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ABSTRACT

Exploratory data—driven methods such as unsupervised clustering and independent component analysis (ICA)
are considered to be hypothesis—generating procedures, and are complementary to the hypothesis—led statistical
inferential methods in functional magnetic resonance imaging (fMRI). Recently, a new paradigm in ICA emerged,
that of finding ”clusters” of dependent components. This striking philosophy found its implementation in two
new ICA algorithms: tree-dependent and topographic ICA. For fMRI, this represents the unifying paradigm of
combining two powerful exploratory data analysis methods, ICA and unsupervised clustering techniques. For the
fMRI data, a comparative quantitative evaluation between the two methods, tree—dependent and topographic
ICA was performed. The comparative results were evaluated by (1) task-related activation maps, (2) associated
time—courses and (3) ROC study. It can be seen that topographic ICA outperforms all other ICA methods
including tree—dependent ICA for 8 and 9 ICs. However, for 16 ICs topographic ICA is outperformed by
both FastICA and tree—dependent ICA (KGV) using as an approximation of the mutual information the kernel
generalized variance.
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1. INTRODUCTION

Functional magnetic resonance imaging with high temporal and spatial resolution represents a powerful technique
for visualizing rapid and fine activation patterns of the human brain.! As is known from both theoretical
estimations and experimental results,* %7 an activated signal variation appears very low on a clinical scanner.
This motivates the application of analysis methods to determine the response waveforms and associated activated
regions. Generally, these techniques can be divided into two groups: Model-based techniques require prior knowl-
edge about activation patterns, whereas model-free techniques do not. However, model-based analysis methods
impose some limitations on data analysis under complicated experimental conditions. Therefore, analysis meth-
ods that do not rely on any assumed model of functional response are considered more powerful and relevant. We
distinguish two groups of model-free methods: transformation-based and clustering-based. There are two kinds
of model-free methods. The first method, principal component analysis (PCA)®? or independent component
analysis (ICA),19°13 transforms original data into high-dimensional vector space to separate functional response
and various noise sources from each other.
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Among the data—driven techniques, ICA has been shown to provide a powerful method for the exploratory
analysis of fMRI data.'>13 ICA is an information theoretic approach which enables to recover underlying signals,
or independent components (ICs) from linear data mixtures. Therefore, it is an excellent method to be applied
for the spatial localization and temporal characterization of sources of BOLD activation. ICA can be applied
to fMRI both temporal'* or spatial.'’ Spatial ICA has dominated so far in fMRI applications because the
spatial dimension is much larger than the temporal dimension in fMRI. However, recent literature results have
suggested that temporal and spatial ICA yield similar results for experiments where two predictable task-related
components are present.

15-18 18-20

The second method, fuzzy clustering analysis or self-organizing map, attempts to classify time
signals of the brain into several patterns according to temporal similarity among these signals.

In this paper, we perform a detailed comparative study for fMRI among the tree—dependent and topographic
ICA with standard ICA techniques. In a systematic manner, we will compare and evaluate the results obtained
based on each technique and present the benefits associated with each paradigm.

2. EXPLORATORY DATA ANALYSIS METHODS

Functional organization of the brain is based on two complementary principles, localization and connectionism.
Localization means that each visual function is performed mainly by a small set of the cortex. Connectionism, on
the other hand, expresses that the brain regions involved in a certain visual cortex function are widely distributed,
and thus the brain activity necessary to perform a given task may be the functional integration of activity in
distinct brain systems. It is important to stress out that in neurobiology the term ”connectionism” is used in a
different sense that that used in the neural network terminology.

The following sections are dedicated to presenting the algorithms and evaluate the discriminatory power of
the two main groups of exploratory data analysis methods.

2.1. The ICA Algorithms

According to the principle of functional organization of the brain, it was suggested for the first time in'! that
the multifocal brain areas activated by performance of a visual task should be unrelated to the brain areas
whose signals are affected by artifacts of physiological nature, head movements, or scanner noise related to fMRI
experiments. Every single above mentioned process can be described by one or more spatially-independent
components, each associated with a single time course of a voxel and a component map. It is assumed that the
component maps, each described by a spatial distribution of fixed values, is representing overlapping, multifocal
brain area of statistically dependent fMRI signals. This aspect is visualized in Figure 1. In addition, it is
considered that the distributions of the component maps are spatially independent, and in this sense uniquely
specified. Mathematically, this means that if py(C)) specifies the probability distribution of the voxel values Cj,
in the kth component map, then the joint probability distribution of all n components yields:

p(017 T Cm) = HZ:lpk(Ck) (1)

where each of the component maps Cy, is a vector (Cy;,i = 1,2,--+, M), where M gives the number of voxels.
Independency is a stronger condition than uncorrelatedness. It was shown in'! that these maps are independent
if the active voxels in the maps are sparse and mostly nonoverlapping. Additionally it is assumed that the
observed fMRI signals are the superposition of the individual component processes at each voxel. Based on
these assumptions, ICA can be applied to fMRI time-series to spatially localize and temporally characterize the
sources of BOLD activation.

Different methods for performing ICA decompositions have been proposed which employ different objective
functions together with different criteria of optimization of these functions, and it is assumed that they can
produce different results.

Proc. of SPIE Vol. 5439 93



94

: E : A\ 5

E @ : \ / : e : Component Mixing Measured

! ; ' ; -

1 i /\ 1 i Maps fMRI Signals

. ! #1 (=
: : Measured ; /N\_ Map!
: PR G : -
: E i E o °
| | o : °
E \ : E : o o
E g\ /: Timecourse #n t=r
Independent
Components S X =AS X

(a) (b)

Figure 1. Visualization of ICA applied to fMRI data. (a) Scheme of fMRI data decomposed into independent components,
and (b) fMRI data as a mixture of independent components where the mixing matrix M specifies the relative contribution
of each component at each time point.**

2.2. Models of Spatial ICA in fMRI

In the following we will assume that X is a 7' x M matrix of observed voxel time courses (fMRI signal data
matrix), C is the N x M random matrix of component map values, and A4 is a T' x N mixing matrix containing
in its columns the associated time—courses of the N components. Furthermore, T corresponds to the number of
scans, and M is the number of voxels included in the analysis.

The spatial ICA (sICA) problem is given by the following linear combination model for the data:

X = AC (2)

where no assumptions are made about the mixing matrix A and the rows C; being mutually statistically inde-
pendent.

Then the ICA decomposition of X can be defined as an invertible transformation:

C=WX (3)

where W is an unmixing matrix providing a linear decomposition of data. A is the pseudoinverse of W.

The employed ICA algorithms are the TDSEP, JADE, the FastICA approach based on minimization of
mutual information but using the negentropy as a measure of non-gaussianity,?! and topographic ICA which
combines topographic mapping with ICA .22

2.3. Tree—Dependent Component Analysis

The tree—dependent component analysis (TCA) concept is based on the idea of weakening the assumption of
independence in ICA. Here, we search for a transformation such that the independent components can be modeled
by a tree-structured graphical model.2> The most important feature is that the trees can have more than a
single connected component. The connected components of the graphical model can be viewed as ”clusters”
of dependent components, and thus the decomposition of the source variables yields to dependent components
within a cluster and independent outside a cluster. This approach is different from the topographic ICA described
in the next section since it does not require to specify the topology (number and sizes of components) in advance.
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2.3.1. Beyond Independent Components: Trees and Clusters

The paradigm of TCA is derived from the theory of tree-structured graphical models. In?* was shown a strat-
egy to approximate optimally an n—dimensional discrete probability distribution by a product of second—order
distributions, or the distribution of the first—order tree dependence. A tree is an undirected graph with at most
a single edge between two nodes. This tree concept can be easily interpreted with respect to ICA. A graph with
no edges means that the random variables are mutually independent and this pertains to ICA. On the other
hand, if no assumptions are made about independence, then the corresponding family of probability distributions
represents the set of all distributions.

In?* was developed a strategy of the best approximation of an nth—order distribution by a product of n — 1
second—order component distributions:

n

Pi(x) = [[ P@m:|@m; @), 0<46) <i (4)

i=1
where P(x) is a joint probability distribution of n discrete variables with x = zq,---,z, being a vector,
(my,---,my) is an unknown permutation of integers 1,2, ..., n and P(z;|zo) is by definition equal to P(x;). The

above introduced probability distribution is named a probability distribution of first—order tree dependence.

A probability distribution can be approximated in several ways. Here, we look into approximations based on
a product of n — 1 second—order component distributions. To determine the goodness of an approximation, it is
necessary to define a closeness as

P(x)
P,(x)

I(P,P,) = P(x)log (5)

where P(x) and P,(x) are two probability distributions of the n random variables x. The quantity I(P, P,) has
the property I(P, P,) > 0.

Translated to random variables, the above definition is named mutual information and is always nonnegative:

P(z;,z;)
I(zs,75) = Y P(zs,25)log | =~ 6
() = 2 Pl o (P ©
In the following, we will state the solution to the approximation of the probability distribution. We are searching
for a distribution of tree dependence P.(xi,---,x,) such that I(P,P;) < I(P,P,) for all t € T,, where T},
represents the set of all possible first—order dependence trees. Thus, the solution 7 is defined as the optimal
first—order dependence tree.

In parlance of graph theory, every branch of the dependence tree is assigned a branch weight I(x;, ;).
Thus being given a dependence tree ¢, the sum of all branch weights becomes a useful quantity.

In?* was shown that a maximum-weight dependence tree is a dependence tree ¢ such that for all t inT,

n

> I(wi, (i) > Zf(wi;ﬂfj'(i)) (7)

i=1

In other words, a probability distribution of tree dependence P;(x) is an optimum approximation to P(x) if and
only if its dependence tree ¢t has maximum weight. Or, minimizing the closeness measure I(P, P;) is equivalent
to maximizing the total branch weight.
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2.3.2. Tree-Dependent Component Model

The idea of approximating discrete probability distributions with dependence trees described in the last section
and adapted from,?* can be easily translated to ICA.2?

In classic ICA, we want to minimize the mutual information of the estimated components s = Wx. Thus,
the result derived in,?* can be easily extended and becomes the tree-dependent ICA.

The objective function for TCA is given by J(x, W,¢) and includes the demixing matrix W. Thus, the
mutual information for TCA becomes

J&,W,t) =T'(s) = I(s1,-,sm) — D I(5u,50) (8)
(u,v) €t

s factorizes in a tree t.

In TCA asin ICA, the density p(x) is not known and the estimation criteria have to be substituted by empirical
contrast functions. As described in,2®> we will employ three types of contrast functions: (i) approximation of
the entropies being part of equation (8) via kernel density estimation (KDE), (ii) approximation of the mutual
information based on kernel generalized variance (KGV), and (iii) approximation based on cumulants using
Gram-Charlier expansions (CUM).

2.4. Topographical Independent Component Analysis

The topographic independent component analysis?? represents a unifying model which combines topographic
mapping with ICA.

Achieved by a slight modification of the ICA model, it can at the same time be used to define a topographic
order between the components, and thus has the usual computational advantages associated with topographic
maps.

The paradigm of topographic ICA has its roots in?® where a combination of invariant feature subspaces®

and independent subspaces?” is proposed. In the following, we will describe these two parts, which substantially
reflect the concept of topographic ICA.?3

2.4.1. Invariant Feature Subspaces

The principle of invariant-feature subspaces was developed by Kohonen?® with the intention of representing
features with some invariances. This principle states that an invariant feature is given by a linear subspace in
a feature space. The value of the invariant feature is given by the squared norm of the projection of the given
data point on that subspace.

A feature subspace can be described by a set of orthogonal basis vectors wj,j = 1,...,n, where n is the
dimension of the subspace. Then the value G(x) of the feature G with the input vector x is given by

G(x) :Z<wj,x >2 9)

In other words, this describes the distance between the input vector x and a general linear combination of the
basis vectors wj of the feature subspace.?®
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2.4.2. Independent Subspaces

Traditional ICA works under the assumption that the observed signals z;(¢), (i = 1,...,n) are generated by a
linear weighting of a set of n statistically independent random sources s;(t) with time-independent coefficients
a;;j. In matrix form, this can be expressed as

x(t) = As(t) (10)

where x(t) = [z1(t), ..., 2n(t)]T,s(t) = [s1(t),...,5,(t)], and A = [a;].

In multidimensional ICA,?” the sources s; are not assumed to be all mutually independent. Instead, it
is assumed that they can be grouped in n-tuples, such that within these tuples they are dependent on each
other, but are independent outside. This newly introduced assumption was observed in several image processing
applications. Each n-tuple of sources s; corresponds to n basis vectors given by the rows of matrix A. A subspace
spanned by a set of n such basis vectors is defined as an independent subspace. In%” two simplifying assumptions
are made: (1) Although s; are not at all independent, they are chosen to be uncorrelated and of unit variance,
and (2) the data are preprocessed by whitening (sphering) them. This means the w;j are orthonormal.

Let J be the number of independent feature subspaces and Sj,j =1,...,J the set of indices that belong to
the subspace of index j. Assume that we have T' given observations x(t),t = 1,...,T. Then the likelihood L of
the data based on the model is given by

T J

L(wi,i =1,...,n) = [[[ldetW]| ]| pj(< wi, x(t) >,i € S))] (11)
t=1 j=1

with p;(-) being the probability density inside the jth n-tuple of s;. The expression |detW| is due to the linear
transformation of the pdf. As always with ICA, p;(-) need not be known in advance.
2.4.3. Fusion of Invariant Feature and Independent Subspaces

In?® it is shown that a fusion between the concepts of invariant and independent subspaces can be achieved by
considering probability distributions for the n-tuples of s; being spherically symmetric, that is, depending on the
norm. In other words, the pdf p;(-) has to be expressed as a function of the sum of the squares of the s;,i € S;
only. Additionally, it is assumed that the pdfs are equal for all subspaces.

The log-likelihood of this new data model is given by

T J
logL(wi,i=1,...,n) = ZZlogp(Z < wi, x(t) >?) + T'log |det W| (12)
t=1 j=1 i€S;

p(ziesj s?) = pj(si,i € Sj) gives the pdf inside the jth n-tuple of s;. Based on the prewhitening, we have
log |detW| = 0.

For computational simplification, set
G(Z s7) = logp(z < wi, x(t) >?) (13)
i€S; i€S;

Since it is known that the projection of visual data on any subspace has a super-Gaussian distribution, the
pdf has to be chosen to be sparse. Thus, we will choose G(u) = ay/u + 3 yielding a multidimensional version of
an exponential distribution. « and § are constants and enforce that s; is of unit variance.

Proc. of SPIE Vol. 5439 97



98

2.4.4. The Topographic ICA Architecture
Based on the concepts introduced in the preliminary subsections, this section describes the topographic ICA.

To introduce a topographic representation in the ICA model, it is necessary to relax the assumption of
independence among neighboring components s;. This makes it necessary to adopt an idea from self-organized
neural networks, that of a lattice. It was shown in?? that a representation which models topographic correlation
of energies is an adequate approach for introducing dependencies between neighboring components.

In other words, the variances corresponding to neighboring components are positively correlated while the
other variances are in a broad sense independent. The architecture of this new approach is shown in Figure 2.

This idea leads to the following representation of the source signals:

Si = 04%; (14)

where z; is a random variable having the same distribution as s;, and the variance o; is fixed to unity.

The variance o; is further modeled by a nonlinearity:

oi=¢ (Z h(i, k:)uk> (15)
k=1

where u; are the higher order independent components used to generate the variances, while ¢ describes some
nonlinearity. The neighborhood function h(i, j) can either be a two-dimensional grid or have a ring-like structure.
Further u; and z; are all mutually independent.

5o e

1'22

Figure 2. Topographic ICA mode The variance generated variables u; are randomly generated and mixed linearly

inside their topographic neighborhoods. This forms the input to nonlinearity ¢, thus giving the local variance o;. Com-
pounents s; are generated with variances o;. The observed variables x; are obtained as with standard ICA from the linear
mixture of the components s;.

The learning rule is based on the maximization of the likelihood. First, it is assumed that the data are
preprocessed by whitening and that the estimates of the components are uncorrelated. The log-likelihood is
given by:

T n n
logL(wi,i=1,...,n) = Z Z G(Z(wiTx(t)2) + T'log |det W| (16)

t=1j=1  i=1

The update rule for the weight vector w; is derived from a gradient algorithm based on the log-likelihood
assuming log |detW| = 0:

Aw; o« BE{x(w!x)r;} (17)

where
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ri =Y hi,k)g(>_ h(k, j)(w]x)?) (18)

k=1 Jj=1

The function g is the derivative of G = —aj+/u + B1. After every iteration, the vectors w; in eq. (17) are
normalized to unit variance and orthogonalized. This equation represents a modulated learning rule, where the
learning term is modulated by the term r;.

The classic ICA results from the topographic ICA by setting h(i,j) = ;5 -

3. RESULTS AND DISCUSSION

FMRI data were recorded from six subjects (3 female, 3 male, age 20-37) performing a visual task. In five
subjects, five slices with 100 images (TR/TE=3000/60msec) were acquired with five periods of rest and five photic
simulation periods with rest. Simulation and rest periods comprised 10 repetitions each, i.e. 30s. Resolution was
3 x 3 x4 mm. The slices were oriented parallel to the calcarine fissure. Photic stimulation was performed using
an 8 Hz alternating checkerboard stimulus with a central fixation point and a dark background with a central
fixation point during the control periods.!® The first scans were discarded for remaining saturation effects.
Motion artifacts were compensated by automatic image alignment (AIR,??).

The clustering results were evaluated by (1) task-related activation maps, (2) associated time-courses and
(3) ROC curves.

3.1. ESTIMATION OF THE ICA MODEL

To decide to what extent spatial ICA of fMRI time—series depends on the employed algorithm, we have first to
look at the optimal number of principal components selected by PCA and used in the ICA decomposition. ICA
is a generalization of PCA. In case no ICA is performed, then the number of independent components equals
zero, and this means there is no PCA decomposition performed.

In the following we will give the set parameters. For PCA, no parameters had to be set. For FastICA we
choose: (1) e = 1075, (2) 10° as the maximal number of iterations, and (3) the nonlinearity g(u) = tanhu. And
last, for topograph ic ICA we set: (1) stop criterium is fullfilled if the synaptic weights difference between two
consecutive iterations is less than 107° x Number of IC, (2) the function g(u) = u, and (3) 10* is the maximal
number of iterations.

It is significant to find a fixed number of ICs that can theoretically predict new observations in same conditions,
assuming the basic ICA model actually holds. To do so, we compared the six proposed algorithms for 8, 9, and
16 components in terms of ROC analysis using correlation map with a chosen threshold of 0.4. The obtained
results are plotted in Figure 3. It can be seen that topographic ICA outperforms all other ICA methods for 8
and 9 ICs. However, for 16 ICs topographic ICA is outperformed by both FastICA and tree—dependent ICA
(KGV) using as an approximation of the mutual information the kernel generalized variance.

The clustering results for the two method, the tree-dependent and topographic ICA are shown in Figure 4.
Figure 4 (a) and (c) illustrates the so—called assignment maps where all the pixels belonging to a specific cluster
are highlighted. The assignment between a pixel and a specific cluster is given by the minimum distance between
the pixel and a IC from the established codebook. On the other hand, each IC shown in Figure 4 (b) and (d)
can be viewed as the cluster—specific weighted average of all pixel time courses.

3.2. CHARACTERIZATION OF TASK-RELATED EFFECTS

For all subjects, and runs, unique task-related activation maps and associated time—courses were obtained by
the tree—dependent and topographic ICA techniques. The correlation of the component time course most closely
associated with the visual task for the these two techniques is shown in Table 1 for IC=8,9, and 16. From
the Table, we see for the tree—dependnet ICA a continuous increase for the correlation coefficient while for the
topographic ICA this correlation coefficient decreases for IC=16.
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Figure 3. Results of the comparison between tree—-dependent ICA, topographic ICA, Jade, FastICA, TDSEP, and PCA
on fMRI data. Spatial accuracy of ICA maps is assessed by ROC analysis using correlation map with a chosen threshold
of 0.4. The number of chosen independent components for all techniques is in (a): IC=8, (b): IC=9, and (c): IC=16.

Table 1. Comparison of the correlations of the component time course most closely associated with the visual task for
tree-dependent and topographic ICA for IC=8,9, and 16.

Tree—dependent ICA | Topographic ICA
IC=8 0.78 0.85
IC=9 0.91 0.87
1C=16 0.92 0.86

4. CONCLUSION

In the present paper, we have experimentally compared four standard ICA algorithms already adopted in the
fMRI literature with two new algorithms, the tree— dependent and topographic ICA. The goal of the paper was to
determine the robustness and reliability of extracting task—related activation maps and time—courses from fMRI
data sets. The success of ICA methods is based on the condition that the spatial distribution of brain areas
activated by task performance must be spatially independent of the distributions of areas affected by artifacts.
It can be seen that topographic ICA outperforms all other ICA methods for 8 and 9 ICs. However, for 16 ICs
topographic ICA is outperformed by both FastICA and tree—dependent ICA (KGV) using as an approximation of
the mutual information the kernel generalized variance. The applicability of the new algorithms is demonstrated
on experimental data.
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