
GEOMETRIC INVARIANTS FOR CLASSIFICATION OF CORTICAL SULCI

Monica K. Hurdal∗, Juan B. Gutierrez, Christian Laing†, Aaron D. Kline, Deborah A. Smith

Florida State University, Department of Mathematics
Tallahassee, FL, USA 32306-4510
Email: mhurdal@math.fsu.edu

ABSTRACT
We have developed a computational method based on a fam-
ily of geometric measures for the purpose of classification and
identification of families of sulcal curves from human brain
surfaces. Topologically correct cortical surfaces of the hu-
man brain were extracted from magnetic resonance images.
Polygonal curves representing sulcal curves were then gener-
ated on each surface. Geometric measures including Gauss
integrals, moments and topological features were computed
for each curve to obtain a set of feature vectors in a high di-
mensional vector space. These feature were used to classify
the curves into sulcal and hemispheric classes. In our prelimi-
nary results, an automatic differentiation between sulcal paths
from the left or right hemispheres and individual sulcal curve
classification were achieved, indicating these measures may
have biological significance in neuroscientific data.

Index Terms— Geometric modeling, image shape analy-
sis, magnetic resonance imaging, topology, biomedical com-
puting

1. INTRODUCTION

Detecting similarities and differences in cortical features can
lead to characterization of differences in populations, in-
cluding detection of disease and aging-related changes. For
instance, one-year changes in MRI brain volumes in older
adults have been observed [1] as have gray matter losses in
Alzheimer’s disease [2]. Additionally, labeling cortical struc-
tures is critical for cartography and conveying information for
comparing individual subjects or populations. Increasingly
large sample sizes mandate the use of automated procedures
that are sensitive to relevant anatomical features.
In this paper we present results of an automated method

for computing geometric shape descriptors on polygonal
curves representing sulci of the human brain. These de-
scriptors or features provide a way to compare and measure
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similarity based on morphology. Using these descriptors,
we were able to classify sulcal curves into left and right
hemispheres, as well as distinguish the type of sulcal curve
(e.g. central sulcus, superior frontal sulcus). These results
indicate that the selected feature vectors represent promising
characteristics for automatically parcellating sulcal curves.

2. METHODS

We are interested in shape descriptors which are mathemati-
cal invariants, meaning they are quantities which remain un-
changed (i.e. invariant) under a given class of mathemati-
cal isometries. Invariants are extremely useful for classify-
ing mathematical objects because they usually reflect intrinsic
properties of the object of study. We generate piecewise linear
discretized representations of continuous surfaces and curves
and we present methods for computing these geometric shape
descriptors in the discrete setting.

2.1. MRI Data and Sulcal Curves

High resolution 1.5 Tesla, T1-weighted MRI brain scans
(0.86mm x 0.86mm x 1.00mm) from 15 subjects obtained
from a static force experiment were used [3]. FreeSurfer [4],
a freeware software package available to the neuroscience
community, was used to perform a typical MRI processing
pipeline including intensity corrections, skull and cerebel-
lum stripping, hemisphere separation and topological cortical
surface reconstruction of the gray matter/cerebrospinal fluid
interface (referred to as the gray matter (GM) surface). Sur-
faces produced using FreeSurfer have been used to report
results from a number of sensory and cognitive tasks, as well
as for comparing diseased and control populations [5, 6].
Gyral ridges and sulcal fundus beds, which anatomically

characterize the surface of the brain, can be efficiently cap-
tured using methods that involve curvature. A fundus bed
(which we call a sulcal curve) is a path along a sulcus that has
minimal negative curvature between two given points. Com-
putational geometry methods are available for computing the
principal curvatures of a discretized surface [7]. The sulcal
paths presented in the paper were constructed using Dijkstra’s
algorithm [8, 9] using the following curvature cost function
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for traveling from vertex vi to vj :
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where |eij | is the edge length between vertices vi and vj , κi

and κj are the maximal of the principal curvatures for vi and
vj , and κmax is the maximal of the absolute value of the prin-
cipal curvature for the surface.
Five sulci were traced on each cortical surface hemisphere

for each subject: the central, precentral, calcarine, superior
frontal and superior temporal sulci for a grand total of 150
sulci (15 subjects x 2 hemispheres x 5 sulci). A user identi-
fied a start and end point for each sulcus (which were verified
by an independent user to reduce variability) and dynamic
programming methods were used to automatically compute
the path of principal curvature between these two points. All
sulci were continuous with the exception of the precentral sul-
cus which is often separated into superior and inferior com-
ponents [10].

2.2. Shape Descriptors

Since cortical sulci are a set of space curves, the methodology
we propose is concerned with crossings seen in planar pro-
jections of curves. We propose the use of invariant geometric
shape descriptors which consist of topological measures such
as scaled Gauss integrals, thickness and ropelength, as well
as moment-based measures.

2.2.1. Scaled Gauss integrals

Scaled Gauss integrals are measures of the self entangle-
ment of curves in space and have proved to be useful in
biopolymer classification [11]. One of the Gauss integral
measures is the well known writhe number of a closed space
curve γ [12] and another is the average crossing number.
We computed a set of Gauss integral measures, up to third
order, given by I(1,2), I|1,2|, I(1,2)(3,4), I|1,2|(3,4), I(1,2)|3,4|,
I|1,2||3,4|, I(1,3)(2,4), I|1,3|(2,4), I(1,3)|2,4|, I|1,3||2,4|, I(1,4)(2,3),
I|1,4|(2,3), I(1,4)|2,3|, I|1,4||2,3|, I(1,2)(3,4)(5,6), I(1,2)(3,5)(4,6),
I(1,2)(3,6)(4,5), I(1,3)(2,4)(5,6), I(1,3)(2,5)(4,6), I(1,3)(2,6)(4,5),
I(1,4)(2,3)(5,6), as well as the arc length of the curve L, where

I|1,2|(γ) =
∑

0<i1<i2<|C|
|W (i1, i2)|,

I|1,3|(2,4)(γ) =
∑

0<i1<···<i4<|C|
|W (i1, i3)|W (i2, i4),

etc., with |C| equal to the total number of vertices in γ and

W (i1, i2) =
1
2π

∫ i1+1

i1

∫ i2+1

i2

w(t1, t2)dt2dt1,

w(t1, t2) =
[γ′(t1), γ(t1)− γ(t2), γ′(t2)]

|γ(t1)− γ(t2)|3 ,

for t1, t2 ∈ [0, 1] and the numerator of w(t1, t2) is the triple
scalar product.

2.2.2. Thickness and ropelength

Intuitively, any non-intersecting smooth curve can be thick-
ened into a smooth tube of constant radius and without self
intersections [13, 14]. If the curve is a straight line then there
is no upper bound, but for any other curve there is a maximal
radius where the tube is not smooth or it has self intersections.
This critical radius is the thickness of the curve, and is an in-
trinsic property of the curve. The thickness Δ of γ is defined
byΔ(γ) = min

1≤i≤|C|
ρG(vi) where

ρG(vi) = min
k �=|C|;i �=j �=k �=i

r(vi, vj , vk)

and r(vi, vj , vk) is the unique circle radius given by three
non-collinear vertices vi, vj , vk. The ropelength of γ is given
by L/Δ(γ) where L is the length of γ.

2.2.3. Moments

Moments can be used to discriminate space curves [15] and
moment invariants have also been reported as a meaningful
measure of brain structure [16]. Moments were calculated
using the force momentMpqr in R

3 of order p in x, q in y and
r in z which is given by

Mpqr =
|C|∑
i=1

xp
i y

q
i zr

i

δ(vi)∑
j=1

|eij |
2

μ,

where δ(vi) is the degree of vertex vi and μ is the mass per
unit of length of each edge.

2.3. Data mining and classification

A set of features comprised of Gauss integrals, moment-based
measures, thickness and ropelength were calculated for each
sulcus. Each sulcus was then included into a possible class,
such as a left hemisphere class or a calcarine sulcus class.
Classification scenarios were tested to determine if the feature
vectors were useful measures, resulting in a classification rate
and a measure of classification error. We performed principal
component analysis (PCA) and multiple discriminant analy-
sis (MDA) [17] on the classification scenarios. In addition,
we selected five widely used methods to define a discriminant
function and classify the data using 90% of it with (10-fold)
cross-validation [18, 19]. Cross-validation measures the per-
formance of the prediction system in a self-consistent way
by systematically leaving out a few sulci (about 10%) dur-
ing the training process and testing the trained prediction sys-
tem against those left-out sulci. This is repeated such that
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Table 1. Classification between left and right hemispheres us-
ing moment-based measures. MAE stands for Mean Absolute
Error. RAE stands for Relative Absolute Error.

Method % Correct MAE RAE

Naive Bayes 98% 0.0235 5%
Naive Bayes Simple 98% 0.0236 5%

LMT 99% 0.1594 32%
Classific. Via Regression 99% 0.0421 8%

Simple Logistic 99% 0.1897 38%

every sulcus in the dataset is left out at least once. Com-
pared to tests on independent sets, cross-validation has less
bias and better predictive and generalization power. The cal-
culation and application of all classifiers was done withWeka,
an open source collection of machine learning algorithms for
data mining [19].

3. RESULTS

We considered different feature vectors as the basis of sulcal
classification, including Gauss integral measures, moment-
based measures, and all features together. The sulcal curves
were separated into two classes: sulcal curves on the left
hemisphere and curves on the right hemisphere, giving 75
curves per class. Over 98% of the sulci were correctly clas-
sified. Table 1 gives a summary of the classification meth-
ods, percentage of correctly classified sulci and error mea-
sures. Attribute selection showed that over a set of 70 fea-
tures, moment-based measures gave the overall best perfor-
mance. Moment-based measures can be interpreted as provid-
ing information about the position of the curves in space. As a
result, these measures are able to discriminate between curves
located in the left and right hemispheres. Figure 1 shows PCA
analysis of the data. There is a clear cluster separation for
classes that belong to different hemispheres.
Scaled Gauss integrals proved to be an efficient set of

measures to discriminate a sulcus within a single class (e.g.
to discriminate between left calcarine sulci and right calcarine
sulci). Figure 2 shows the MDA projection of the data. The
performance with MDA indicates that it is possible to perform
one-class hemispherical discrimination using only Gauss in-
tegrals.

4. DISCUSSION

It was possible to discriminate with great efficiency the hemi-
sphere in which sulci were located. Moment-based measures
give good performance due to their ability to discriminate
position in space. Gauss integral measures were useful for
differentiating the hemispheric location of a single sulcus.
This promising result may indicate that Gauss integral invari-

Fig. 1. Projection using PCA. Differentiation between sulci
from the left and right hemispheres. Discrimination using
moment-based measures.

Fig. 2. Projection using MDA. Differentiation between sulci
from the left and right hemispheres. Discrimination using
Gauss integrals.
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ants are potentially useful measures for characterizing cortical
shape on a local, rather than global scale.
Since sulcal curves are close to planar, the Gauss integrals

are close to zero. Large cortical variations in position are
not captured by Gauss integrals since they are invariant un-
der translation and rotation. However, they may capture more
subtle local changes in shape such as those that occur within
the same sulcus on different hemispheres. Gauss integrals
have found biological significance in characterizing polygo-
nal curves such as proteins. It is worthwhile to consider the
possible application of these measures to neuroscientific data.
Gauss integrals are invariant under dilation, translation

and rotation, but they are not invariant under reflection.
Therefore, they could easily identify the hemisphere location
of a sulcus. Moment invariants are useful for characterizing
shape on a global scale. However, moment measures can be
problematic since small variations in position, e.g. a sub-
ject taking an MRI with the head slightly tilted, can cause
significant changes in the native moment magnitude. Thus,
moments and Gauss integrals must be used in conjunction in
order to obtain a reliable classification. The results presented
here demonstrate that it is possible to obtain a good discrim-
ination of sulcal paths using a family of geometric measures
comprised of Gauss integrals and moment-based measures.
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