
14 An Approach to Modelling Aspects of Civil War

A class of games has been developed to describe human or non-human populations in
which some individuals do productive work, such as searching for food or growing it,
while other individuals do no such work but steal or otherwise reap the benefits of the
first subpopulation’s labors. In evolutionary biology, these games are usually known as
producer-scrounger games (e.g., Broom and Rychtář, 2013, §17.7), whereas in economics
the producers or scroungers are often given other names, e.g., peasants or bandits. To
be as inclusive as possible here, I will refer to the scroungers as exploiters. Regardless
of which labels are used, however, the important point from our perspective is that such
models can be adapted to deal with aspects of civil war. The following discussion is based
on Skaperdas (2008) and Konrad and Skaperdas (2012).

To exemplify the overall approach, consider a population of N individuals that has
separated itself into Np producers and Ne exploiters, so that

Np +Ne = N. (14.1)

Each producer has one unit of resources to divide between work and self-protection from
the exploiters. Let x ∈ [0, 1] be the proportion assigned to self-protection, hence 1 − x the
proportion assigned to work. Let each unit of resources assigned to work yield Q units
of output, so that each producer’s output is Q(1 − x), and let p(x) be the proportion of
output protected from exploiters by investing x in self-protection. We assume

p(0) ≥ 0, p′(x) > 0, p′′(x) < 0, p(1) ≤ 1. (14.2)

Then a producer’s payoff is

Up(x) = Q{1− x} · p(x), (14.3)

which has maximum
U∗
p = Up(x

∗) (14.4)

at x = x∗, where x∗ is the unique solution of the equation
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= 0. (14.5)

For example, if we satisfy (14.2) with

p(x) = xθ (14.6)

for θ ∈ (0, 1), so that θ is the elasticity1 of p with respect to x, then

x∗ =
θ

1 + θ
(14.7)

and

U∗
p =

θθ

(1 + θ)1+θ
Q. (14.8)

1See Lecture 1.



For any level of self-protection x, the total production of all Np producers is Np(1−x)Q,
of which proportion 1− p(x) is expropriated by the exploiters. Hence the total amount of
output expropriated by all Ne exploiters is Np{1−p(x)}(1−x)Q, implying that the payoff
to each exploiter is 1/Ne of that amount or

Ue(x) =
Np

Ne
{1− p(x)}(1− x)Q. (14.9)

We assume, however, that producers optimize x. Hence x = x∗, and so the payoff to an
exploiter is

U∗
e = Ue(x

∗) =
Np

Ne
(1− p∗)(1− x∗)Q (14.10)

where
p∗ = p(x∗) (14.11)

is a measure of the security of property—the extent to which producers get to keep their
output. For example, if (14.6) holds then

U∗
e =

Np

Ne

(1 + θ)θ − θθ

(1 + θ)1+θ
Q. (14.12)

If U∗
p > U∗

e , then some exploiters to switch to producing. So Ne will fall, Np will rise
and, by (14.10), U∗

e will also rise, until eventually U∗
p = U∗

e . If U∗
e > U∗

p , on the other hand,
then some producers will switch to exploiting. So Np will fall, Ne will rise and, again by
(14.10), U∗

e will fall, until eventually U∗
p = U∗

e . So, either way, eventually the population
will settle down to an equilibrium consisting of N∗

p producers having payoff U∗
p and N∗

e

exploiters having payoff U∗
e , as before, but now with

U∗
p = U∗

e , (14.13)

so that no exploiter has an incentive to switch to production, and no producer has an
incentive to switch to exploitation. Moreover,

N∗
p +N∗

e = N (14.14)

by (14.1), implying
N∗

p = p∗N, N∗
e = (1− p∗)N (14.15)

and
N∗

e

N∗
p

=
1− p∗

p∗
(14.16)

by (14.3) and (14.10). Since only producers produce, the total output at equilibrium is

N∗
p · (1− x∗)Q = p∗(1− x∗)NQ (14.17)

by (14.15); note that this expression also equals N∗
pU

∗
p + N∗

eU
∗
e = NU∗

p . In particular, if
(14.6) holds, then at long-run equilibrium we obtain

N∗
p =

(

θ

1 + θ

)θ

N (14.18a)
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Figure 14.1: Proportion of producers (N∗
p/N , green), proportion of exploiters (N∗

e /N , red),
exploiter-producer ratio (N∗

e /N
∗
p = (1−p∗)/p∗, blue) and scaled per capita output (U∗

p/Q =
U∗
e /Q, orange) as a function of elasticity θ.
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and

N∗
e =

{

1−
(

θ

1 + θ

)θ}

N (14.18b)

with

U∗
p = U∗

e =
θθ

(1 + θ)1+θ
Q. (14.19)

So the exploiter-producer ratio rises with elasticity at equilibrium while output falls; see
Figure 14.1.

We now suppose that the population contains two categories of individual, a more
productive or “high-level” type and a less productive or “low-level” type, either of which
is a potential exploiter—so that high-level types are actually more productive only if they
do indeed produce. Let there be Nh of the high-level types and Nl of the low-level types,
with

Nl +Nh = N. (14.20)

The population now has three subpopulations instead of two. Let there be Nph high-level
producers, Npl low-level producers and Ne exploiters, so that

Npl +Nph = Np (14.21)

and (14.1) continues to hold. Note that, since the number of high-level producers cannot
exceed the number of high-level individuals in the population, we must have

Nph ≤ Nh. (14.22)

A low-level producer will convert each unit of resources assigned to work into Q units
of output, as before, whereas a high-level producer will convert each unit of resources
assigned to work into AQ units of output, where

A > 1. (14.23)
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So the output of a low-level producer is still Q{1− x} · p(x) = Up(x), as in (14.3), whereas
the output of a high-level producer is AQ{1 − x} · p(x) = AUp(x). Nevertheless, we
continue to assume that all producers optimize x, and because the second payoff is merely
A times the first payoff, the optimal x∗ is still determined by (14.5), for both types of
producer. On the other hand, equilibrium payoffs differ. For low-level producers

U∗
pl = p∗(1− x∗)Q (14.24)

by (14.4), whereas for high-level producers we now have

U∗
ph = p∗(1− x∗)AQ = AU∗

pl (14.25)

instead.
For any level of self-protection x, the total output of all Np = Npl + Nph producers is

Npl · (1 − x)Q + Nph · (1 − x)AQ, of which a proportion 1 − p(x) is expropriated by the
exploiters. Hence the total amount of output expropriated by all Ne exploiters is

{1− p(x)}{Npl · (1− x)Q +Nph · (1− x)AQ} = {Npl + ANph}{1− p(x)}(1− x)Q,

implying that the payoff to each exploiter is 1/Ne of that amount or

Ue(x) =
Np

Ne
{1− p(x)}(1− x)AQ, (14.26)

where

A =
Npl + ANph

Np
= 1 ·

Npl

Npl +Nph
+ A ·

Nph

Npl +Nph
(14.27)

denotes the average per capita output or productivity of a producer, when output is
scaled with respect to Q. Note that

1 ≤ A ≤ A. (14.28)

But x = x∗, because all producers optimize. Hence the payoff to an exploiter is

U∗
e = Ue(x

∗) =
Np

Ne
(1− p∗)(1− x∗)AQ (14.29)

by (14.11) and (14.26), whereas the payoffs to a low-level and a high-level producer are

U∗
pl = p∗(1− x∗)Q (14.30a)

and
U∗
ph = Ap∗(1− x∗)Q, (14.30b)

respectively, by (14.24)–(14.25).
As before, the population will eventually settle down to a long-run equilibrium at

which no exploiter has an incentive to switch to production, while no producer has an
incentive to switch to exploitation. At this equilibrium, N∗

pl low-level producers, N∗
ph high-

level producers and N∗
e exploiters obtain payoffs U∗

pl, U
∗
ph and U∗

e , respectively, where

N∗
pl +N∗

ph +N∗
e = N∗

p +N∗
e = N (14.31)

98



by (14.1) and (14.21), with U∗
pl given by (14.30a), U∗

ph by (14.30b) and

U∗
e =

N∗
p

N∗
e

(1− p∗)(1− x∗)A
∗
Q (14.32)

from (14.29). However, there are now three forms that the equilibrium can take—whereas
previously there was only one.

Before proceeding, we define the proportion of high-level individuals to be

α =
Nh

N
(14.33)

to facilitate further analysis.

Case I: All high-level types produce, some low-level types exploit

In this case we have
N∗

ph = Nh (14.34)

with
U∗
ph > U∗

pl = U∗
e . (14.35)

So from (14.27) we obtain

A
∗

=
N∗

pl + AN∗
ph

N∗
p

=
N∗

pl

N∗
p

+
AN∗

ph

N∗
p

=
N∗

p −N∗
ph

N∗
p

+
AN∗

ph

N∗
p

=
N∗

p −Nh

N∗
p

+
ANh

N∗
p

=
(A− 1)Nh

N∗
p

+ 1 =
(A− 1)αN

N∗
p

+ 1

(14.36)

by (14.33). Substituting from (14.36) into U∗
pl = U∗

e and rearranging, we obtain

p∗N∗
e − (1− p∗)N∗

p = (1− p∗)(A− 1)αN.

Solving together with N∗
p +N∗

e = N yields

N∗
p = {p∗ − (A− 1)α(1− p∗)}N (14.37a)

N∗
e = (1− p∗){(A− 1)α + 1}N. (14.37b)

Because all high-level types produce, we must have

N∗
p ≥ N∗

ph

or

α ≤
p∗

p∗ + A(1− p∗)
(14.38)

from (14.33)–(14.34) and (14.37a). So (p,α) must lie in Region I of Figure 14.2.
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Figure 14.2: How the long-run equilibrium depends on (p∗,α). Case X corresponds to
(p∗,α) lying in Region X for X = I, . . . , III . The area of Region II increases with A (the
diagram being drawn for A = 3).
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Case II: All high-level types produce, all low-level types exploit

In this case we have
N∗

ph = Nh, N∗
pl = 0 (14.39)

so that

N∗
p = αN (14.40a)

N∗
e = (1− α)N (14.40b)

from (14.31) and (14.33) and N∗
p = N∗

ph +N∗
pl = Nh + 0 = Nh implying

A
∗

=
N∗

pl + AN∗
ph

N∗
p

= A (14.41)

by (14.27). Substituting into (14.30b) and (14.32) and simplifying, we now obtain

U∗
ph

U∗
e

=
p∗(1− α)

(1− p∗)α
. (14.42)

This long-run equilibrium is stable only if both

U∗
ph > U∗

e (14.43)

(for otherwise some high-level types would switch to exploitation) and

U∗
e > U∗

pl (14.44)

(for otherwise some low-level types would switch to production). But U∗
pl = U∗

ph/A by
(14.30). So we require U∗

e < U∗
ph < AU∗

e or

1 <
U∗
ph

U∗
e

< A, (14.45)
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which reduces to
p∗

p∗ + A(1− p∗)
< α < p∗ (14.46)

by (14.42). So (p,α) must lie in Region II of Figure 14.2.

Case III: Some high-level types produce, all low-level types exploit

In this case we have
N∗

pl = 0 (14.47)

with
U∗
ph = U∗

e . (14.48)

So N∗
p = N∗

ph +N∗
pl = N∗

ph + 0 = N∗
ph implying

A
∗

=
N∗

pl + AN∗
ph

N∗
p

= A (14.49)

by (14.27). Substituting into U∗
pl = U∗

e and rearranging, we obtain (1 − p∗)N∗
p = p∗N∗

e ;
and solving together with N∗

p +N∗
e = N yields

N∗
p = p∗N (14.50a)

N∗
e = (1− p∗)N. (14.50b)

Because only high-level types produce, we must have

N∗
p ≤ Nh

or
α ≥ p∗ (14.51)

from (14.33) and (14.50a). So (p,α) must lie in Region III of Figure 14.2.

Let us now follow Skaperdas (2008) in supposing that a territory in which all producers
reside is taken over by n ≥ 2 warlords, who provide collective security to all producers
in exchange for tribute; and that although the warlords are completely effective in elim-
inating other exploiters, the new rate of tribute equals the old security rate, so that each
producer still retains proportion p∗ of output, and is therefore neither worse off nor better
off than before (according to our model). Let us also suppose that warlords can extract ad-
ditional benefits that are not available to individual producers, and that their total value
is bQ. We further suppose that each warlord hires the same fixed number g of guards to
protect individual producers, and that the i-th warlord hires ui soldiers to compete for
the total prize, which is

B = bQ + (1− p∗)(1− x∗)NpQ (14.52)

(where Np is the number of producers, as before). We will regard the i-th warlord as
Player i in a noncooperative game. In accordance with CSF (11.11), the share of the prize
to Player i is2

ui
∑n

j=1 uj
=

ui

ui + u−i

2In the special case where γ = 1.
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where we define

u−i =
n

∑

j=1
j ̸=i

uj (14.53)

to be the sum of the sizes of the other warlords’ armies. Soldiers and guards are assumed
to receive in pay exactly the value of the amount that they would keep for themselves if
they were independent producers, which is p∗(1− x∗)Q. So the payoff to Player i is

fi =
Bui

ui + u−i
− Cui − C g (14.54)

where B, u−i and
C = p∗(1− x∗)Q (14.55)

are all independent of ui. Because

∂fi
∂ui

=
Bu−i

(ui + u−i)2
− C (14.56)

with
∂2fi
∂u2

i

=
−2Bu−i

(ui + u−i)3
< 0, (14.57)

Player i’s best reply to the other players’ collective u−i satisfies ∂fi/∂ui = 0 or

Bu−i

(ui + u−i)2
= C (14.58)

from (14.56). The strategy combination u∗ = (u∗
1, u

∗
2, . . . , u

∗
n) is a strong Nash equilibrium if

each u∗
i is the best reply to the other players’ u∗

−i. So for any i ̸= j, at the Nash equilibrium
we must have

Bu∗
−i

(u∗
i + u∗

−i)
2

=
Bu∗

−j

(u∗
j + u∗

−j)
2

= C. (14.59)

But u∗
i + u∗

−i = u∗
j + u∗

−j =
∑n

k=1 u
∗
k. Hence (14.59) implies u∗

−i = u∗
−j =⇒

∑n
k=1 u

∗
k − u∗

−i =
∑n

k=1 u
∗
k − u∗

−j =⇒ ui = uj . We conclude that

u∗
i = u∗ (14.60)

for i = 1, . . . , n where (14.58) implies B(n− 1)u∗/{nu∗}2 = C or

u∗ =
(n− 1)B

Cn2
(14.61)

The associated payoff is

f ∗
i =

B

n2
− C g. (14.62)

Because the soldiers and guards are taken from the same population as the producers,
and because each of n warlords hires u∗ soldiers and g guards, consistency requires that

Np ≤ N − n(u∗ + g) (14.63)
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(where N is the size of the population, as before). Substituting from (14.61) for u∗, and in
turn from (14.52) and (14.55) for B and C, we reduce (14.63) to

Np ≤
np∗(N − ng)

n− 1 + p∗
−

(n− 1)b

(n− 1 + p∗)(1− x∗)
(14.64)

with equality if there is “full employment” (as a producer, a soldier or a guard).
Skaperdas (2008) proceeds to tease a handful of insights on civil war out of the model

developed above. Although he shows that his approach has potential, I think it is fair to
say that civil-war models—at least the mathematical kind—are still very much in their
infancy. If you are interested, then his paper is available from the course page. For the
rest of us, however, this is as far as we have time to go.
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