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ABSTRACT
This paper presents new model—free fMRI methods based on independent component analysis. Commonly used
methods in analyzing fMRI data, such as the Student's t-test and cross correlation analysis, are model-based ap-
proaches. Although these methods are easy to implement and are effective in analyzing data with simple paradigms,
they are not applicable in situations in which pattern of neural response are complicated and when fMRI response
is unknown. In this paper we evaluate and compare three different neural algorithms for estimating spatial ICA on
fMRI data: the Infomax approach, the FastICA approach, and a new topographic ICA approach. A comparison of
these new methods with principal component analysis and cross correlation analysis is done in a systematic fMRI
study determining the spatial and temporal extent of task-related activation. Both topographic ICA and FastICA
outperform principal component analysis and Infomax neural network and standard correlation analysis when applied
to fMRI studies. The applicability of the new algorithms is demonstrated on experimental data.
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1. INTRODUCTION
Functional magnetic resonance imaging with high temporal and spatial resolution is a potential method to map rapid
and fine activation patterns of the human brain.15 According to both theoretical estimations and experimental
results,1'6'7 an activated signal variation appears very low on a clinical scanner. Thus, analysis methods are required
to find the response waveforms and associated activated regions. Generally, these methods can be divided into two
categories depending on whether or not they require prior knowledge about activation patterns: model-based and
model-free. To eliminate the bias and limitation of model-based analysis methods and to satisfy the demand to
analyze data with complicated experimental conditions, analysis methods that do not rely on any assumed model of
functional response are necessary. There are two kinds of model-free methods. The first method, principal component
analysis (PCA)8'9 or independent component analysis (ICA) ,1O11 transforms original data into high-dimensional
vector space to separate functional response and various noise sources from each other. The major problem of PCA is
that it only diminishes second-order dependency between each component. ICA can reduce higher order dependency,
but is still limited by stationary distribution and the linear mixture assumption.1'
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The second method, fuzzy clustering analysis (FCA)'2'13 or self-organizing map (SOM),'4"5 attempts to classify
time signals of the brain into several patterns according to temporal similarity among these signals. The problems
with both methods are that they have difficulty in finding the activation of a small area, they promote sensitivity to
noise and initial values, and they have long processing time.

Among the data—driven techniques, ICA has been shown to provide a powerful method for the exploratory
analysis of fMRI data.'6'1' ICA is an information theoretic approach which enables to recover underlying signals, or
independent components (ICs) from linear data mixtures. Therefore, it is an excellent method to be applied for the
spatial localization and temporal characterization of sources of BOLD activation. ICA can be applied to fMIU both
temporal'7 or spatial.1' Spatial ICA has dominated so far in fMRI applications because the spatial dimension is
much larger than the temporal dimension in fMRI. However, recent literature results'8 have suggested that temporal
and spatial ICA yield similar results for experiments where two predictable task—related components are present.

2. THE ICA ALGORITHMS
Functional organization of the brain is based on two complementary principles, localization and connectionism.
Localization means that each visual function is performed mainly by a small set of the cortex. Connectionism, on
the other hand, expresses that the brain regions involved in a certain visual cortex function are widely distributed,
and thus the brain activity necessary to perform a given task may be the functional integration of activity in distinct
brain systems. It is important to stress out that in neurobiology the term "connectionism" is used in a different
sense that that used in the neural network terminology.

According to these principles, it was suggested for the first time in11 that the multifocal brain areas activated
by performance of a visual task should be unrelated to the brain areas whose signals are affected by artifacts of
physiological nature, head movements, or scanner noise related to fMRI experiments. Every single above mentioned
process can be described by one or more spatially—independent components, each associated with a single time
course of a voxel and a component map. It is assumed that the component maps, each described by a spatial
distribution of fixed values, is representing overlapping, multifocal brain area of statistically dependent fMRI signals.
This aspect is visualized in Figure 1. In addition, it is considered that the distributions of the component maps are
spatially independent, and in this sense uniquely specified. Mathematically, this means that if pk(Ck) specifies the
probability distribution of the voxel values Ck in the kth component map, then the joint probability distribution of
all rt components yields:

P(Cl,"Cm)H=iPk(Ck) (1)

where each of the component maps Ck i5 a vector (Ck, i = 1, 2, . . . , M), where M gives the number of voxels.
Independency is a stronger condition than uncorrelatedness.'9 It was shown in11 that these maps are indepedent if
the active voxels in the maps are sparse and mostly nonoverlapping. Additionally it is assumed that the observed
fMRI signals are the superposition of the individual component processes at each voxel. Based on these assumptions,
ICA can be applied to fMRI time—series to spatially localize and temporally characterize the sources of BOLD
activation.

Different methods for performing ICA decompositions have been proposed which employ different objective func-
tions together with different criteria of optimization of these functions, and it is assumed that they can produce
different results.

The aim of this paper is to evaluate and compare three different neural algorithms for estimating spatial ICA on
fMRI data: the Infomax approach,2° the FastICA approach,2' and a new topographic ICA approach.22

2.1. MODELS Of SPATIAL ICA IN fMRI
In the following we will assume that X is a T x M matrix of observed voxel time courses (fMRI) signal data matrix),
C is the N x M random matrix of component map values, and A is a T x N mixing matrix containing in its columns
the associated time—courses of the N components. Furthermore, T corresponds to the number of scans, and M is
the number of voxels included in the analysis.

The spatial ICA (sICA) problem is given by the following linear combination model for the data:

Proc. of SPIE Vol. 5102     157



Component

Maps

Measured

fIvIRI Signals

Figure 1. Visualization of ICA applied to fMRI data. (a) Scheme of fMRI data decomposed into independent
components, and (b) fMRI data as a mixture of independent components where the mixing matrix M specifies the
relative contribution of each component at each time point."

X=AC (2)

where no assumptions are made about the mixing matrix A and the rows C1 being mutually statistically independent.

Then the ICA decomposition of X can be defined as an invertible transformation:

C=wx
where W is an unmixing matrix providing a linear decomposition of data. A is the pseudoinverse of W.

2.2. INFOMAX APPROACH

(3)

The Infomax was the first ICA application to fMRI time—series, and is based on minimization of mutual informa-
tion.20 The algorithmic description is given in the following. A self—organizing learning algorithm is described that
maximizes the information transferred in a network of linear units. It was shown that the neural network is able to
perform ICA estimation and that the nonlinearities in the transfer function introduce higher order statistics. The
network architecture is shown in Figure 2.

The network has N input and output neurons, and a N x N weight matrix W connecting the input layer neurons
with the output layer neurons. Assuming sigmoidal units, the neurons outputs are given by

where g is a logistic function g(uj) = 1

1+exp —Ui

y=g(C), with C=WX (4)

The idea of this algorithm is to find an optimal weight matrix W such that the output entropy H(y) is maximized.
The algorithm initializes W to the identity matrix I. The elements of W are updated based on the following rule

H(y)W - -ij( 9W
)WTW = -ij(I + f(C)CT)W (5)

where is the learning rate. The term WTW in equation (5) was first proposed in,23 and it avoids matrix inversions
and speeds convergence. The vector—function f has the elements
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Figure 2. Feedforward neural network for ICA.2°

f (ui) = lng(ui) = (1 — 2y)

During training, the learning rate is reduced gradually until the weight matrix W stops changing appreciably.

Equation (5) represents the so-called "Infomax" algorithm.

(6)

The choice of a nonlinearity is determined by the application type. In the context of fMRI, where small activity
foci in a large volume are usually expected, the distribution of the target components is assumed to be super—gaussian
or sparse. Therefore, a sigmoidal function gQ is relevant for such an application.

2.3. FastiCA APPROACH
The FastICA approach is based on minimization of mutual information but using the negentropy as a measure of
non—gaussianity. This approach is both symmetric and hierarchical, and is based on Fixed—Point iterations. To
apply this ICA approach, the data must be preprocessed by centering and whitening. We first look at the one—unit
version. The unit can be an artificial neuron having a weight vector w that is updated based on a learning algorithm.
It finds a vector w such that the projection wTx maximizes nongaussianity. As a measure the approximation of the
negentropy can be choosen.24

The Fast ICA algorithm is a fixed—point iteration scheme for finding a maximum of the nongaussianity of wTx.
Let g be the derivative of the non—quadratic function. Choices of such nonquadratic functions are either g(u) =
;: log cosh a1u or g(u) = — exp —u2/2 where 1 < ai � 2 is a suitable constant.

To estimate several independent components, the one-unit Fast ICA is employed using several units (neurons)
with weight vectors w, . . . , w,. To prevent different vectors from converging to the same maxima the outputs
w?x, . . . , have to be decorrelated after every iteration. For a whitened x this is equivalent to orthogonalization.
There are several known methods to achieve this.24 Here, only the symmetric decorrelation is considered. It has
several advantages over other methods: (1) the weight vectors w are estimated in parallel and not one by one and
(2) it doesn't perpetuate the errors from one weight vectors to the next.

The symmetric orthogonalization of W can be accomplished by involving matrix square roots

W = (WWT)i!W (7)

Numerical simplifications of the above equation are given in.24

An algorithmic description of the Fast ICA algorithm for estimating several independent components is given
below:
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1. Preprocessing: Whiten the data to give x.

2. Number of independent components: Choose m the number of independent components to estimate.

3. Initialization: Initialize each weight vector w2, i = 1, . . . , m of unit norm with random numbers.

4. Adaptation: Compute the change of every weight vector w, i = 1, . . . , m accordingly to

Wi f— E{xg(wx)} — E{g'(wTx)}wj (8)

where g is defined as g(u) = tanha1u, with 1 < a1 < 2 being a constant.

5. Symmmetric orthogonalization: Do a symmetric othogonalization of the matrix W = (wi , . . . , Wm)T by

w — (WWT)jW (9)

6. Continuation: If the weight matrix W is not converged, go back to step 4.

The main difference between Infomax and FastICA lies in the updating rule: It is adaptive for the Infomax
depending on a learning rate, and it is nonadaptive for FastICA.

2.4. TOPOGRAPHIC ICA APPROACH
Topographic ICA represents a generative model which combines topographic mapping with ICA. As in all topographic
mappings, the distance in the representation space given by the topographic grid is related to the distance of the
represented components. This distance is defined for topographic ICA by the mutual information implied by higher—
order correlations.22 Thus, a natural distance measure is given in the context of ICA. Traditional topographic
mapping methods define distance either based on the Euclidian distance or correlation. The ICA distance measure
enables the definition of a topography even if the Euclidian distances are all equal as it is the case with an orthogonal
vector space.

Figure 3. Topographic ICA model.22 The variance generated variables u are randomly generated, and mixed
linearly inside their topographic neighborhoods. This forms the input to nonlinearity q5, thus giving the local variance
0-i . Components s are generated with variances ci . The observed variables are x are obtained as with standard
ICA from the linear mixture of the components s.

In the generative model described in22 and shown in Figure 3, are independent given their variances cry.
Dependence among the is enforced by the variance dependence. Obeying the principle of topography, the variances
of only neighboring components are positively correlated, while the others are indepedent. By using a neighborhood
function h(i, j), the variance ci is given by:

= ( h(i,
k)Uk)

(10)

u are the higher order independent components used to generate the variances, while çz5 describes some nonlinearity.
The neighborhood function h(i, j)can be either a two—dimensional grid or have a ring—like structure. The components
s are given by the following relationship:
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Si = ZiOi (11)

where z is a random variable having the same distribution as 5 while a is fixed to unity. u and z are mutually
independent.

The most important properties of the topographic ICA are: (1) all the components are uncorrelated, (2) compo-
nents far from each other are independet, (3) neighboring components have positively correlated energies s and
The classic ICA results from the topographic ICA by setting h(i, j) = S23.

The learning rule is based on the maximization of the likelihood. First, it is assumed that the data is preprocessed
by whitening and that the estimates of the components are uncorrelated.

The update rule for the weight vector w2 is derived from a gradient algorithm:

Lw cx E{x(wTx)rj)} (12)

where

r = h(i,k)g(k(k,j)(wx)2) (13)

The function g is the derivative of G = —ai + i9i . After every iteration, the vectors w in equation (12) are
normalized to unit variance and orthogonalized. This equation represents a modulated learning rule, where the
learning term is modulated by the term r.

It's useful to point out some differences between topographic ICA and other topographic mappings: (1) topo-
graphic ICA finds a decomposition into independent components, while topographic mappings find cluster centers
or codevectors, and (2) the similarity of two vectors in topograpic ICA is based on higher—order correlations and not
defined by an Euclidian distance or dot—product. However, if the data is prewhitened, the dot—product in the data
space is equivalent to to correlation in the original space.22

3. RESULTS AND DISCUSSION
FMRI data were recorded from six subjects (3 female, 3 male, age 20-37) performing a visual (welcher?) task. In five
subjects, five slices with 100 images (TR/TE=3000/6Omsec) were acquired with five periods of rest and five photic
simulation periods with rest. Simulation and rest periods comprised 10 repetitions each, i.e. 30s. In one subject
eight slices with 64 images (TR/TE=4000/66msec) were obtained starting with a period of rest lasting 10 repetitions
(i.e. 40s) followed by three periods of stimulation alternating with periods of rest comprising 9 repetitions each, i.e.
36 s. Resolution was 3 x 3 x 4 mm. The slices were oriented parallel to the calcarine fissure. Photic stimulation was
performed using an 8 Hz alternating checkerboard stimulus with a central fixation point and a dark background with
a central fixation point during the control periods. The first scan was discarded for remaining saturation effects.
Motion artifacts were compensated by automatic image alignment (AIR,25).

3.1. ESTIMATION OF THE ICA MODEL
To decide to what extent spatial ICA of fMRI time—series depends on the employed algorithm, we have first to look
at the optimal number of principal components selected by PCA and used in the ICA decomposition. ICA is a
generalization of PCA. In case no ICA is performed, then the number of independent components equals zero, and
this means there is no PCA decomposition performed.

Therefore, it is significant to find a fixed number of ICs that can theoretically predict new observations in same
conditions, assuming the basic ICA model actually holds. To do so, we compared the three proposed algorithms,
and additionally PCA for 8, 16, and 36 components in terms of: (1) the component time course found by each of the
four techniques most closely matching the visual task reference function, (2) the normalized quantization error, and
(3) the necessary simulation time.

The obtained results are plotted in Figure 4. We distinguish between preprocessed data (whitening and sphering)
and unprocessed data. In the following we will give the set parameters. For PCA, no parameters had to be set.
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For Infomax we choose: (1) = 106, and (2) iO as the maximal number of iterations. For FastICA we choose:
(1) = 106, (2) iO as the maximal number of iterations, and (3) the nonlinearity g(u) = tanhu. And last, for
topographic ICA we set: (1) stop criterium is fuilfihled if the synaptic weights difference between two consecutive
iterations is less than iO x Number of IC, (2) the function g(u) = u, and (3) iO is the maximal number of
iterations.

0.64
0.62

0.6
0.58
0.56
0.54
0.52

0.64
0.62

0.6
0.58
0.56
0.54
0.52

I 234

I 2 3 4

L

I 234
Algorithms

I 234
4

x 10

4
x 10

I 234
Algorithms

I 2 3 4

I 2 3 4

I

-.-

.

+
I=I 234

Algorithms
I 234

Algorithms

Figure 4. Estimation results for the optimal independent components for the four techniques for normalized and
unnormalized data, and considering 40 runs. The techniques 1 to 4 are: PCA, Infomax, FastICA, and topographic
ICA. The plots show the correlation coefficients between the found CTR components to the given task reference
function, and the normalized quantization error. The number of independent components was equal to 8 for the first
row, equal to 16 for the second, and equal to 32 for then last row.

The necessary simulation time for the four mentioned techniques in terms of the selected number of components
is given in Figure 5.

A close scrutinity at both Figures 4 and 5 reveals that the best fixed number of ICs is at 8 and 16, more than
this number will result in encoding noise. And also, the quantization error indicates that 8 and 16 ICs encode most
of the real (non—artifact) components. It can be also seen that almost all ICA techniques operate more reliable at a
lower number of components. The following plots and evaluations are based on this found optimal number of ICs.
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Figure 5. Necessary simulation time for the four techniques, PCA, Infomax, FastICA, and topographic ICA, in
terms of selected components.

3.2. CHARACTERIZATION OF TASK-RELATED EFFECTS
For all subjects, and runs, unique task—related activation maps and associated time—courses were obtained by all
three ICA techniques.

Figure 6 shows for 8 ICs the component time course most closely associated with the visual task for all three
ICA techniques and PCA. The best results are achieved by FastICA and topographic ICA, yielding almost identical
reference functions, and a correlation coefficient of r = 0.92 between those two. PCA has a much lower correlation
and also Infomax.

However, the activation maps do not reveal much of a difference between the ICA techniques. Figure 7 shows the
activation maps as a comparison of results obtained by the four techniques.

The found results in Figure 7 motivate a closer look at the activation maps of each technique such that a
more general statement regarding the differentiation capabilities of each technique is possible. Two representation
modalities are choosen: one based on the so—called z—statistics, and the other based on the correlation value. Figure
8 shows the activation maps for each of the four techniques based on the z—statistics. The lighter a pixel is, the more
correlated is the corresponding voxel to the CTR. The FastICA and TOPOICA activation maps appear very similar
to each other. FastICA and topographic ICA show additional active voxels which appear based on the intensity to
be real active voxels and not noise.

Figure 9 shows the activation map based on correlation representation. The results differ significantly from those
of the activation z—maps.

4. CONCLUSION
In the present paper, we have experimentally compared two standard ICA algorithms already adopted in the fMJU
literature with a new algorithm, the topographic ICA. The goal of the paper was to determine the robustness and
reliability of extracting task—related activation maps and time—courses from fMRI data sets. The success of ICA
methods is based on the condition that the spatial distribution of brain areas activated by task performance must
be spatially independent of the distributions of areas affected by artifacts.

It has been shown that both topographic ICA and FastICA outperform in terms of found component time course,
quantization error, and activartion maps principal component analysis and Infomax neural network when applied to
fMRI studies. The applicability of the new algorithms is demonstrated on experimental data.
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Figure 6. Computed reference functions for the four techniques, PCA, Infomax, FastICA, and topographic ICA,
for 16 ICs. The found correlation coefficients are: r = 0.69 for PCA, r = 0.85 for Infomax, r = 0.94 for FastICA,
and r = 0.85 for topographic ICA.
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PCA versus Infomax PCA versus FastiCA PCA versus TopolCA

Figure 7. Comparison of the results for the four techniques, PCA, Infomax, FastICA, and topographic ICA. The
shown activation maps show only the pairwise differences. The darker pixels show active voxels for the first technique,
while the lighter pixels show the active voxels for the second technique.

Infomax versus FastiCA Infomax versus TopolCA FastiCA versus TopolCA
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Figure 8. Activation z—maps for the four techniques, PCA, Infomax, FastICA, and topographic ICA. The threshold
for an active pixel was set at Izi > 2. The maximum Izi—values for each technique are: 9.0 (PCA), 9.9 (Infomax),
9.2 (FastiCA), and 8.6 (topographic ICA).

Figure 9. Activation maps based on correlation for the four techniques, PCA, Infomax, FastICA, and topographic
ICA. A voxel is considered active by correlation if r � 0.47. The maximal correlation coefficient r obtained by each
of the four techniques is: 0.83 (PCA), 0.88 (Infomax), 0.91 (FastiCA), and 0.94 (topographic ICA).
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