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ABSTRACT 

In this article, we model the metric distances of den-

drite spines of mice based on various morphometric 

(shape and size related) measures, condition, and type 

of the spines. The question of interest is how the met-

ric distances differ with respect to various morphomet-

ric measures, two different conditions and six spine 

types which are based on pre-assigned shape catego-

ries. Large Deformation Diffeomorphic Metric Map-

ping algorithm is one of the tools to measure mor-

phometric differences in dendrite spines with respect 

to a template spine. We use Principal Component 

Analysis (PCA) on continuous numerical morphomet-

ric measures to obtain uncorrelated morphometric 

features, since PCA provides the orthogonal directions 

with most variation. We demonstrate that for the raw 

scores (i.e., values not adjusted for scale) metric dis-

tances differ significantly by size and type of spines, 

and size and length at each spine type level.  Since 

size (or scale) dominates the other variables in vari-

ance and spine type is based on shape, differences in 

metric distances due to other variables might be 

masked. Hence, we adjust metric distances and other 

morphometric measures for scale. We demonstrate that 

after adjusting for scale, metric distances differ most 

significantly by shape (i.e., spine type), and then by 

length and size for each spine type. In the presence of 

other morphometric measures, the condition seems not 

to be significant in explaining variation in metric dis-

tances, hence we need to analyze spines for each shape 

type separately. Although the methodology used here 

is applied on morphometric measures of mouse spines, 

it is also valid for morphometric measures of other 

organs or tissues and other metric dis-

tances._____________ 

 

1 INTRODUCTION 

The Large Deformation Diffeomorphic Metric 
Mapping (LDDMM) is a recently developed tool that 

quantizes morphometric (shape and size) differences 

between two binary images. This approach has been 

applied to the analysis of gross brain morphology 

derived from magnetic resonance imaging (MRI).  

Here, we apply this technique to the quantification of 

shape changes of microscopic structures, the tiny 

protuberances found on many types of neurons 

termed dendritic spines.  Changes in dendritic spine 

size, shape and number are thought to underlie the 

brain’s ability to change as a result of environmental 

stimulation and also occur in many pathological con-

ditions.  Thus, the quantification of shape changes in 

dendritic spines is a fundamental problem in neuro-

science.  A previous version of this data (with fewer 

dendrite spines) was analyzed in [1] wherein a linear 

model was fit on metric distances versus other vari-

ables such as volume, surface area, and length values. 

In [1], first statistical analysis was performed on met-

ric distances and condition only. The dendritic spines 

were not matched for size and type of spine, so such 

factors might have caused the group differences in the 

metric distances, rather than the condition. Hence, 

other variables were included in the analysis. A linear 

model was fit with metric distances as the response 

variable and condition, type, volume, surface area, 

and length as predictor variables.  In this work, the 

influence of the condition on the metric distances was 

analyzed after the influence of the type of spine, vol-

ume, surface area, and length was accounted for.  

Instead of running a linear model, we perform a Prin-
cipal Component Analysis (PCA) to save all relevant 

information contained in the raw but correlated vari-

ables in a set of uncorrelated variables as much as 

possible. Then we identify the principal components 

(PCs) and use them as predictors in our linear models 

with metric distance being the response variable. The 

objective of this work is to determine the morphomet-

ric information conveyed by volume, surface area, 

and length, and whether the condition (disease), spine 

type (based on visual inspection of the morphometry), 
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morphometric features of  dendritic spines in mice 

affect metric distances (with respect to a template 

spine). We also explore the affects of scaling on met-

ric distances and on the results of our analysis. 

Methods developed in the field of Computa-
tional Anatomy (CA) that enable quantification of 

anatomical volumes and shapes between and within 

groups of individuals with and without various neuro-

logical diseases have emerged from several groups in 

recent years ([7], [9], [13], [14], [20], [21], [22]). 

Based on the mathematical principles of general pat-

tern theory ([5], [9]), these methods combine image-

based diffeomorphic maps between MR scans with 

representations of  anatomical shapes as smooth 

manifolds.  

An important task in CA is the study of neuro-

anatomical variability [9]. The anatomic model is a 

quadruple ( )Ω, , ,G I P  consisting of Ω  the tem-

plate coordinate space (in 
3R ), defined as the union 

of 0, 1, 2, 3-dimensional manifolds, : Ω ↔ ΩG  a 

set of diffeomorphic transformations on Ω , I  the 

space of anatomies, is the orbit of a template anatomy 

0I  under G , and P  the family of probability meas-

ures on G . In this framework, a geodesic 

[0 1]φ : , → G  is computed where each point 

[0 1]t tφ ∈ , ∈ ,G  is a diffeomorphism of the domain 

Ω . The evolution of the template image 
0I  along 

path φ  is given by 
1

0 0t tI Iφ φ −= o  such that the end 

point of the geodesic connects the template 
0I  to the 

target 
1I  via 

1

1 1 0 0 1 .I I Iφ φ −= = o  Thus, anatomical 

variability in the target is encoded by these geodesic 

transformations when a template is fixed. 

Furthermore,  geodesic curves induce metric 

distances between the template and the target shapes 

in the orbit. The diffeomorphisms are constructed as a 

flow of ordinary differential equations ( )t t tvφ φ=& , 

[0,1]t ∈  with 
0 idφ =  the identity map, and associ-

ated vector fields tv , [0,1]t ∈ . The optimal velocity 

vector field parameterizing the geodesic path is found 

by solving 

1

0
0

1 2 1

0 1 1
0

: ( ) ,

ˆ arg inf  such that 

t t

t V
v v dt id

v v dt I I
φ φ φ

φ −

= =

= =

∫
∫ o  

where tv V∈ , the Hilbert space of smooth vector 

fields with norm 
V

⋅  defined through a differential 

operator enforcing smoothness. The length of the 

minimal geodesic path through the space of transfor-

mations connecting the given anatomical configura-

tions in 
0I  and 

1I  defines a metric distance, D,  be-

tween anatomical shapes in 
0I  and 

1I  via 

1

0 1
0

ˆ( , ) t V
D I I v dt= ∫  

where t̂v  is the optimizer calculated from the 

LDDMM algorithm ([2]). The construction of such a 

metric space allows one to quantify similarities and 

differences between anatomical shapes in the orbit. 

This is the vision laid out by D’Arcy W. Thompson 

more than one hundred years ago ([19]).  

The notion of mathematical biomarker in the 

form of metric distance can be used in different ways. 

One is to generate metric distances of shapes relative 

to a template ([16], [2]). Another is to generate metric 

distances between each shape within a collection 

([15]). The latter approach allows for sophisticated 

pattern classification analysis but is computationally 

expensive. We adopt the former approach here.  

Previously, we demonstrated ([1]) that almost 

all of the variation in the metric distances could be 

explained by just 
1/3V , 

1/ 2S and L where V, S, and L 

are volume, surface area, and length, respectively. 

That is, the size of the dendrites was shown to have 

the largest effect on the metric distances. However, 

the size differences could be masking the influence of 

other factors, such as the condition of mice. To this 

end, when data is scaled, the condition was significant 

after accounting for scaled V, S, and L, and type of 

spine. 

In this article, we first consider the PCA of the 

numerical morphometric variables (V, S, and L), 

which is a way of identifying patterns in data, and 

expressing the data in such a way as to highlight their 

similarities and differences. In general, PCA is used 

for dimension reduction for multivariate data. How-

ever, we do not use PCA for this purpose, but to ob-

tain a set of uncorrelated variables which measure 

different aspects of the morphometry of the dendrite 

spines that are identifiable in the PCs. 

Then we use multiple linear regression on met-

ric distances versus the PCs and other (categorical) 

variables to (i) understand which predictors have the 

greatest effect on metric distances, (ii) know the di-

rection and magnitude of the effect, (iii) use the 

model to predict future values of the response when 

only the predictors are known. For variable selection, 

we perform a stepwise regression with backward 

elimination procedure ([4]). 

 

2 DATA  ACQUISITION 

Pyramidial cells from layer V of primary visual cor-

tex from genetically modified and control mice were 

injected with Lucifer yellow. Tissue was subse-



  

quently photo-oxidized and prepared for electron 

microscopy. 411 triangulated surface reconstructions 

of spine dendrites were produced by manual contour-

ing of tomographic reconstructions of neurons and 

curated at the Cell-Centered DataBase at 

https://ccdb.ucsd.edu/CCDB/index.shtml ([11], [12]).  

The reconstructed spines were aligned with a standard 

coordinate system with respect to the smallest Wild 
Type (WT) spine via similitude matching (scale or no-

scale, rotation, translation) of 14 landmarks suitably 

placed on each spine. LDDMM was applied to bi-

narized images of the surfaces from which metric 

distances between the spines and the template (refer-

ence) spine were generated ([2]). 

Variables include spine number, mouse num-

ber, shaft number, shaft label, condition, V, S, metric 

distance (D) values, L, and classification category 

(i.e., type of spines). Condition of Mice refers to 

whether the spine originated from a WT mouse or a 

genetically modified mouse. The WT mice are ex-

pected to have a normal genetic make-up because 

they originate from natural mice populations. How-

ever, in the Knock-Out (KO) mice, one specific gene 

is inactivated in order to mimic a human neurological 

condition. The six spine types are double, filopodia, 
long mushroom, mushroom, stubby, and thin ([10]). V 

is measured in µm3, and S in µm2. L, is the Euclidean 

distance between the neck landmark at the point clos-

est to the dendrite shaft and the head landmark at the 

point furthest from the dendrite shaft and is measured 

in µm (micron or micrometer). 

 

3 RESULTS  

3.1 Analysis of Unscaled Morphometric Meas-

ures 

First, we consider the unscaled numerical vari-

ables, namely, metric distance, volume, surface area, 

and length measures. These variables are significantly 

(positively) correlated with each other, with volume 

and surface area having the largest correlation coeffi-

cient (Pearson’s r = .95 with p < .0001 for the alterna-

tive that the correlation coefficient is zero).  See Ta-

ble 1 for the corresponding (Pearson’s) correlation 

coefficients and the p-values (given in parentheses) 

and Figure 1 for the pair plots of these variables. 

Therefore, when we use these raw variables in our 

model as predictors, there will be multicollinearity 

between the predictor variables, and one’s presence in 

the model will render the other two variables insig-

nificant. However, volume is mostly a measure of 

size, surface area is a measure of shape and size (but 

more of a measure of shape than size), and length is a 

measure associated with type of spine. Therefore, 

when one of the variables volume, surface area, or 

length is dismissed from the model, some important 

morphometric information about dendrite spines may 

be lost. To avoid this information loss, we perform 

PCA on volume, surface area, and length variables. 
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Figure 1: Pairs plot of the variables: metric distances 

(D), volume (V), surface area (S), and length (L). 

 

In general, PCA can be performed on the cor-

relation or covariance matrix (between the variables). 

PCA is performed on the covariance matrix if the 

variables are of similar scale or in same units of 

measurement; and on the correlation matrix for vari-

ables in different scales, as is the case here, since the 

measurements are in different units. Among variables 

in different scales (units), the variables with the larger 

variances (spread) dominate the PCA, thereby domi-

nating the variables of import in smaller scales. How-

ever, it is not always the first PC that is of most inter-

est, as the subsequent PCs might provide more impor-

tant information in regard to the goal of the researcher 

([8]).  On the other hand, with such a standardization 

of the variables by using correlation matrix, once 

again crucial information loss could occur, as the 

spread in a variable could not merely be a by-product 

of scaling or difference in units. A middle way is to 

convert all variables to the same unit, if possible, and 

then apply PCA to the transformed variables. If  we 

use 
1/3V , 

1/ 2S  and L, then all three variables will be 

of the same unit, namely µm. In our analysis, we 

apply PCA to obtain uncorrelated measures of mor-

phometric features of dendrite spines rather than 

dimension reduction. So, we keep all the PCs result-

ing from the PCA procedure. Therefore, in our analy-

sis, we prefer the PCA method with the best interpret-

ability of the PCs.  



  

Although PCA on covariance of the trans-

formed variables (in same units) is appealing, we 

prefer the PCA on the covariance with the original 

units, since the PCs are much easier to identify (or 

label). That is, we observe from Table 2 (middle) that 

PC1 is a measure of size, PC2 is a measure of shape, 

and PC3 is purely a measure of length.  

Two of the major assumptions for linear mod-

els are the normality of and lack of autocorrelation 

between the errors. To attain these desirable proper-

ties, we explore the normality of the individual vari-

ables (metric distances, PC1, PC2, and PC3) sepa-

rately. The kernel density plots of PC2, and PC3seem 

to be close to being normal, while metric distances 

and PC1 measures seem to be severely non-normal. 

See Figure 2 for the kernel density plots for D and 

PC1 variables, and original PC2, and PC3measures. 

Hence, we take the fifth root of metric distances 

(
5:tD D= ), and transform PC1as______________ 

3 |)1min(|1:1 PCPCtPC += .   
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Figure 2: Kernel density plots of the metric dis-

tances, PC1,  PC2, and PC3 measures. 

 

The transformed metric distances can be as-

sumed to be normal (p=.0928 based on Lilliefor’s test 

of normality) ([18]). Likewise for the transformed 

PC1 (p=0.1781). For the scatter plots of the trans-

formed metric distances with transformed PC1, and 

(untransformed) PC2 and PC3, see Figure 3.  Next, to 

determine which variables significantly explain the 

variation in metric distances, we run a linear model 

with D being the response and each variable is a pre-

dictor, one at a time. At α=.01 level, each variable but 

spine type (or category) is significant. Thus, we dis-

card the spine type from further consideration. 
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Figure 3: The scatter plots of transformed metric 

distances with transformed PC1 (i.e., tPC1) (top), 

PC2 (middle), and PC3 (bottom). 

We first run a linear model for which D is the 

response variable, while all other variables (tPC1, 

PC2, PC3, condition, mouse, shaft) with all possible 

interactions as predictor variables. Due to the singu-

larity of the model, we exclude the spine type variable 

in the full model to include it at a further step. On this 

full model we choose a reduced model by Akaike 
information criteria (AIC) in a stepwise algorithm, 

and then use stepwise backward elimination proce-



  

dure on the resulting model ([4]). We stop the elimi-

nation procedure when all the remaining variables are 

significant at α=.05 level. Then we insert the spine 

type variable and its interaction with these remaining 

(significant) variables. We repeat the same variable 

selection (i.e., stepwise backward elimination) proce-

dure on this new model. When all variables are sig-

nificant, we stop the elimination procedure. The re-

sulting model is 

( ) 1 3

0

T T tPC T PC
ij i i ij i ij ijD X Xµ α β β γ ε= + + + + +  

where ijD  is the distance for spine j for type i (i=1 

for double, 2 for filopodia, 3 for long mushroom, 4 

for mushroom, 5 for stubby, and 6 for thin), 
1tPC

ijX  is 

the transformed PC1 score for spine j of type i, 
3PC

ijX  is the PC3 score for spine j of type i, µ  is the 

overall mean, 
T
iα  is the effect of spine type level i, 

0β  is the overall slope for transformed PC1 score, 

T
iβ  is the slope of transformed PC1 score for spine 

type i, 
T
iγ  is the slope of transformed PC3 score for 

spine type i, and ijε  is the error term. The adjusted 

2R  value is 0.73 for this model. Furthermore, the 

residuals are not significantly non-normal (p= 0.0557 

with Shapiro-Wilk normality test) and there is not 

significant autocorrelation between residuals (p= 

0.5466 with Durbin-Watson test) ([17]).   

Therefore, tPC1 (i.e., size component), spine 

type, and tPC1 by spine type interaction and PC3 by 

spine type interaction explain almost all of the varia-

tion in metric distances (73 %). However, differences 

in shape could be masked by the scale of the data, 

which is mostly conveyed by the size of the dendrite 

spines. Furthermore, types of spines were visually 

determined categories of shape, hence its presence 

could render PC2 (shape component) insignificant.  

 

3.2 Analysis of Scaled Morphometric Measures 

To overcome the highly dominant effect of 

scale (or size), we adjust the morphometric measures 

by scaling the metric distances, volumes, surface 

areas, and length measures. We obtain the scaled 

metric distances by applying the LDDMM algorithm 

to the scaled data (spines) rather than the distances 

that could be construed by scaling all the metric dis-

tances.  The scaled metric distances are significantly 

negatively correlated with scaled volume and surface 

area measures, and scaled volumes and surface areas 

are significantly positively correlated. All other corre-

lations are either mild or insignificant. See Table 3 for 

the corresponding correlation coefficients and the p-

values (given in parentheses). Pairwise plots in Figure 

4 also indicate this relationship between the variables. 
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Figure 4: Pairs plot of the scaled morphometric 

measures. 

 

As in the unscaled case, we apply three ver-

sions of PCA on the scaled variables. The corre-

sponding factor loadings are presented in Table 4. For 

the purposes of interpretability of the PCs based on 

the scaled variables, denoted sPCs, we choose the 

third type, i.e., PCA on the variables transformed (to 

have the same unit). Looking at the table, we see that 

sPC1 is a measure of shape, sPC2 is of scaled length, 

while sPC3 is of scaled size. Observe that the scaling 

alters the order of importance of the variables, that is, 

before scaling, the order of variation in the variables 

were size > shape > length, while after scaling the 

order is shape > length > size. Running linear models 

with scaled D being the response and others being the 

predictors, one at a time, we see that each variable 

except spine category and condition is significant. 

We transform the PC values as_____________ 

3 |)1min(|110:1 sPCsPCtsPC ++= ,________ 

3 |)2min(|210:2 sPCsPCtsPC ++= , and ___ 

3 |)3min(|310:3 sPCsPCtsPC ++= . Notice 

that to avoid negative PC values we add the absolute 

value of the minimum of each score and to reduce the 

positive skewness we add 10 to each score and then 

take the cube root.  For the_ scatter plots of the metric 

distances of scaled spines versus transformed sPC1, 

sPC2, and sPC3, see Figure 5.  Similar to the un-

scaled case, we start with the full model with all pos-

sible interactions, and perform the same model selec-

tion procedure. The resulting model is: 
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Figure 5: The scatter plots of the scaled metric dis-

tances versus transformed sPC1 sPC2, and sPC3. 

( ), , 1

0

, 2 , 3

s s T s s T s tsPC
ij i i ij

T s sPC T s sPC s
i ij i ij ij

D X

X X

µ α β β

γ δ ε

= + + + +

+ +
 

where 
s
ijD is the scaled distance for spine j of type i, 

1tsPC
ijX  is the transformed sPC1 score for spine j of 

type i, 2sPC
ijX  is the sPC2 score for spine j of type i,  

3sPC
ijX  is the sPC3 score for spine j of type i, sµ  is 

the overall mean, 
,T s

iα  is the effect of spine type 

level i, 0

sβ  is the overall slope for transformed sPC1 

score, 
,T s

iβ  is the slope of transformed sPC1 score 

for spine type i, ,T s
iγ is the slope of transformed sPC2 

score for spine type i, ,T s
iδ is the slope of transformed 

sPC3 score for spine type i, and 
s
ijε is the error term 

(assumed to be distributed as iid N(0,σ2). The adjusted 
2R value 0.76 for this model. Moreover, the residuals 

are not significantly non-normal (p= 0.3217 based on 

Shapiro-Wilk normality test) and not significantly 

autocorrelated (p= 0.0771 based on Durbin-Watson 

test). 

Therefore we observe that sPC1, spine type 

category, and interaction of spine type with all PCs 

are significant. That is, metric distances differ by 

shape and spine type category, and by length and size 

for each category. 

 

 

4 DISCUSSION AND CONCLUSIONS 

In this study, we used Large Deformation Dif-

feomorphic Metric Mapping (LDDMM) to generate 

metric distances to measure morphometric differences 

between dendrite spines of mice. We model the met-

ric distances with respect to various other mor-

phometric measures (such as volume, surface area, 

and length), condition (a genetic modification de-

signed to mimic a human neurological condition 

versus healthy mice), and spine types.  The disease 

condition does not significantly affect the metric 

distances in the presence of other morphometric 

measures and  the spine type. But this does not mean 

that metric distances do not significantly differ with 

respect to the condition of mice, but rather metric 

distances are highly correlated with the other mor-

phometric features, which ---when present in the 

model --- make the condition variable redundant.  

More precisely, morphometry of mice significantly 

differs due to the condition, but the variation in metric 

distances is mostly accounted for by the variation in 

other morphometric measures.  We have also ex-

plored the effects of scaling on the morphometric 



  

measures and their relation to metric distances. We 

demonstrate that metric distances are highly depend-

ent on the morphometry and types of dendrite spines; 

and scaling changes the importance and order of this 

dependence. Therefore, computing metric distances 

with LDDMM is a powerful tool in detecting mor-

phometric diffences between dendrite spines of vari-

ous size and shape.  However, to detect the differ-

ences due to the disease condition, we recommend a 

different set of analysis. Either, one could run a linear 

model with each morphometric variable (i.e., 

LDDMM metric distance, volume, surface area, and 

length) being the response, and condition and spine 

type being the predictor variables; or run a PCA on 

the morphometric variables and use each PC as the 

predictor with condition and spine being the response 

variables; or run MANOVA with all the morphomet-

ric variables being the response and condition and 

spine being the predictors.  
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5 TABLES 

 

 D V S L 
D 1.00 .70 (< .0001) .72 (< .0001) .64 (< .0001) 

V .70 1.00 .95 (< .0001) .66 (< .0001) 

S .72 .95 1.00 .80 (< .0001) 

L .64 .66 .80 1.00 

Table 1: Pearson’s correlation coefficients between the (continuous) unscaled numerical morphometric variables; 

metric distances, volume, surface area, and length, and the corresponding p-values in parentheses. 

 

 

 PCA on correlation of original 

variables 

PCA on covariance of origi-

nal variables 

PCA on covariance of trans-

formed variables 

 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 

V -.58 .56 .60 .94 .35 .00 -.18 -.33 .93 

S -.61 .19 -.77 .35 -.94 .00 -.58 -.72 -.37 

L -.54 -.81 .23 .00 .00 1.00 -.79 .61 .00 

Table 2: Factor loadings for original variables on the principal components resulting from the three types of PCA 

considered. The PCA we use in subsequent analysis is presented in bold face. 

 

 Scaled D Scaled V Scaled S Scaled L 

Scaled D 1.00 -.78 (< .0001)  -.76 (< .0001) .18 (.0001) 

Scaled V -.78 1.00 .94 (< .0001) -.13 (.0039) 

Scaled S -.75 .94 1.00 -.01 (.4522) 

Scaled L .18 -.13 -.01 1.00 

Table 3: Pearson’s correlation coefficients between the (continuous) scaled (i.e., scale-adjusted) numerical mor-

phometric variables; metric distances for scaled spines,  scaled volume, scaled surface area, and scaled length meas-

ures and the corresponding p-values in parentheses. 

 

 

 

 PCA on correlation of original 

variables 

PCA on covariance of origi-

nal variables 

PCA on covariance of 

transformed variables 

 sPC1 sPC2 sPC3 sPC1 sPC2 sPC3 sPC1 sPC2 sPC3 

Scaled V -.71 .00 .71 .78 .62 .00 -.40 .00 .92 

Scaled S -.70 .14 -.70 .62 -.78 .00 -.92 .00 -.39 

Scaled L .10 .99 .00 .00 .00 1.00 .00 1.00 .00 

Table 4: Factor loadings for scaled original variables versus the PCs resulting from the three types of PCA consid-

ered. The PCA we use in subsequent analysis is presented in bold face. 

 
 




