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ABSTRACT

Conventional model-based or statistical analysis methods for functional MRI (fMRI) are easy to implement, and
are effective in analyzing data with simple paradigms. However, they are not applicable in situations in which
patterns of neural response are complicated and when fMRI response is unknown. In this paper the Gath-Geva
algorithm is adapted and rigorously studied for analyzing fMRI data. The algorithm supports spatial connectivity
aiding in the identification of activation sites in functional brain imaging. A comparison of this new method
with the fuzzy n—means algorithm, Kohonen’s self-organizing map, fuzzy n—means algorithm with unsupervised
initialization, minimal free energy vector quantizer and the ”neural gas” network is done in a systematic fMRI
study showing comparative quantitative evaluations. The most important findings in this paper are: (1) the
Gath-Geva algorithms outperforms for a large number of codebook vectors all other clustering methods in
terms of detecting small activation areas, and (2) for a smaller number of codebook vectors the fuzzy n—-means
with unsupervised initialization outperforms all other techniques. The applicability of the new algorithm is
demonstrated on experimental data.

Keywords: Gath-Geva algorithm, fuzzy n—means algorithm, minimal free energy vector quantization, ”neural
gas” network, self-organizing map, fMRI

1. INTRODUCTION

Functional magnetic resonance imaging with high temporal and spatial resolution represents a powerful technique
for visualizing rapid and fine activation patterns of the human brain.! As is known from both theoretical
estimations and experimental results,* %7 an activated signal variation appears very low on a clinical scanner.
This motivates the application of analysis methods to determine the response waveforms and associated acti-
vated regions. Generally, these techniques can be divided into two groups: Model-based techniques require prior
knowledge about activation patterns, whereas model-free techniques do not. However, model-based analysis
methods impose some limitations on data analysis under complicated experimental conditions. Therefore, anal-
ysis methods that do not rely on any assumed model of functional response are considered more powerful and
relevant. There are two kinds of model-free methods. The first method, principal component analysis (PCA)%?
or independent component analysis (ICA),'% 1 transforms original data into high-dimensional vector space to
separate functional response and various noise sources from each other.
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The second method, fuzzy clustering analysis or self-organizing map, attempts to classify time
signals of the brain into several patterns according to temporal similarity among these signals.

In this paper, we propose to employ the Gath—Geva algorithm to increase the analysis power without sacrifying
efficiency. In a systematic manner, we will compare and evaluate the results obtained based on this new approach
with the traditional Kohonen’s self-organizing map (SOM), the fuzzy n—means algorithms, the ”neural gas”
network, the fuzzy n—means algorithm with unsupervised initialization, and with the minimal free energy vector
quantization (VQ).?

2. THE CLUSTERING ALGORITHMS

Functional organization of the brain is based on two complementary principles, localization and connectionism.
Localization means that each visual function is performed mainly by a small set of the cortex. Connectionism, on
the other hand, expresses that the brain regions involved in a certain visual cortex function are widely distributed,
and thus the brain activity necessary to perform a given task may be the functional integration of activity in
distinct brain systems. It is important to stress out that in neurobiology the term ”connectionism” is used in a
different sense that that used in the neural network terminology.

Cluster analysis groups image pixels together based on the similarity of their intensity profile in time. In the
clustering process, a time course with n points is represented by one point in an n—dimensional Euclidean space
which is subsequently partitioned into clusters based on the proximity of the input data.

2.1. FUZZY CLUSTERING ALGORITHMS

Traditional statistical classifiers assume that the pdf for each class is known or must somehow be estimated.
Another problem is posed by the fact that sometimes clusters are not compact but shell-shaped. A solution to
this problem is given by fuzzy clustering algorithms, a new classification paradigm intensively studied during
the past three decades. The main difference between traditional statistical classification techniques and fuzzy
clustering techniques is that in the fuzzy approaches an input vector belongs simultaneously to more than one
cluster, while in statistical approaches it belongs exclusively to only one cluster.

Usually, clustering techniques are based on the optimization of a cost or objective function J. This predefined
measure J is a function of the input data and of an unknown parameter vector set L. Throughout this chapter,
we will assume that the number of clusters n is predefined and fixed.

A successful classification is based on estimating the parameter L such that the cluster structure of the input
data is as good as possible determined. It is evident that this parameter depends on the cluster’s geometry.
Compact clusters are pretty well described by a set of n points L; € L where each point describes such a cluster.
Spherical clusters have two distinct parameters describing the center and the radius of the cluster. Thus the
parameter vector set L is replaced by two new parameter vector sets, V describing the centers of the clusters,
and R describing the radii of the clusters.

In the following, we will review the most important fuzzy clustering techniques, and show their relationship
to nonfuzzy approaches.

2.1.1. FUZZY n—~-MEANS ALGORITHM
We consider here compact clusters completely described by a point representative L;.
Let X = {x1,...,X,} define the data set.

The following assumptions are made:

e X has a cluster substructure described by the fuzzy partition P = {A;,..., A, }.

e 1 is the number of known subclusters in X.
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In order to monitor the convergence of the algorithm, the n x p partition matrix Q? is introduced to describe
each fuzzy partition P* at the ith iteration and is used to determine the distance between two fuzzy partitions.
The matrix Q' is defined as

Q' =U at iteration i (1)

The termination criterion for iteration m is given by

d(P™, P =]1Q" - QM| <e (2)

where € defines the admissible error and || - || is any vector norm.

An algorithmic description of the fuzzy n—means algorithm is given below:

1. Initialization: Choose the number n of subclusters in X and the termination criterion e. P! is selected
as a random fuzzy partition of X having n atoms. Determine Q!, the matrix representation of P!,

2. Adaptation, part I: Determine the cluster prototypes L;,i = 1,...,n using

T
iTp Zu?jxﬂ' (3)
> ug; i=t

j=1

3. Adaptation, part II: Determine a new fuzzy partition P? of X using the following rules:

1
=2 =g ——, Vl<i<m 1<j<p (4)
E (x],
k=1 (xijk)
and
Ij;«é®:>uij:0,W€Ij (5)

and arbitrarily assign ) wu;; = L.
i€l

Determine Q?, the matrix representation of the fuzzy partition P2.

4. Continuation: If the difference between two successive partitions is smaller than a predefined threshold
[|Q! — Q?|| < e, then stop. Else set Pt = P2 Q! = Q? and go to step 2.

2.1.2. THE GATH-GEVA ALGORITHM

A major problem arises when fuzzy clustering is performed in real-world tasks: the necessary cluster number,
their locations, shapes and densities are usually not known beforehand, and thus a cluster validity criterion has
to be employed to determine the optimal number of clusters.

To allow the detection of cluster shapes ranging from spherical to ellipsoidal clusters, different metrics have
to be used. Usually, an adaptive metric is used. We define a distance metric d(x;,L;) from the data point x; to
the cluster prototype L; as

d*(xj,L;) = (x; — L) "Mi(x; — Ly) (6)

where M; is a symmetric and positive definite shape matrix and adapts to the clusters’ shape variations. For
the fuzzy n—means algorithm we have M = L.
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For hyperellipsoidal clusters, as well as in the presence of variable cluster densities and unequal number
of data points in each cluster, an ”exponential” distance measure, d?(x;,L;), based on maximum likelihood
estimation is defined. This distance is used to determine the posterior probability h(i|x;) which represents the
probability of selecting the ith cluster given the jth feature vector:

— l/dz(xjaLi)
Y ohe1 1/d2(x;,Ly,)

h(ilx;) (7)

and the exponential distance is given by
M| (LM, (L) /-
dz(xjaLi) - %e[(xj Li)" M (x;—Li)/2] (8)
(3

where p; is the a priori probability of selecting the ith cluster and is given by:

P, =

S

> hilx;) 9)

j=1

and the shape matrix M; is given by

>oioy hlilx;)(xj — Li)(x; — L) "
> hlilx;)

This algorithm seeks due to this exponential distance an optimum in a narrow local region. Its major advantage
is obtaining good partition results in cases of unequally variable features and densities but only when the starting
cluster prototypes are properly chosen.

M; =

(10)

Thus it’s wise to use a two—step classification strategy: in a first step, we have to perform an unsupervised
search of cluster prototypes based on the fuzzy n—means algorithm, and in the second step the optimal fuzzy
partition is being carried out with the fuzzy maximum likelihood estimation.

2.2. KOHONEN’S SELF-ORGANIZING MAP

Kohonen’s self-organizing map generates nodes on a two—dimensional lattice in which the distribution of these
nodes corresponds to the proximity of their associated node patterns in the signal intensity space. The benefits
of this clustering technique are: (1) if started with an adequate number of neurons, it can find distinctive features
in the data even if they are less predominant, and (2) the emerging node patterns are ordered according to their
proximity properties in the data space. This topology—preserving technique enables the forming of superclusters
by fusing nodes, and thus provides a way to visualize high—dimensional data sets. Its advantages in analyzing
fMRI data were demonstrated in.'6

2.3. MINIMAL FREE ENERGY VECTOR QUANTIZATION

Another proven tool for the analysis of fMRI time-series is given by a clustering technique, the so—called minimal
free energy vector quantization.'® This clustering procedure identifies groups of pixels sharing similar properties
of signal dynamics, and thus enables the interpretation of the physiological part of the experiment. The main
differences between SOM and minimal free energy vector quantization were in'® excellent pointed out: (1) the
hierarchical and multiresolution aspect of data analysis, (2) monitoring based on different control parameters
(free energy, entropy) facilitates straightforward cluster splitting, and (3) the learning rule based on a stochastic
gradient descent on an explicitely given error function.
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2.4. ’NEURAL GAS” NETWORK

The "neural-gas” algorithm'® is an efficient approach which, applied to the task of vector quantization, (1)
converges quickly to low distortion errors, (2) reaches a distortion error E lower than that from Kohonen’s
feature map, and (3) at the same time obeys a gradient descent on an energy surface.

Instead of using the distance ||x — w;|| or of using the arrangement of the ||w;|| within an external lattice, it
utilizes a neighborhood-ranking of the reference vectors w; for the given data vector x. The adaptation of the
reference vectors is given by

Aw; = ee FWWilN(x —wy) i=1,---,N (11)
The step size € € [0,1] describes the overall extent of the modification and k; is the number of the closest
neighbors of the reference vector w;i. A is a characteristic decay constant.

In'® was shown that the average change of the reference vectors corresponds to an overdamped motion of
particles in a potential that is given by the negative data point density. Superimposed on the gradient of this
potential is a ”force”, which points toward the direction of the space where the particle density is low. This
"force” is the result of a repulsive coupling between the particles (reference vectors). In its form it resembles
an entropic force and tends to homogeneously distribute the particles (reference vectors) over the input space,
like in case of a diffusing gas. This suggests the name for the ”"neural-gas” algorithm. It’s interesting also to
mention that the reference vectors change their locations slowly but permanently and, therefore, pointers that
are neighboring at an early stage of the adaptation procedure might not be neighboring anymore at a more
advanced stage. Connections that have not been refreshed for a while die out and are removed.

Another important feature of the presented algorithm compared to Kohonen algorithm is that it doesn’t
require a prespecified graph (network). In addition, it can produce topologically preserving maps, which is only
possible if the topological structure of the graph matches the topological structure of the data manifold. In cases,
however, where it is not possible to a priori determine an appropriate graph, for example, in cases where the
topological structure of the data manifold is not known a priori or is too complicated to be specified, Kohonen’s
algorithm necessarily fails in providing perfectly topology preserving maps.

Applied to fMRI, it was shown in'? that this approach is independent of the stimulation paradigm.

3. RESULTS AND DISCUSSION

FMRI data were recorded from six subjects (3 female, 3 male, age 20-37) performing a visual task. In five
subjects, five slices with 100 images (TR/TE=3000/60msec) were acquired with five periods of rest and five photic
simulation periods with rest. Simulation and rest periods comprised 10 repetitions each, i.e. 30s. Resolution
was 3 X 3 x 4 mm. The slices were oriented parallel to the calcarine fissure. Photic stimulation was performed
using an 8 Hz alternating checkerboard stimulus with a central fixation point and a dark background with a
central fixation point during the control periods.'® The first scan was discarded for remaining saturation effects.
Motion artifacts were compensated by automatic image alignment (AIR,?°).

The clustering results were evaluated by (1) task-related activation maps, (2) associated time-courses and
(3) ROC curves. Cluster assignment maps represent cluster membership maps obtained based on a minimal
distance criterion in the pixel time course space. For the fMRI data, a comparative quantitative evaluation
among the six clustering techniques, SOM, "neural gas” (NG) network, fuzzy n—means algorithm (FVQ), Gath—
Geva algorithm (GGA), fuzzy n—means with unsupervised initialization (KVQ), and minimal free energy (MFE)
VQ, was performed.

3.1. ESTIMATION OF THE CLUSTERING MODEL

To decide to what extent clustering techniques of fMRI time—series depend on the employed algorithm, we have
first to look at the optimal number of code vectors determined by each algorithm.

In the following we will give the set parameters. For SOM we choose: (1) an one—dimensional lattice, and (2)
the maximal number of itera tions. For "neural gas” network we choose: (1) the learning parameters e¢; = 0.5
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and ey = 0.005, and (2) the lattice parameters A; equals half the number of classes and Ay = 0.01 and (3)
the maximal number of iterations equals 1000. For the Gath—Geva algorithm and the other fuzzy algorithms,
we choose the fuzzy factor=1.05, and the maximal number of iterations equals 120. And last, for minimal free
energy VQ we set: (1) neurons’ initialization with principal components, (2) learning parameter pfine = 0.01
and updating based on a linear annealing scheme, and (3) the maximal number of iterations equals 100.

Therefore, it is significant to find a fixed number of CVs that can theoretically predict new observations
in same conditions, assuming the basic ICA model actually holds. To do so, we compared the six proposed
algorithms for 8, 9, and 16 components in terms of ROC analysis using correlation map with a chosen threshold
of 0.4 and 0.6.

The obtained results are plotted in Figures 1 and 2. The Gath—Geva algorithms outperforms for CV=16
and both chosen thresholds all other clustering methods. For CV=8,9 the fuzzy n—means with unsupervised
initialization (KVQ) outperforms all other techniques.
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Figure 1. Results of the comparison between minimal free energy VQ (MFE), Kohonen’s map (SOM), fuzzy n—means
algorithm (FVQ), Gath-Geva algorithm (GGA), fuzzy n-means with unsupervised initialization (KVQ), and ”neural gas”
(NG) algorithm on fMRI data. Spatial accuracy of cluster analysis maps is assessed by ROC analysis using correlation
map with a chosen threshold of 0.4. The number of chosen codebook vectors for all techniques is in (a): CV=8, (b):
CV=9, and (c): CV=16.

The clustering results for the new method is shown in Figures 3 and 4. Figure 3 illustrates the so—called
assignment maps where all the pixels belonging to a specific cluster are highlighted. The assignment between a
pixel and a specific cluster is given by the minimum distance between the pixel and a CV from the established
codebook. On the other hand, each CV shown in Figures 4 can be viewed as the cluster—specific weighted average
of all pixel time courses.

3.2. CHARACTERIZATION OF TASK-RELATED EFFECTS

For all subjects, and runs, unique task-related activation maps and associated time—courses were obtained by
all proposed techniques.

Figure 5 shows for 8, 9 and 16 CVs the component time course most closely associated with the visual task for
the Gath—Geva algorithm. It becomes evident that the more CVs we take into account, the higher the correlation
coefficient becomes.
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Figure 2. Results of the comparison between minimal free energy VQ (MFE), Kohonen’s map (SOM), fuzzy n-means
algorithm (FVQ), Gath-Geva algorithm (GGA), fuzzy n-means with unsupervised initialization (KVQ), and ”neural gas”
(NG) algorithm on fMRI data. Spatial accuracy of cluster analysis maps is assessed by ROC analysis using correlation
map with a chosen threshold of 0.6. The number of chosen codebook vectors for all techniques is in (a): CV=8, (b):
CV=9, and (c): CV=16.

4. CONCLUSION

In the present paper, we have experimentally compared proven clustering algorithms, the SOM, the minimal
free energy VQ, the ”"neural gas” network, the fuzzy n—-means algorithm, and the fuzzy n—means algorithm
with unsupervised initialization with a powerful fuzzy algorithm, the Gath—Geva algorithm. The goal of the
paper was to demonstrate that unsupervised clustering techniques represent an useful strategy for the analysis
of time—courses from fMRI data sets. The increasing cluster resolution proved to reveal extremely well the
structure of the data set. It has been shown that the Gath—Geva algorithms outperforms for a large number of
codebook vectors all other clustering methods. For a smaller number of codebook vectors the fuzzy n—means
with unsupervised initialization outperforms all other techniques. All unsupervised clustering techniques can be
employed to determine artifacts, and thus improve the experimental environment. The applicability of the new
algorithm is demonstrated on experimental data. The proposed techniques can be applied to various nonmedical
problems, such as remote sensing applications enabling a better understanding for example of the Earth Data
System.
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Figure 3. Cluster assignment maps for a visual stimulation fMRI experiment and obtained for 16 CVs for the Gath-Geva
algorithm.
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Figure 4. Associated codebook vectors for a visual stimulation fMRI experiment and obtained for 16 CVs for the Gath—
Geva algorithm: (a) cluster assignment maps and (b) associated ICs.
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Figure 5. Computed reference functions for the Gath—Geva algorithm for CVs=8,9 and 16. The found correlation
coefficients are: r = 0.82 for CV=8, r = 0.83 for CV=9, and r = 0.83 for CV=16.
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