture 11, the efforts that Nations 1 and 2 expend on war, u and v, are both pos-
itive (unless there is no war). Moreover, because Nation i’s war effort subtracts from its
resources, which total bi, we also require si ≤ bi. So

Si =
(

0, bi] (12.3)

for i = 1, 2 and
D =

(

0, b1]×
(

0, b2] (12.4)

as anticipated by (11.18).
For the sake of simplicity, let us assume that the CSF is given by (11.7) with γ = 1, so

that the probability of victory for either side increases with effort ratio in a way that is
neither especially sensitive to it nor especially insensitive to it.1 Then

p1(u, v) =
u

u+ v
, p2(u, v) = 1− p1(u, v) =

v

u+ v
. (12.5)

A central assumption of Beviá and Corchón (2010) now comes into play. They assume
that effort is of two kinds. For both players, a fraction κ ∈ (0, 1) of war effort is not
recoverable—it is truly spent—whereas fraction 1 − κ is recoverable by the winner as a
kind a return on investment, although the winner reaps what the loser has sown (as well
as what it has sown itself). So what remains of P1’s resources at war’s end is not bi − si,
but rather bi − si + (1 − κ)si = bi − κsi. Because the winner acquires whatever remains
of both players resources and the loser ends up with nothing, Pi’s payoff is the random
variable

Fi =

{

b1 − κs1 + b2 − κs2 if Pi wins

0 if Pi loses
=

{

b− κ(u+ v) if Pi wins

0 if Pi loses
(12.6)

1Needless to say, pi may depend on other factors, but they are abstracted from the model.



by (12.2), implying

fi(u, v) = E[Fi] = {b− κ(u+ v)} · pi(u, v) + 0 · {1− pi(u, v)}
= {b− κ(u+ v)} pi(u, v).

(12.7)

So, on using (12.5), the rewards are given by

f1(u, v) =
bu

u+ v
− κu

f2(u, v) =
bv

u+ v
− κv

for (u, v) ∈ D (12.8)

where D is defined by (12.4). Note that (12.8) is the special case of (11.4) for which (11.5),
(11.6) and (12.5) all hold. So κ—the fraction of war effort that is not recoverable—is also
in effect its marginal cost.

We now obtain the reaction sets from calculations that parallel those in Lecture 11,
because (12.8) is the special case of (11.17) in which λ = 1.2 Let us first define

û(v) =

√

bv

κ
− v, v̂(u) =

√

bu

κ
− u. (12.9)

Then as in Lecture 11 (p. 73), we find that f1 increases from 0 as u → 0 to a maximum
of f1(û(v), v) = (

√
b −

√
κv)2 at u = û(v) before decreasing towards 0 as u → b

κ − v.
Moreover, as before, we find that û(v) increases from û(0) = 0 to û( b

4κ) = b
4κ on [0, b

4κ ]
before decreasing on [ b

4κ ,
b
κ ] to û( bκ) = 0. So û(v) is certainly the best response to v when

b

4κ
< b1, (12.10)

which ensures û(v) ∈ S1 for all v ∈ S2 to satisfy (12.3). Then B1(v) = û(v) for all v ∈ S2. If

b1 <
b

4κ
, (12.11)

however, then û(v) > b1 for v ∈ (v−, v+), where we define

v± = 1
2

{

b
κ − 2b1 ±

√

b
κ

(

b
κ − 4b1

)

}

. (12.12)

Because now v ∈ (v−, v+) implies that ∂f1/∂u > 0 for all u ∈ (0, b1), the best reply to all
such v becomes u = b1. So

B1(v) =

{

û(v) if 0 < v < v−
b1 if v− ≤ v ≤ b2

(12.13)

2Nevertheless, the calculations are not quite identical because b1, b2 depend on one another through
(12.2), and especially because D in (12.4) is different from D in (11.15)—and we cannot just set κ = 1,
because the rewards would then be wrong.
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and part of R1 must lie on the right-hand boundary of D whenever v− < b2, which
straightforward algebra reduces to

b2 > κb (12.14)

(in which case, v+ > b2, so that v+ /∈ S2). An almost identical analysis shows that, for

b

4κ
< b2, (12.15)

B2(u) = v̂(u) for all u ∈ S1; whereas for

b2 <
b

4κ
(12.16)

(which b1 <
b
4κ implies),

B2(u) =

{

v̂(u) if 0 < u < u−

b2 if u− ≤ u ≤ b1
(12.17)

where v̂(u) is defined by (12.9) with

u± = 1
2

{

b
κ − 2b2 ±

√

b
κ

(

b
κ − 4b2

)

}

; (12.18)

and part of R2 must lie on the upper boundary of D, because straightforward algebra
shows that u− < b2 < b1.

The implication of the above analysis is that three different types of Nash equilibrium
arise according to whether (12.10) and (12.15) both hold, requiring κ > 1

2 (Case I below);
or (12.11), (12.14) and (12.16) all hold, requiring κ < 1

2 (Case II below); or (12.16) holds
either with (12.10), requiring κ > 1

4 , or with (12.11) when (12.14) is false (Case III below).
Defining the dimensionless parameter

β =
b2
b

=
b2

b1 + b2
(12.19)

will help in distinguishing between these cases.3 Note that

β < 1
2 (12.20)

by (12.1)–(12.2).

Case I: b
4κ < b2 < b1 or 1− β > β > 1

4κ

Here B1(v) = û(v) for all v ∈ S2 and B2(u) = v̂(u) for all u ∈ S1, as illustrated by Figure
12.1. The Nash equilibrium occurs where R1 and R2 intersect at (u∗, v∗) ∈ D, that is, where
û(v∗) = u∗ and v̂(u∗) = v∗ or

u∗ = v∗ =
b

4κ
(12.21)

3In this regard, note that Case III means either b2 < b
4κ < b1 with κ > 1

4 or b2 < κb with b2 < b1 < b
4κ . The

first possibility becomes β < min( 1
4κ , 1−

1
4κ ); the second becomes β < κ, β < 1− β < 1

4κ or β < min(κ, 1
4κ ),

which exceeds min( 1
4κ , 1−

1
4κ ). So the first possibility is subsumed by the second.
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Figure 12.1: The reaction sets R1 (solid green), R2 (solid red) and Nash equilibrium (blue
dot) for 1 − β > β > 1

4κ . The dashed curves are u = û(v) (green) and v = v̂(u). The
decision set D = S1 × S2 is shaded.

!
! "!"/!κ "/κ

#

"

"!
"/!κ

"/κ

from (12.9). By (12.8), this equilibrium yields reward

wi = fi(u
∗, v∗) = 1

4b (12.22)

to Player i—in the event of a war. In the absence of war, however, Player i’s benefit would
be bi, which exceeds 1

4b for both i = 1 and i = 2 because b
4κ < b2 < b1 =⇒ b

4 < κb2 < b2 < b1
for κ ∈ (0, 1). Thus

wi < bi (12.23)

for i = 1, 2: both nations prefer peace to war in Case I.
We can interpret this result as saying that war does not pay because too small a fraction

of war expenditure is recoverable after the war and the disparity in resources between the
two nations is relatively small. With regard to the first point, note that Case I arises only
for κ > 1

2 . With regard to the second point, note that for β > 1
4κ we have

1 <
b1
b2

=
1

β
− 1 < 4κ− 1, (12.24)

which cannot exceed 3 and is close to 1 if, as seems likely, κ is not much bigger than 1
2 .

Case II: κb < b2 < b1 <
b
4κ or 1

4κ > 1− β > β > κ

Here we need both (12.13) and (12.17), as illustrated by Figure 12.2. We obtain

u∗ = b1, v∗ = b2 (12.25)
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Figure 12.2: The reaction sets R1 (solid green), R2 (solid red) and Nash equilibrium (blue
dot) for 1

4κ > 1 − β > β > κ. The dashed curves are u = û(v) (green) and v = v̂(u). The
decision set D = S1 × S2 is shaded.
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at the Nash equilibrium (u∗, v∗), with

wi = fi(u
∗, v∗) = (1− κ)bi (12.26)

for i = 1, 2 by (12.8). Because κ ∈ (0, 1), we have wi < bi for i = 1, 2; and so, as in Case
I, both players prefer peace to war in Case II (which arises only for κ < 1

2). In this case,
war does not pay because it is so destructive—it requires each side to commit all of its
resources to it.

Case III: b2 < κb, b2 <
b
4κ or min

(

κ, 1
4κ

)

> β

Here B1(v) = û(v) for all v ∈ S2 but B2(u) = v̂(u) only for u ≤ u−, with B2(u) = b2 for
u− ≤ u ≤ b1, as illustrated by Figure 12.3. Now R1 and R2 intersect where v = v∗ = b2 and
u = u∗ = û(v∗) = û(b2). Accordingly, by (12.9), we obtain

u∗ =

√

b2b

κ
− b2, v∗ = b2 (12.27)

for the Nash equilibrium. The corresponding rewards are

w1 = f1(u
∗, v∗) = b− 2

√

κb2b+ κb2 = (
√
b−

√

κb2)
2

w2 = f2(u
∗, v∗) =

√

κb2b− κb2 =
√

κb2(
√
b−

√

κb2)
(12.28)

by (12.2) and (12.8). So in this case Nation 1 prefers peace to war if b1 ≥ b− 2
√
κb2b+ κb2,

which readily reduces to
4κb1 − (1− κ)2b2 ≥ 0. (12.29)
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Figure 12.3: The reaction sets R1 (solid green), R2 (solid red) and Nash equilibrium (blue
dot) for min

(

κ, 1
4κ

)

> β. The dashed curves are u = û(v) (green) and v = v̂(u). The
decision set D = S1 × S2 is shaded.

!
! "!"/!κ

#

"

"!

"/!κ

But 4κb1 > b2 and 1 > (1 − κ)2, so that (12.29) is always satisfied (with strict inequality)
and (12.23) holds for i = 1: Nation 1 invariably prefers peace to war in Case III. By
contrast, Nation 2 prefers peace to war in Case III only if b2 ≥

√
κb2b− κb2, which reduces

to (1 + κ)2b2 ≥ κb or

β ≥
κ

(1 + κ)2
. (12.30)

If this inequality is reversed, that is, if

β <
κ

(1 + κ)2
, (12.31)

then Nation 2 prefers war to peace in Case III.
We can interpret (12.31) as saying that when β is sufficiently small, Nation 2 has an

incentive to declare war because the resource disparity 1
β − 1 = b1/b2 between richer and

poorer is large enough for war to seem an attractive get-rich-quick option for the poorer
nation. As noted by Beviá and Corchón (2010, p. 474), however, the result is counterintu-
itive, because κ

(1+κ)2 increases with κ, making (12.31) is easier to satisfy when κ is larger
than when κ is smaller—the more that cannot be recovered afterwards, the greater the
incentive for war! The resolution of this paradox is, in essence, that u∗ decreases with κ
by (12.27), and so the probability that Nation 2 wins the contest and the corresponding
expected payoff both increase with κ.4

These three cases are summarized by Figure 12.4. Above the red curve, where (12.30) is
satisfied (Case IIIa), both sides prefer peace to war. So war should not be declared—even

4By (12.5) and (12.27), p2(u∗, v∗) =
√

b2κ/b, which is clearly increasing. By (12.28), we have ∂w2/∂κ =
1
2

√
b2(

√
b− 2

√
κb2/

√
κ, which is positive for b2 < b

4κ .
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Figure 12.4: War versus peace in the κ-β plane in the absence of a resource transfer.
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without concessions. Below the red curve (Case IIIb), however, even though Nation 1
prefers peace to war, because Nation 2 prefers war to peace, it is rational for Player 2
to declare war—and so war will break out, because peace requires both sides to abstain.
Thus the probability of war may be considerable in the absence of a peace agreement. For
example, if the point (κ, β) is distributed over the rectangle [0, 1] × [0, 12 ] in Figure 12.4
uniformly, that is, with joint probability density function g defined by

g(κ, β) = 2 (12.32)

so that
∫ 1

0

∫ 1
2

0

g(κ, β) dβ dκ = 1, (12.33)

then the probability of war—the probability that (κ, β) lies below the red curve—is

Pw =

1
∫

0

κ
(1+κ)2
∫

0

g(κ, β) dβ dκ = 2 ln(2)− 1 ≈ 0.3863. (12.34)

We now ask whether Nation 1 can avert a war with Nation 2 in Case IIIb—that is,
when (12.31) holds or

(κ, β) ∈ IIIb, (12.35)

where IIIb denotes the region below the red curve in Figure 12.4—by making concessions
in the form of a resource transfer. Let T denote the amount transferred by Nation 1 to
Nation 2, so that Nation 1’s resources fall from b1 to b1 − T and Nation 2’s rise from b2
to b2 + T . Thus, as a proportion of the prize b, Nation 2’s resources rise from b2/b = β to
(b2 + T )/b = β + τ , where we define

τ = T/b. (12.36)

In terms of Figure 12.4, the effect of this transfer is to raise the point (κ, β) vertically a
distance τ to the point (κ, β + τ). Absent the transfer, war will break out when (12.35)
holds because (12.30) implies w2 > b2, where wi is defined by (12.28), and so

wi ≤ bi (12.37)
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fails to be satisfied for both i. After the transfer, however, both nations will prefer peace
to war if (and only if)

w1 ≤ b1 − T, w2 ≤ b2 + T. (12.38)

On using (12.28) and (12.36), however, we can rewrite w2 ≤ b2 + T as
√
κβ − κβ ≤ β + τ

and w1 ≤ b1 − T as β + τ ≤ 2
√
κβ − κβ. Thus (12.38) reduces to

√

κβ − κβ ≤ β + τ ≤ 2
√

κβ − κβ. (12.39)

Naturally, Nation 1 does not want to give away any more in resources than is necessary
to prevent war. Hence the optimal transfer, τ = τ ∗, is the one that raises the point (κ, β)
by a vertical distance τ ∗ that is just enough for (κ, β + τ ∗) to lie on the red curve, at which
Nation 2 begins to prefer peace to war. So

β + τ ∗ =
κ

(1 + κ)2
(12.40)

by (12.30). Note that τ ∗ = κ
(1+κ)2 −β increases with κ, because Nation 2’s incentive for war

is greater when κ is greater.
However, this optimal transfer will actually prevent a war only if both nations prefer

the reward that results from peace to the reward that results from war, that is, if (12.39)
holds with τ = τ ∗ or

√

κβ − κβ ≤
κ

(1 + κ)2
≤ 2

√

κβ − κβ (12.41)

by (12.40). As a consequence of (12.31) or equivalently (12.35), the first of these two in-
equalities is guaranteed to hold (strictly). The second inequality reduces to

β ≥ φ(κ), (12.42)

where we define

φ(κ) =
2

κ
−

1

(1 + κ)2
−

2
√
1 + κ+ κ2

κ(1 + κ)
(12.43)

on (0, κ). The curve with equation β = φ(κ) is the red curve in Figure 12.5. So it appears
that (12.42) can be satisfied with relative ease. For example, if the point (κ, β) is uniformly
distributed over the rectangle [0, 1] × [0, 12 ] in Figure 12.5, then the probability of war is
reduced from Pw = 2 ln(2)− 1 ≈ 0.3863 in (12.34) to

pw =

1
∫

0

φ(κ)
∫

0

g(κ, β) dβ dκ = 6 ln(3)− 8 ln(2)− 1 ≈ 0.0465 ≈ 0.1204Pw, (12.44)

that is, by factor of more than 8. So a transfer of resources cannot always prevent war, but
makes it much less likely. Indeed, at least according to this model, war is impossible if

β > βc, (12.45)
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Figure 12.5: War versus peace in the κ-β plane after a resource transfer.
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where βc ≈ 0.029 is the maximum value of φ,5 and (12.45) holds if and only if

b1
b2

=
1

β
− 1 <

1

βc
− 1 ≈ 33.2. (12.46)

Hence war is impossible unless the rich nation is more than 33 times richer than the poor
nation.

In sum, if (κ, β) falls in any of the lighter shaded regions above the red curve in Figure
12.5, then either there is no incentive for war or war can be prevented by a transfer of
resources. Either way there is peace. If (κ, β) falls in the darker region below the red
curve, however, then peace is unsustainable, because Nation 2 has an incentive to declare
war in the absence of a transfer, and the minimal transfer of resources that would prevent
a war is too expensive for Nation 1. But it appears that no resource transfer can prevent
a war only in circumstances where resource inequality could reasonably be regarded as
extreme.

Beviá and Corchón extend their analysis to cases where either γ ̸= 1 or λ ̸= 1 in the
CSF defined by (11.8) and discover, among other things, the possibility of a role reversal
when λ > 1, in the sense that Nation 1 now has an incentive for war, which Nation 2 can
prevent by transferring resources to Nation 1 (which therefore ends up even richer than
it was to begin with). If any of you is sufficiently interested, perhaps their subsequent
analysis could form the basis of a more in-depth investigation leading to an end-of-term
presentation. For the rest of us, however, this is as far as we go.

5φ(κ) increases from 0 as κ → 0 to φ(κmax) ≈ 0.02923 at κ = κmax before decreasing again to 7
4 −

√
3 ≈

0.01795 as κ → 1, where φ′(κmax) = 0 or

κmax =
1

3
√
2

{

√

√

√

√14

√

2

3 3
√
6− 4

− 3 3
√
6− 8−

√
2 +

√

3 3
√
6− 4

}

≈ 0.3577

(and φ′′(κmax) ≈ −0.18055 < 0). Thus for all κ ∈ (0, 1), we have 0 < φ(κ) ≤ βc = φ(κmax) ≈ 0.02923.

88


