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Introduction�

There is a rich literature in the theory of circle packings on geometric sur-
faces that from the beginning has exposed intimate connections to the ap-
proximation of conformal mappings. Indeed, one of the first publications in
the subject, Rodin and Sullivan’s 1987 paper [10], provides a proof of the
convergence of a circle packing scheme proposed by Bill Thurston for ap-
proximating the Riemann mapping of an arbitrary proper simply-connected
domain in C to the unit disk. Bowers and Stephenson’s work in [4], which
explains how to apply the Thurston scheme on nonplanar surfaces, may be
viewed as a far reaching generalization of his scheme to the setting of ar-
bitrary equilateral surfaces. Further, in [4] Bowers and Stephenson propose
a method for uniformizing more general piecewise flat surfaces that neces-
sitates a truly new ingredient, namely, that of inversive distance packings.
This inversive distance scheme was introduced in a very preliminary way in
[4] with some comments on the difficulty involved in proving that it produces
convergence to a conformal map. Even with these difficulties, the scheme has
been encoded in Stephenson’s packing software CirclePack and, though all
the theoretical ingredients for proving convergence are not in place, it seems
to work well in practice. This paper may be viewed as a commentary on
and expansion of the discussion of [4]. Our purposes are threefold. First, we
carefully describe the inversive distance scheme, which is given only cursory
explanation in [4]; second, we give a careful analysis of the theoretical diffi-
culties that require resolution before conformal convergence can be proved;
third, we give a gallery of examples illustrating the power of the scheme. We
should note here that there are special cases (e.g., tangency or overlapping
packings) where the convergence is verified, and our discussion will give a
proof of convergence in those cases.

Each oriented piecewise flat surface has a natural conformal structure
defined on its interior by a complex atlas with conformal charts of two types.
First, each interior edge gives rise to an edge chart that isometrically maps the
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interior of the two Euclidean triangles meeting along that edge to the plane,
preserving orientation. Overlap maps between the intersections of two such
charts are Euclidean isometries and therefore conformal. Second, each interior
vertex gives rise to a vertex chart that uses a power map defined on a small
open neighborhood of the vertex to rescale an angle sum Θ different from 2π
to one equal to 2π. The vertex charts are chosen to have pairwise disjoint
domains and the local form of the chart map is the power map z �→ z2π/Θ.
The overlap mapping between any edge chart and vertex chart is conformal
as the vertex, where the derivative is zero, is not in the overlap. In this
way any orientable piecewise flat surface becomes a Riemann surface. Notice
that though there are in general cone points at the vertices in a piecewise
flat surface, these are singularities of the piecewise Euclidean metric only
and not singularities of the conformal structure. Indeed, the total angle sum
at each vertex given by the conformal structure is 2π and the Euclidean
angle α between two arcs emanating from a vertex is measured as 2π α

Θ in
the conformal structure. The conformal structure thus measures the “market
share” of the angle α with respect to the total Euclidean angle Θ.

Though the inversive distance scheme for conformal mapping may be
presented in the full generality of arbitrary piecewise flat surfaces, of arbitrary
genus with an arbitrary number of boundary components, we have chosen to
restrict our attention to the simply connected case so as to illuminate the
essential features of the algorithm and so that we may discuss the details of
the proof of convergence without the added difficulty of having to work with
moduli spaces. In fact, we will consider piecewise flat quadrilaterals and ask
for a method to conformally map them to rectangles.
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Fig. 1. Three piecewise flat conformal quadrilaterals.

Perhaps an example will help illustrate the problem the algorithm ad-
dresses. Consider the simple triangulation K of a topological quadrilateral
with eight faces with a common central vertex and four distinguished bound-
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ary vertices a, b, c, and d as in Fig. 1. There are many ways to define a
metric on K making each face a flat Euclidean triangle. Three examples are
indicated in Fig. 1 where each side is given unit length, except for the sides
labeled with γ and δ, which are given side lengths γ = 0.3473 and δ = 0.2611.
These examples are discussed in greater detail in Section 5, but for now realize
that these labels encode a piecewise flat metric on K by identifying the faces
with Euclidean triangles of side lengths given by the edge labels. This in turn
produces three different conformal structures on K that each realizes K as a
conformal quadrilateral. By standard theorems on conformal mapping, any
conformal quadrilateral maps conformally to a Euclidean rectangle unique
up to scaling. Approximations to this conformal mapping in each case are
indicated in Fig. 2, where we see approximations to the image triangulations
under the conformal mapping to a rectangle. Note that the first and third
rectangles of Fig. 2 are both squares, but the conformally correct shapes of
the faces in the two examples are different, and the conformal modulus of the
second is approximately µ = 1.2031.
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Fig. 2. Uniformizations of quadrilaterals from Fig. 1.

Complete proofs for convergence of the scheme in the more specialized
setting of equilateral surfaces, where each edge has unit length and each face
is identified with a unit equilateral triangle, are found in [4]. The original
motivation for developing the scheme of [4] was to construct fundamental
domains for the equilateral surfaces that arise in Grothendieck’s theory of
dessins d’enfants and to approximate their associated Bely̆ı maps. Since then,
Hurdal et al [7] have adopted this method to construct flat mappings of sur-
faces in R

3 and have applied the method to obtain flat mappings of the human
brain, which is of current interest in the neuroscience community. The desire
to obtain better conformal integrity in these brain mappings has inspired us
to investigate further this preliminary suggestion in [4] that a modification
of their scheme using inversive distance packings could be used to build con-
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formal mappings in this piecewise flat—as opposed to piecewise equilateral—
setting. Stephenson’s software CirclePack was used for the brain mappings
of [7] as well as for calculating and rendering our examples. We note here that
we do not present the circle packing algorithm used in CirclePack to calcu-
late the packing for given inversive distance data as this has been discussed
amply in [5].

The ingredients of this conformal mapping scheme are inversive distances
of circles in the Riemann sphere, circle patterns in the Riemann sphere,
and hexagonal refinement. The first three sections of the paper are centered
around these three respective themes. We find that many mathematicians,
even those who specialize in complex analysis and conformal geometry, are
not familiar with the inversive distance between pairs of circles in the Rie-
mann sphere. In Section 1, we present an inversive distance primer and prove
some results about the conformal placement of circles in the Riemann sphere.
In Section 2, we review the basics of piecewise flat structures on surfaces and
introduce circle patterns with inversive distances encoded along edges. These
patterns, generalizations of circle packings where edges encode tangencies,
have been studied in the case where neighboring circles overlap with some
angle between 0 and π/2. Bowers and Stephenson [4] introduced the notion of
circle patterns where neighboring circles may not overlap, but where they do
satisfy á priori inversive distance requirements. We emphasize again that the
theoretical underpinnings of this topic are not entirely in place and are a mat-
ter of current research by Bowers, Stephenson, Hurdal, and others, but the
good news is that the algorithm seems to work well in practice. This iterative
algorithm for producing a sequence of patterns that are hoped to approxi-
mate more and more closely the desired conformal mapping is presented in
Section 3, where hexagonal refinements are introduced. The difficulties in the
proof of convergence to the desired conformal mapping are discussed in Sec-
tion 4. We detail three main theoretical problems that must be addressed for
a complete resolution of the question of convergence to a conformal map, and
we prove convergence under the assumption that these problems have been
resolved. Section 5 presents a gallery of examples that illustrate the algorithm
by approximating conformal mappings to rectangles of conformal quadrilat-
erals that arise from piecewise flat metrics on topological disks, as in the
examples of this introduction. This allows us to approximate the conformal
moduli of quadrilaterals that arise from piecewise flat metrics, and to view
the conformally correct shapes of the faces of the triangulation after mapping
to the plane. We shall point out how well the algorithm works in practice,
producing image triangulations with exactly the expected properties. Finally,
Section 6 discusses practical implementation issues in applications, and com-
putational and theoretical issues surrounding these.
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1 An Inversive Distance Primer

The inversive distance between two oriented circles in the Riemann sphere Ĉ

is a conformal invariant of the location of the circles in the sphere and their
relative orientations; see [1]. Indeed, given oriented circle pairs C1, C2 and
C′

1, C
′
2 of Ĉ, there exists a Möbius transformation T of the Riemann sphere

with T (Ci) = C′
i for i = 1, 2, respecting their relative orientations, if and

only if the inversive distance between C1 and C2 equals that between C′
1 and

C′
2. An oriented circle C is the boundary of a unique open disk C, called

the interior of C, that lies to the left of C as C is traversed in the direction
of its orientation. The precise definition of inversive distance may be stated
elegantly with the aid of cross ratios and circle interiors.

Definition 1. Let C1 and C2 be oriented circles in the Riemann sphere Ĉ

bounding the respective disks C1 and C2, and let D be any oriented circle
mutually orthogonal to C1 and C2. Denote the points of intersection of D
with C1 as z1, z2 ordered so that the oriented subarc of D from z1 to z2

lies in the disk C1. Similarly denote the ordered points of intersection of D
with C2 as w1, w2. The inversive distance between C1 and C2, denoted as
InvDist(C1, C2), is defined in terms of the cross ratio

[z1, z2; w1, w2] =
(z1 − w1)(z2 − w2)
(z1 − z2)(w1 − w2)

by

InvDist(C1, C2) = 2[z1, z2; w1, w2] − 1.

Recall that cross ratios of ordered 4-tuples of points in Ĉ are invariant un-
der Möbius transformations. This implies that which circle orthogonal to both
C1 and C2 is used in the definition is irrelevant as a Möbius transformation
that setwise fixes C1 and C2 can be used to move any one orthogonal circle to
another. Also, which one of the two orientations on the orthogonal circle D is
used is irrelevant as the cross ratio satisfies [z1, z2; w1, w2] = [z2, z1; w2, w1].
This equation also shows that the inversive distance is preserved when the
orientation of both circles is reversed so that it is only the relative orientation
of the two circles that is important for the definition. When C1 and C2 over-
lap, the oriented angle of overlap may be defined unambiguously as the angle
between the tangents to the circles at a point of overlap formed by one tan-
gent pointing along the orientation of its parent circle and the other pointing
against the orientation of its parent circle. We distinguish six different ways
that two circles may overlap and describe the inversive distance in each case.
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1.1 Six Cases

The inversive distance is always a real number since the cross ratio of four
points that lie on a circle is always real. The way to dissect the inversive
distance is through the auxiliary function

T (z) = 2[z1, z2; z, w2] − 1 = 2
(z1 − z)(z2 − w2)
(z1 − z2)(z − w2)

− 1,

which is a Möbius transformation that takes the triple z1, z2, w2 to the triple
−1, 1,∞. The function T takes the orthogonal circle D to the real line, the
circle C1 to the unit circle centered at the origin, and the circle C2 to the
vertical line orthogonal to the real axis at the point T (w1); see Fig. 3. Notice
that InvDist(C1, C2) = T (w1) may take on any real value and we distinguish
the six cases according to the two relative orientations for each of the three
possibilities for intersection of C1 with C2. Fig. 3 provides a snapshot of all
the possibilities labeled according to whether the orientations are aligned or
opposite, and whether the intersection consists of none, one, or two points.

Figs. 3(a) and 3(b) illustrate the possibilities for disjoint circles. If the
orientations are opposite, the inversive distance is in the range from −∞ to
−1 exclusive, and if aligned, in the range from +1 to +∞ exclusive. Figs. 3(c)
and 3(d) illustrate those for tangent circles where the inversive distance is
±1 depending on relative orientation. Figs. 3(e) and 3(f) illustrate those
for intersecting circles where the inversive distance is between −1 and 0 for
intersection angles between π and π/2 and between 0 and +1 for angles
between π/2 and 0. Referring to the angle labels in Fig. 3, we may read off
the inversive distances as

InvDist(C1, C2) = sec α

for disjoint circles, where α is the indicated angle, and

InvDist(C1, C2) = cosα

for intersecting circles, where α is the oriented angle of intersection of C1

with C2. Notice for intersecting circles, since the overlap angle α may be de-
termined without regard to the normalizing transformation T , the inversive
distance has an immediate, easily understood meaning. One can look at two
overlapping circle pairs and estimate whether they are Möbius equivalent, a
task of great difficulty for disjoint circle pairs. For those with a finely devel-
oped intuition for hyperbolic space and the Poincaré extensions of Möbius
transformations, there is a more geometric understanding of inversive dis-
tance available.
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Fig. 3. Three of six ways that two circles overlap. Here, T (z1) = −1, T (z2) = 1.
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Fig. 3. Remaining three ways that two circles overlap. Here, T (z1) = −1, T (z2) = 1.
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1.2 An Alternate Description in Terms of Hyperbolic Geometry

Notice that if the orientation of only one member of a circle pair is reversed,
the inversive distance merely changes sign. This follows from the immediate
relation [z1, z2; w2, w1] = 1 − [z1, z2; w1, w2]. We therefore define

Definition 2. The absolute inversive distance between any pair of unori-
ented circles is the absolute value of the inversive distance between the two
circles when given either relative orientation. We use the same notation,
InvDist(C1, C2), for the absolute inversive distance between unoriented cir-
cles C1 and C2.

It is clear then that there is a Möbius transformation taking an unoriented cir-
cle pair C1, C2 to another unoriented pair C′

1, C
′
2 if and only if their absolute

inversive distances agree. When C1 and C2 overlap with acute angle α the ab-
solute inversive distance is cosα and when they are tangent it takes the value
1. In this subsection our aim is to expose a geometric understanding of the
absolute inversive distance between two disjoint circles in terms of hyperbolic
geometry. This is a great intuitive aid for understanding inversive distances
between disjoint circles. Toward this end assume C1 and C2 are disjoint and
by appropriate choices of orientation map via T so that T (C1) is the unit cir-
cle and T (C2) is the vertical line through the point ∆ = InvDist(C1, C2) > 1.
Consider the extended complex plane as the sphere at infinity for the hyper-
bolic 3-space realized as the upper half-space model with metric ds = |dx|/x3

on H3 = {x = (x1, x2, x3) : x3 > 0}. The Poincaré extension of T , denoted
T̃ , is an isometry of H3. The circle C1 bounds a hyperbolic plane P1 in H3

that is realized as the upper hemisphere of the sphere in R3 with the same
Euclidean center and radius as C1, and similarly C2 bounds the hyperbolic
plane P2. We calculate the hyperbolic distance δ between the planes P1 and
P2.

First, since T̃ is an isometry, we work with T̃ (P1), which is the upper
hemisphere of the unit sphere in R3, and with T̃ (P2), which is the vertical
half plane {x ∈ H3 : x1 = ∆}. There is a unique geodesic segment Σ in
H3 meeting both T̃ (P1) and T̃ (P2) orthogonally at the respective points A
and B. This geodesic segment lies on the circle in the vertical x1x3-plane
that is mutually orthogonal to T̃ (P1), T̃ (P2), and to the x1-axis; see Fig. 4.
Elementary geometry shows this circle to be centered at the point (∆, 0, 0)
and of Euclidean radius

√
∆2 − 1, and the points A and B to be given by

A = (cos sec−1 ∆, 0, sin sec−1 ∆) and B = (∆, 0,
√

∆2 − 1). A calculation of
the hyperbolic length of Σ by integrating the line element ds = |dx|/x3 along
Σ from A to B gives the value of δ as

δ = ln
∣∣∆ +

√
∆2 − 1

∣∣ = cosh−1 ∆.

This proves that the absolute inversive distance between C1 and C2 is pre-
cisely the hyperbolic cosine of the hyperbolic distance between the planes P1
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and P2 bounded by C1 and C2. Experience with this understanding of inver-
sive distance for disjoint circles coupled with the fact that Poincaré extensions
of Möbius transformations are isometries of H

3 has proved invaluable in our
research, particularly for gaining intuition in working with disjoint circle pat-
terns.

1-1 ∆

Σ

x1

x3

B

A

Fig. 4. The hyperbolic length of Σ is cosh−1 ∆.

1.3 A Euclidean Formula

The simplest formula for the absolute inversive distance between two circles
in the complex plane is the one that the algorithm for conformal flattening
uses. Though simple, it is not at all transparent that it should yield a Möbius
invariant for the placement of two circles in the plane. We leave it as an
exercise to verify that if Ci is the circle in the complex plane C centered at
ai of radius Ri, for i = 1, 2, then the absolute inversive distance is given by

InvDist(C1, C2) =

∣∣∣∣∣
R2

1 + R2
2 − |a1 − a2|2
2R1R2

∣∣∣∣∣. (1)

2 Piecewise Flat Surfaces and Circle Packings

A combinatorial quadrilateral is an abstract oriented simplicial 2-complex K
that triangulates a closed topological disk with four distinguished boundary
vertices {a, b, c, d} ordered respecting the boundary orientation. The sets of
vertices, edges, and faces of K are denoted respectively as V, E, and F.
A piecewise flat structure for K is determined by an edge length function
|− | : E → (0,∞) that satisfies the triangle inequality condition, namely, that
for every three edges e1, e2, e3 that bound a face of K, the inequality

|e1| ≤ |e2| + |e3|
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holds. An edge length function | − | for K determines a piecewise Euclidean
metric by assigning the length |e| to each edge e of K and identifying each
face 〈v1, v2, v3〉 with a flat Euclidean triangle of edge lengths |ei|, where the
edge ei = 〈vj , vk〉 and {i, j, k} = {1, 2, 3}. The resulting piecewise Euclidean
metric space is denoted as |K| and, as explained in the introduction, carries
the structure of a Riemann surface. Each interior vertex of K is a cone point
singularity for the piecewise Euclidean metric but is not a singularity of the
conformal structure. Our aim is to describe a scheme for approximating the
conformal mapping of |K| to a rectangle that maps the four distinguished
boundary vertices to the four corners of the rectangle. Of course we do not
have a candidate for the target rectangle since we do not know the modulus of
the conformal quadrilateral |K|; however, the algorithm ideally will produce
a sequence of target rectangles that converges to the correct one as well as a
curvilinear triangulation of the target rectangle with the combinatorics of K
that shows the correct conformal shapes of the faces.

A plentiful supply of piecewise flat surfaces is available from triangular
grids in R

3 where we read off side lengths of edges of actual Euclidean tri-
angles. This, though, gives but a limited supply of the piecewise flat surfaces
available, as many such surfaces admit no isometric embedding in R

3, and
many admit no embedding in any Euclidean space that isometrically embeds
each edge as a straight Euclidean line segment.

The iterative algorithm for conformally mapping |K| to a rectangle uses
as seed certain inversive distance data calculated from the edge length func-
tion | − |. This gives rise to a piecewise flat surface with inversive distance
information encoded along edges by a function Φ: E → [0,∞). We abstract
this by not assuming an á priori piecewise flat structure from which the edge
function Φ arises.

Definition 3. Let Φ: E → [0,∞) be a function on the edge set of the complex
K. A circle packing for (K, Φ) is a collection

C = {Cv : v ∈ V}
of circles in the plane C, each oriented counterclockwise, such that the in-
versive distance of neighboring circles is given by Φ, i.e., InvDist(Cu, Cv) =
Φ(〈u, v〉) for each edge 〈u, v〉 in E.

Perhaps a more descriptive term would be circle ‘pattern’, as opposed
to ‘packing’, whenever the circles are disjoint. Nonetheless, we shall use the
term ‘packing’ to describe a collection of circles, disjoint or not, that has a
combinatorial pattern encoded in a complex K governing the placement of
the circles in the plane. Tangency packings, which use only the combinatorial
information encoded in K and not any varying inversive distance data, are
used in [4] to uniformize piecewise equilateral surfaces. When the surface
is piecewise flat where faces are generally not equilateral, more than the
combinatorics of K must be used to build approximate conformal maps. We
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now describe how the metric information of |K| may be used to embellish
the combinatorics of K with inversive distance data, which turns out to be
sufficient for generating candidates for approximate conformal maps.

Let | − | be an edge length function for K and let R : V → (0,∞) be
a positive function on the vertices that, for each edge 〈u, v〉, satisfies the
condition

R(u)2 + R(v)2 ≤ |〈u, v〉|2. (2)

This inequality guarantees that if the edge e = 〈u, v〉 is drawn in the plane as
a segment of length |e|, and circles Cu and Cv both oriented counterclockwise
of respective radii R(u) and R(v) are centered at the vertices of e, then the
oriented overlap, if the circles intersect nontrivially, is at most π/2, and the
interiors, if the circles are disjoint, are also disjoint. The resulting radius
function R : V → (0,∞) determines an inversive distance function ΦR on
the edge set by Equation 1:

ΦR(e) = InvDist(Cu, Cv) =
|〈u, v〉|2 − R(u)2 − R(v)2

2R(u)R(v)
. (3)

A circle packing C for (K, ΦR), if it exists, gives rise to a discrete conformal
mapping of |K| to the plane by mapping the vertices of K to the centers of
their corresponding circles and extending affinely on the metric faces. The
image of such a discrete conformal mapping is the carrier of the circle packing
C, and is the union of the triangles corresponding to the faces of K formed
by connecting centers of three mutually neighboring circles by straight line
segments. The circle packing C is said to be oriented if the orientations of
all of these nondegenerate triangles inherited from the orientation on K are
compatible. Equivalently, C is oriented if the discrete conformal mapping f is
an orientation preserving map from |K| to the plane. When C is oriented and
Φ takes values in the unit interval, this discrete conformal mapping is quasi-
conformal, but it may fail to be so for general Φ values. Moreover, when C is
oriented, it maps the triangulation of |K| to a triangulation of the image of
this map, though there may be degeneracies. We describe an algorithm in the
next section that produces a sequence of these discrete conformal mappings,
which serve as the candidates for approximating the conformal mapping of
|K| to a rectangle. To force convergence we need to normalize the boundary
circles in some way, and we do so by making a further demand on our cir-
cle packings that will force a rectangular shape upon the image. In general
there are many different circle packings for the same data (K, Φ). For ex-
ample, in the case of tangency packings, each specification of boundary radii
for the circles that correspond to boundary vertices determines a unique ori-
ented packing with the combinatorics of K. Alternately, each specification
of boundary angle sums at boundary vertices also uniquely determines an
oriented packing for K. We shall call a circle packing C for (K, Φ) a rectan-
gular packing if it is oriented and the angle sum of the faces at a boundary
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vertex in the image triangulation are all π, except at the four distinguished
boundary vertices, where the angle sums are π/2. The carrier of a rectangular
packing is a rectangle. Fig. 5 shows two packings and their carriers for the
same piecewise flat surface |K| and inversive distance data Φ; the packing on
the right is rectangular.

cd

a

b

cd

a b

Fig. 5. Two packings for the same data (K, Φ).

3 Hexagonal Refinement

We now fix a combinatorial quadrilateral K with an edge length function
| − | that produces the piecewise flat conformal quadrilateral |K|. Let R
be a constant radius function that satisfies Inequality 2 at each edge and
C a rectangular packing for (K, ΦR), where ΦR satisfies Equation 3. It is
important for proving convergence that R be a constant function. Let f
be the discrete conformal mapping determined by C. The seed data for our
conformal mapping algorithm is the 4-tuple

(K0, | − |0, R0, Φ0) = (K, | − |, R, ΦR),

from which we produce the mapping data

(C0, f0) = (C, f).

We think of f as the zeroeth approximation to the conformal mapping that
maps |K| to a planar rectangle. The constant radius function may be chosen
to have any positive value between 0 and λ/

√
2, where λ is the minimum of

|e| as e ranges over all the edges of K.
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Fig. 6. Hexagonal refinement, K → K′.

For better approximations we employ hexagonal refinement, or hex-
refinement for short, which subdivides a triangle into four subtriangles as
in Fig. 6; see [4]. The complex thus obtained from K by subdividing each
face as in Fig. 6 is denoted as K ′. There is a natural edge length function
| − |′ on K ′ obtained by reading off the lengths of edges obtained by placing
a vertex at the midpoint of each metric edge in |K| to hex-subdivide each
metric face of |K| into four similar copies of itself, scaled by 1/2. Then |K|
and |K ′|′ are isometric and thus indistinguishable as metric spaces. If the
constant radius R′ = 1

2R is used for K ′, the induced inversive distance func-
tion ΦR′ replicates on the edges of a face of K ′ the three inversive distances
of its parent face in K. Starting then with the seed data (K0, | − |0, R0, Φ0),
we generate an infinite sequence recursively by

(Kn+1, | − |n+1, Rn+1, Φn+1) = (K ′
n, | − |′n, R′

n, Φ′
n),

for which |K| = |Kn|n for all n. This produces an infinite sequence of map-
ping data (Cn, fn), where fn : |K| = |Kn|n → C is the discrete conformal
mapping of the piecewise flat surface |K| to the plane determined by the
rectangular packing Cn for (Kn, Φn). Recall that there are four distinguished
boundary vertices {a, b, c, d} of K ordered respecting the orientation of the
boundary. We assume one more normalization condition, easily accomplished
by Euclidean similarities, by requiring the first two distinguished vertices a
and b of K to map to the respective points 0 and 1 under each fn, and the two
others to map to the upper half plane. The image of each discrete conformal
mapping fn is then a rectangle in the upper half plane one of whose sides lies
along the unit interval [0, 1].

The main convergence result of [4] may be used to prove, in the special
case of tangency packings where | − | gives a unit length to each edge, R
is identically 1/2, and ΦR is identically 1, that the sequence of mappings
fn : |K| → C exists and converges uniformly to the unique conformal mapping
F of |K| to a rectangle in the plane with F (a) = 0, F (b) = 1, and F (c)
and F (d) in the upper half plane. Moreover, the pointwise quasi-conformal
dilatations of the maps fn are bounded above and converge uniformly to unity
on compact subsets of the complement of the vertices of |K|. Our analysis of
the proof will show in the next section that this holds in the piecewise flat
case when R can be chosen so that ΦR has values in the unit interval, and
our goal is to understand precisely what is lacking in extending the proof to
the general case.
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When the sequence fn does converge to the expected conformal map F ,
the conformal modulus of the conformal quadrilateral |K| is thus determined
to be µ = |F (d)|, the height of the image rectangle F (|K|). One might expect
then that the maximum quasi-conformal dilatations of the sequence fn con-
verge to unity, but this is not the case. In fact, the maximum quasi-conformal
dilatations of the sequence are in general bounded away from unity since, at
any vertex v of K whose angle sum Θ determined by | − | is different from
2π, there is always high distortion at the vertices of Kn neighboring v; see
[4]. Nonetheless, this high local distortion is relegated to smaller and smaller
neighborhoods of the original vertices of K as we progress along the sequence
fn. The result is that the limit mapping F has local dilatation 1, i.e., is con-
formal, at every point of |K| other than those of the original vertex set V.
Removability of isolated singularities then comes into play to guarantee that
the dilatations at the original vertices are 1 and, therefore, the limit mapping
F is conformal.

4 Proving Convergence and Conformality

There are three main problems associated with the inversive distance scheme
for approximating the conformal mapping of |K| to a rectangle. The first is
that of the existence of a rectangular packing Cn for (Kn, Φn), the second is
that of quasi-conformality of the mappings fn with globally bounded dilata-
tions, and the third is that of the rigidity of infinite hexagonal packings of
the plane with prescribed periodic inversive distance data. The first problem
concerns the existence of the approximating sequence fn, the second concerns
the convergence of the sequence fn to a quasi-conformal mapping F , and the
third concerns the conformality of the limit mapping F . We shall discuss each
of these in turn after some general comments on inversive distance packings
with Φ-values restricted to lie in [0, 1], i.e., in which two neighboring circles
intersect nontrivially. This has been the subject of a large body of theoretical
research over the past decade and a half and there is an extensive literature
on the subject of existence and uniqueness of packings, particularly in the
tangency case where Φ is identically 1. The understanding of the existence
and uniqueness of tangency circle packings with prescribed combinatorics,
as well as rigidity of infinite packings, is crucial in the work of [10] and [4]
where mapping algorithms are shown to converge to the correct conformal
mappings. Using existence, uniqueness, and rigidity results now in place al-
lows us to adapt the proofs of [4] to the nontangency but overlapping case
where Φ may take values in the interval [0, 1]. This section will give just
such a proof that also covers the general case of unrestricted Φ values if the
three problems that we analyze in this section are found to have appropriate
resolutions.
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The problem of existence. The existence and uniqueness of tangency cir-
cle packings for a complex K was first proved in [2] for arbitrarily assigned
boundary radii or angle sums. This is viewed in [2] as the discrete analogue
of the classical Perron method of solving the Dirichlet Problem on planar
domains. Existence and uniqueness results for overlapping packings with pre-
scribed angles of overlap, where Φ has values in the unit interval, are proved
in [12] and [6]. It follows from this work that a rectangular packing for the
data (Kn, Φn) exists as long as the values of Φn lie in the unit interval and two
technical conditions first described by Thurston in [12] are satisfied. These
Thurston conditions are, for an inversive distance assignment Φ,

T1 If a simple loop in the complex K formed by the three edges e1, e2, e3

separates the vertices of K, then
∑3

i=1 cos−1 Φ(ei) < π;
T2 If v1, v2, v3, v4 = v0 are distinct vertices of K forming edges 〈vi−1, vi〉 and

Φ(〈vi−1, vi〉) = 0 for i = 1, 2, 3, 4, then either 〈v0, v2〉 or 〈v1, v3〉 is an edge
of K.

The problem of existence persists when neighboring circles are allowed to be
disjoint, where the Φ values may be greater than unity. In this case the gen-
eral boundary value problem is not always solvable, i.e., there are examples
of inversive distance assignments Φ where no circle packing in the plane with
the combinatorics of K can realize the inversive distance data. Even when
such packings do exist, they may not exist with predetermined boundary
radii or angle sums. Thus, there are examples of data (K, Φ) for which there
are no rectangular packings. These will be detailed in forthcoming publica-
tions, but for now their existence points to the fact that the moduli space of
data for which there do exist general inversive distance packings is a much
more complicated object than those for the special cases of tangency and
overlapping packings.

For the present work, this lack of a complete understanding of the ex-
istence of a circle packing for (K, Φ) means that we cannot guarantee that
the seed packing C0 for our algorithm exists. However, when it does exist,
the algorithm produces a sequence of approximate conformal mappings. The
examples of inversive distance packing data without rectangular packings re-
quire some gymnastics to construct and do not seem to arise naturally from,
for example, polyhedral surfaces embedded in R

3. We have never encountered
a surface in practice where the lack of existence prevented us from building
a seed packing for the algorithm. This problem does not seem to be a major
practical impediment to the widespread application of the inversive distance
scheme for conformally mapping piecewise flat surfaces to the plane.

The problem of quasi-conformality. Assume the rectangular packings Cn, and
therefore the discrete conformal mappings fn, exist for all n. The argument
of [4] for proving convergence of fn to a limit mapping F in the tangency
case uses the classical theory of normality of families of quasi-conformal map-
pings found, for instance, in [9]. The argument, which is given for conformal
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quadrilaterals in the proof of the theorem below, requires that fn be a se-
quence of quasi-conformal mappings with bounded dilatations, meaning that
there is a global bound κ on the maximal dilatations κ(fn) of all the maps
in the sequence. In this case, it will be shown that the sequence fn converges
uniformly to a κ-quasi-conformal mapping of |K|.

Quasi-conformality of each map fn as well as a global bound on their
dilatations in the tangency case is guaranteed by the ring lemma of [10].
Forthcoming publications will show that the ring lemma generalizes to those
inversive distance packings for which Φ never takes the value 0, i.e., the
case of non-orthogonal overlaps, and for which the Thurston conditions hold.
However, this generalized ring lemma provides quasi-conformality only in
the overlapping case where the Φ values lie in the half-closed interval (0, 1].
The lemma does not provide quasi-conformality in the setting of disjoint
circle neighbors where Φ may take values greater than unity. In fact, there
are examples of inversive distance assignments given by Φ where C exists,
so that the discrete conformal mapping f exists, for which f is not quasi-
conformal. Thus there is no guarantee that even if the sequence fn exists that
each mapping is quasi-conformal, and even if each is, there is no guarantee
that the sequence has bounded dilatations. Again these examples require
some gymnastics to construct and seem not to appear among, for example,
polyhedral surfaces in R3, and again this problem does not seem to be a
major practical impediment to the widespread application of the inversive
distance scheme.

The problem of rigidity of infinite hexagonal packings. Assume now that
the first two problems have been resolved for |K| and we have a sequence
of discrete conformal mappings fn, each quasi-conformal, with dilatations
bounded by κ. In this case there will exist a κ-quasi-conformal limit mapping
F . The final step for uniformizing |K| is the verification of the conformality
of F . This step is accomplished for tangency packings in both [10] and [4] by
use of the hexagonal packing lemma of [10], which depends on a rigidity result
about infinite circle packings of the complex plane. The analogous rigidity
result for overlapping packings is proved in [6], and so the ingredients are in
place to verify conformality of the limit mapping whenever Φ takes values
in the unit interval. We believe that a very general rigidity result holds for
arbitrary locally finite inversive distance packings of the complex plane, but
for the proof of conformality, all we need is the verification of the following
specialized rigidity conjecture. In the conjecture, H is the constant 6-degree
triangulation of the plane. The edges of H may be put into three equivalence
classes depending to which edge of a fixed face τ a given edge is “parallel”.
A circle packing of C is locally finite provided each point of the plane has a
neighborhood that meets only finitely many circles of the packing.

Conjecture 1. Let α, β, and γ be the inversive distances between respective
pairs of three equi-radii circles in the plane whose centers are the vertices of
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a nondegenerate triangle. Let Θ be an inversive distance edge function for H
that assigns the values α, β, and γ to the three respective edges of each face
so that Θ is constant on each of the three equivalence classes. Then locally
finite circle packings for (H, Θ) are unique up to Euclidean similarity, i.e.,
if C and C′ are both locally finite circle packings for (H, Θ), then there is a
similarity S such that S(C) = {S(C) : C ∈ C} = C′.

α

β

γ

(a) Inversive distances > 1. (b) Hexagonal pattern.

Fig. 7. Hexagonal rigidity.

If the conjecture is true, then any circle packing for (H, Θ) has Z × Z-
symmetry with fundamental domain the union of any two triangles formed
by connecting neighboring circle centers and that meet along a common edge.
This follows by placing three circles of equal radii in the plane such that the
pairwise inversive distances are given by α, β, and γ. The plane then may
be triangulated in the hexagonal pattern with isometric copies of the trian-
gle obtained by connecting the centers of these three equi-radii circles. An
example where α = 113.0346, β = 51.8889, and γ = 31 appears in Fig. 7.

When each of α, β, and γ are no greater than unity, results of [6] verify
the conjecture. The next theorem shows how normality of a quasi-conformal
family with bounded dilatations and the conjecture are used to prove con-
formal convergence. We make the restriction in the theorem and its corollary
that Φ never takes the value 0 so that the circle packings have no orthogonal
neighboring circles.

Theorem 1. If the sequence of discrete conformal mappings fn exists, is
quasi-conformal with bounded dilatations, and Conjecture 1 holds, then fn

converges uniformly on compact subsets of the interior of |K| to a confor-
mal mapping F of |K| to a rectangle in the complex plane with F (a) = 0,
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F (b) = 1, and F (c) and F (d) in the upper half plane. Moreover, the maxi-
mum dilatation of fn converges to unity uniformly on compact subsets of the
complement of V in |K|.
Proof. Suppose the hypotheses hold so that fn is a sequence of quasi-
conformal mappings of |K| to the plane with a global bound κ on the
quasi-conformal dilatations. Let µ be the conformal modulus of the conformal
quadrilateral |K| and let F : |K| → R be the unique conformal mapping from
|K| to the rectangle in the plane with vertices 0, 1, and µi and F (a) = 0,
F (b) = 1, F (c) = 1+µi, and F (d) = µi. As F is 1-quasi-conformal, each of the
mappings fn◦F−1 is κ-quasi-conformal. Theorem II 5.1 of [9] applies to show
that the family of κ-quasi-conformal mappings F = {fn ◦ F−1 : n = 1, 2, . . .}
is normal in the interior of R. Let w be any limit function of a sequence from
F , say w = lim fn(i) ◦F−1 for a subsequence fn(i), where the limit is uniform
on compact subsets of the interior of R. By Theorem II 5.3 of [9], there are
exactly three possibilities: the limit function w on the interior of R is a con-
stant mapping, a mapping onto two distinct points, or a κ-quasi-conformal
mapping. We show next that the first two possibilities do not occur.

Let S be the open infinite strip in the complex plane between the horizon-
tal lines through ±µi. Since the four corners and sides of R are mapped by
fn◦F−1 to the four corners and sides of the image rectangle Rn = fn(|K|), the
reflection principle for quasi-conformal mappings [9] may be iterated to pro-
duce a κ-quasi-conformal extension Fn of fn◦F−1 to the domain S, as well as
a κ-quasi-conformal extension w̃ of w. Since w is a limit function of a sequence
from F , w̃ is a limit function of a sequence from F̃ = {Fn : n = 1, 2, . . .}. By
Theorem II 5.3 of [9], there are exactly the same three possibilities for this
function w̃. Notice though that w̃ is the identity on the set of integers, which
are contained in the interior of S, so the first two possibilities are ruled out.
It follows that w̃ is a κ-quasi-conformal mapping and, as w is the restriction
of w̃ to R, so too is w.

The carrier Rn of Cn is a rectangle in the upper half plane with one side
the unit interval. Theorem II 5.4 of [9] implies that the image of w is the
kernel of the interiors of the rectangles Rn(i), and it is easy to see that such
a kernel must be a rectangle with one side the unit interval. We show below
that w is conformal, which immediately implies that this image rectangle
w(R) must be R itself and that w must be the identity mapping of R since
it fixes the four corners. It follows that fn(i) converges uniformly on compact
subsets of the interior of |K| to F , the unique conformal mapping of |K|
to R with F (a) = 0 and F (b) = 1. As w is an arbitrary limit function of
a sequence from F , this argument shows that there is only one such limit
function, namely, the identity function on R. As the collection F is a normal
family of mappings, so that every infinite subset of F has a limit function,
it follows that the sequence fn ◦ F−1 itself converges uniformly on compact
subsets of the interior of R to this identity function, or that the sequence
fn converges uniformly on compact subsets of |K| to F . This completes the
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proof of convergence of the fn to a conformal mapping of |K| modulo the
verification that w is in fact conformal. This will be accomplished next with
the aid of Conjecture 1.

Let α, β, γ, H , and Θ be as in Conjecture 1 and for each n, let Hn be
the subcomplex of H formed by n generations of the hexagonal grid about
some fixed vertex v0. Let σ = 〈v0, v1, v2〉 be a face of H containing v0 and
let Θn be the restriction of Θ to the edges of Hn. A proof using the rigidity
of Conjecture 1 and the generalized ring lemma, similar to the proof of the
hexagonal packing lemma of [10], shows that there is a sequence εn decreasing
to zero such that, if Hn is any oriented circle packing for (Hn, Θn), and if
τn is the triangle in C formed by connecting the centers of the circles in Hn

corresponding to v0, v1, and v2 and τ is the triangle formed by connecting
the centers of the circles in the unique packing H corresponding to v0, v1,
and v2, then the vertex preserving affine map from τn to τ has dilatation at
most 1 + εn. This is a very strong statement concerning the shapes of the
triangles τn as the constants εn do not depend on which packing for (Hn, Θn)
is chosen, but merely on the fact that v0 is “n-deep” within the complex Hn.

Let D be a compact subset contained in an open face σ of |K|. Let N be
an arbitrary positive integer and choose n so large that each point z of D is
centered in a simply connected neighborhood Uz formed by N generations of
the hexagonal grid in |Kn| that results from n hex-refinements of the face σ.
The generalization of the hexagonal packing lemma of the previous paragraph
guarantees that fn has maximum dilatation at most 1 + εN on D, and since
εN decreases to zero, the maximum dilatation converges to unity uniformly
on D. This implies by Theorem II 5.3 of [9] that the dilatation of the limit
mapping F at any point in the interior of a face of K is no more than 1+εN ,
for all N , and therefore F is conformal on the interiors of the faces of K.
By removability of analytic arcs and isolated singularities, F is conformal on
|K|. We emphasize here that this argument with the use of the generalized
hexagonal packing lemma requires that our radius function R, from which the
seed inversive distance function Φ0 is calculated, be constant on the vertex
set V. One may run the algorithm with arbitrary variable radius function R,
but the convergence generally will not be to a conformal mapping.

The last statement of the theorem requires a small modification to show
uniform convergence when the compact set D hits edges, which we shall not
present. 
�
Corollary 1. If all the edge lengths |e| lie in the half-close interval (λ,

√
2λ],

for some positive constant λ and the Thurston conditions (T1) and (T2) hold,
then the functions fn exist and are quasi-conformal with bounded dilatations,
and the sequence converges uniformly on compact subsets of the interior of
|K| to a conformal mapping F of |K| to a rectangle in the complex plane with
F (a) = 0, F (b) = 1, and F (c) and F (d) in the upper half plane. Moreover, the
maximum dilatation of fn converges to unity uniformly on compact subsets
of the complement of V in |K|.
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Proof. If the initial radius function R0 is chosen to have constant value λ/
√

2,
then the initial inversive distance edge function Φ0 takes values in the half-
closed interval (0, 1], since all the edge lengths |e| lie in the interval (λ,

√
2λ].

Notice that the values of each Φn are the same as those for the initial inversive
distance edge function Φ0, so that the Φn values are in the unit interval.
Thus the circle packings Cn are either tangency or nonorthogonal overlapping
packings. The sequence fn exists by existence-uniqueness results of [2] and [6]
that cover the tangency and overlapping packing cases. Quasi-conformality
of the fn with bounded dilatations follows from the ring lemma of [10] for the
tangency case and its generalization for the overlapping case. The verification
of Conjecture 1 for the tangency case appears in [10] and for the overlapping
case in [6]; see also [11]. Theorem 1 applies. 
�

5 A Gallery of Quadrilaterals

Example 1. Our first examples are those of Figs. 1 and 2. In Fig. 1(a) all
edges have unit length and the surface |K| is an equilateral surface formed
by gluing eight unit equilateral triangles along edges that meet at a common
central vertex. By conformal symmetry at the central vertex, the central
angles of all the triangles have measure π/4 in the conformal structure though
they all have Euclidean measure π/3 in the piecewise flat structure. Notice
that there are anti-conformal reflections across the diagonals from a to c
through the center and from b to d through the center, as well as across the
other two diagonals. Thus the dihedral group D4, the symmetry group of the
square, acts as a group of conformal symmetries of |K|. The only rectangles
on which D4 acts conformally are squares, so we know before running the
inversive distance scheme that the conformal modulus of |K| is 1 and |K| is
conformally equivalent to a square via a mapping taking the equilateral faces
to congruent (2, 4, 4) triangles formed by the diagonals and opposite edge
bisectors of a square. CirclePack confirms this in Fig. 2(a). Since this is an
equilateral surface, we used tangency packings with unit inversive distance
function.

In Fig. 1(b) all edges have unit length except for the three boundary
edges labeled by γ, each of which has edge length γ = 2 sin π

18 ≈ 0.3473.
This makes the Euclidean angles opposite γ equal to π/9 so that the total
Euclidean angle spanned opposite the three labeled sides is π/3, the same
as the Euclidean angles of the equilateral triangles at that vertex. The total
Euclidean angle sum around the central vertex is 2π, so the angles measured
by the conformal structure at the central vertex agree with the Euclidean
measures. In particular, a conformal mapping to a rectangle will map the
faces so that the Euclidean angles at the central vertex are preserved. Again
CirclePack confirms this in Fig. 2(b). This time the rectangle is not a square
and the conformal modulus of the conformal quadrilateral |K| is µ = 1.2031.
The fixed value we chose for the radius function R, from which the inversive
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distance edge function Φ is calculated by Equation 3, is γ/2. This makes the
inversive distance values unity along the γ edges and 15.5817 otherwise.

cd

a b

(a) One refinement.

cd

a b

(b) Two refinements.

cd

a b

(c) Four refinements. (d) Close-up.

Fig. 8. Converging to conformality.

In Fig. 1(c) all edges have unit length except for the four boundary edges
labeled by δ, each of which has edge length δ = 2 sin π

24 ≈ 0.26105. This
makes the Euclidean angles opposite δ equal to π/12 so that the total Eu-
clidean angle spanned opposite the four labeled sides is π/3. Thus the market
share of these four angles totaled equals the market share of each of the other
angles at the central vertex in the unit equilateral triangles. This means that
the conformal structure on |K| measures the total angle spanned opposite
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the four labeled sides as 2π/5 as well as the remaining four angles at the
central vertex in the four equilateral triangles. In particular, the conformal
structure measures each angle opposite δ as π/10 though the Euclidean mea-
sure is π/12. Also, |K| has an anti-conformal reflection across the diagonal
from a to c and, since squares are the only rectangles with a diagonal con-
formal symmetry, we know that the conformal modulus of |K| is 1 and |K|
is conformally equivalent to a square. Again CirclePack confirms this in
Fig. 2(c). The fixed value we chose for the radius function R is δ/2, which
makes the inversive distance values unity along the δ edges and 28.3477 oth-
erwise. Fig. 8 shows the image rectangular packings at stages one, two, and
four of the inversive distance iteration, with only the image of the original
triangulation shown for the fourth stage packing, as well as a close-up of the
central vertex from the stage four refinement.

c

d

a

b

Fig. 9. Hexagonal grid: lengths of bold edges are 1.1; others are 1.4.

Example 2. The edge length assignments used in Fig. 9 for the complex K
have |e| equal to 1.1 for the bold edges and 1.4 otherwise. We approximate
the conformal mapping of |K| to a rectangle using three different choices for
the initial radius function. The radius function R(1) takes the constant value
1/

√
2 where all neighboring circles overlap nontrivially. The second R(2) takes

the constant value 3/5 where there is a mixture of overlapping and disjoint
circles in the initial configuration. The third R(3) takes the constant value 1/4
where all circle pairs are disjoint. The inversive distance algorithm with any
of the three seed radii should provide approximations that converge to the
unique conformal mapping of |K| to a rectangle of unit horizontal side length.
Fig. 10 shows the fourth iterate of the inversive distance scheme applied with
each of the three seed radii functions. The circle packings themselves with the
images of the edges of the initial triangulation K darkened are shown, along
with a close-up of a neighborhood of one of the vertices. This experimentation
with CirclePack suggests that the convergence is independent of the initial
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constant radius value, as it should be. The ranges of the Φ values are 0.2100
to 0.9600 for ΦR(1), 0.6806 to 1.7222 for ΦR(2), and 8.6800 to 14.6800 for
ΦR(3).

Example 3. Corollary 1 confirms that the inversive distance scheme converges
in case the piecewise flat metric is equilateral, i.e., when the edge length
function | − | takes the constant value 1. Then the metric surface |K| is a
union of equilateral triangles glued side-to-side and, when the radius function
R takes the constant value 1/2, the inversive distance function ΦR takes
the constant value 1. The rectangular packings are then tangency packings.
Fig. 11 shows three examples of piecewise equilateral quadrilaterals and their
uniformizations as rectangles. Each edge in the left-hand figures is given
unit length, and four refinements are used to approximate the rectangular
uniformizations on the right. An interesting feature of equilateral surfaces
is that they have a reflective structure in which each face reflects across
any interior edge to its companion face, see [4]. This reflection is an anti-
conformal map and the whole surface is generated by fixing any one face
and then reflecting across edges iteratively. This is obvious in the piecewise
equilateral manifestation of the surface, and this translates into the following
property of their rectangular conformal images. The image τ ′ = F (τ) of any
equilateral face τ of |K| under the conformal mapping to a rectangle contains
all the information about the rest of the map in the sense that the rest of the
map and the image curvilinear triangulation of the rectangle can be recovered
by anti-conformal reflections iterated starting with τ ′. This suggests that, in
principle, an arbitrary finite or even countably infinite amount of information
can be represented in the shape of a single curvilinear triangle and then
recovered by anti-conformal reflections. This is theoretically interesting and
is illustrated in the next example.

Fig. 12(a) shows an eight-by-eight square with each subsquare divided
into two triangles with either a right or left slash. The right slash encodes
a zero and the left a one, and the rows encode the individual symbols of
the expression ‘vismath!’. The resulting triangulation is given an equilateral
metric with all unit edge lengths and this surface is mapped conformally
to a rectangle. The resulting reflective curvilinear triangulation is shown in
Fig. 12(b) and the upper left-hand corner triangle is enlarged in Fig. 12(c).
The whole triangulation in Fig. 12(b), and therefore the message ‘vismath!’,
may be recovered from the lone triangle in Fig. 12(c) (or from any other
triangle in the figure) by iterated anti-conformal reflection. Of course there
is nothing to restrict our attention to finite triangulations. We might well
triangulate the plane, prescribe that each face be a unit equilateral triangle,
then conformally map the resulting piecewise equilateral surface to the plane
C or to the unit disk. The image of any face then contains all the combina-
torial information of the original triangulation. The interested reader might
find the discussion of [3] enlightening.
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(a) R = 1/
√

2. (b) Close-up.

(c) R = 3/5. (d) Close-up.

(e) R = 1/4. (f) Close-up.

Fig. 10. Hexagonal grid.
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a b

(a) A quadrilateral and its reflective triangulation.

c

d

a b

cd

a b

(b) A different corner point c.

a b

cd

a b

cd

(c) A pentagonal packing and its reflective triangulation.

Fig. 11. Equilateral surfaces and their uniformizations.
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00100001

(a) Binary encoding. (b) Reflective encoding.

(c) Top left triangle.

Fig. 12. Encoded ‘vismath!’.

Example 4. The left-hand graphic of Fig. 13(a) (Color Plate 1(a) on page 427)
shows a three-dimensional rendering of the surface of a human cerebrum ob-
tained from the Visible Man data from the National Library of Medicine.
This example contains 52, 360 vertices and 103, 845 faces. Hurdal et al [8]
flattened this mesh quasi-conformally using tangency packings where all in-
versive distances are set to unity. They then computed a textured bump map
using a fake diffuse component for each circle using the surface normal in
R3. The color for each circle was then scaled based on the diffuse value. In
this way the fissures and sulci of the three-dimensional brain data can be
represented in the flat mapping, see [8]. The results appear in the left-hand
graphics of Figs. 13(b) and 13(c) (Color Plates 1(b) and 1(c) on page 427),
where boundary data from the three-dimensional surface has been used to
normalize the packing. One can see the dramatic effect bump map texturing
has in these flattened images. In the right hand graphics of Fig. 13 (Color
Plate 1 on page 427), we have isolated from this brain surface a quadrilateral
region made up of 2943 faces with 1565 vertices, and mapped this subsur-
face conformally to a rectangle. We used the distances between neighboring
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(a) Right hemisphere and subsurface.

(b) Radii packing of hemisphere and inversive distance packing of a
subsurface.

(c) Packing with bump map texture.

Fig. 13. Quasi-conformally mapping of the human brain to a planar domain.
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vertices in the three-dimensional graphic of Fig. 13(a) (Color Plate 1(a) on
page 427) to compute an edge-length function | − | and then flattened using
the inversive distance scheme. The first rectangular map, Fig. 13(b) (Color
Plate 1(b) on page 427), is an inversive distance packing without the bump
map texture, and the second, Fig. 13(c) (Color Plate 1(c) on page 427), is
one with the bump map texture. This is a sample of ongoing work by a team
of mathematicians and neuroscientists who are working to build a conformal
flattening visualization tool for use in neuro-anatomical studies.

Another sample appears in Fig. 14 (Color Plate 2 on page 428) where we
have conformally mapped two cerebellum images obtained from MRI scans to
a disk. The top two images show the cerebellum from two different subjects.
The middle two images show a mapping to a disk. The bottom two images
correspond to a close-up view of the disk mapping to highlight some of the
detail in the central regions of the mappings. The color coding identifies
regions of interest to neuro-anatomists with the orange regions indicating
areas of PET activation when the subjects perform the same tasks.

6 Implementation: Practical Experimental,
Computational, and Theoretical Issues

Implementation of the inversive distance scheme for approximating confor-
mal mappings requires the development of a computational engine that com-
putes oriented circle packings for given inversive distance data (K, Φ). Ken
Stephenson has built such an engine in his program CirclePack. Its pack-
ing algorithm for tangency packings uses a refinement of Thurston’s original
idea in [12] as well as modern numerical schemes for fast approximation of
transcendental functions. The reader may consult [5] for the latest detailed
account of optimal packing algorithms. The packing algorithm generalizes to
cover arbitrary inversive distance packings, though now there is no guarantee
of convergence as there is in the tangency case. In fact, as we know of exam-
ples of inversive distance data (K, Φ) that have no circle packing realization,
any such seed data for CirclePack would fail to converge. The packing al-
gorithm is based on monotonicity results for the change in angle sums about
vertices as the radius of a single circle is changed while preserving inversive
distances. Again the interested reader is directed to [5] for details.

The reader might ask how practical it is to get really close approximations
to the conformal mapping of |K| to a rectangle since, obviously, the number of
vertices grows exponentially as hex-refinement is iterated. The good news is
that the experimental evidence suggests very fast convergence of the inversive
distance scheme. Indeed, in all examples we have yet encountered, the differ-
ence between the fourth and fifth iteration is so small as to be unnoticeable.
This points to a theoretical issue whose resolution would be very valuable for
validating this experimental observation, namely, that of deriving analytic
estimates on the quasi-conformal dilatations of the approximating mappings
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Fig. 14. Mapping two different cerebellum of the human brain.
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fn. Sharp enough estimates might explain the observed fast convergence and
give an alternate, constructive proof of the convergence of the scheme. For
convergence to the correct conformal mapping, the scheme requires a con-
stant radius function for the seed, but of course an arbitrary nonconstant
radius function that satisfies Inequality 2 provides inversive distance data for
which a packing might exist. Good analytic bounds on dilatations might pro-
vide a method for choosing a variable radius function whose packing closely
approximates |K| without iteration.

It would be unwise to pretend that there are no practical implementation
problems with the computational engine that computes a circle packing for
given inversive distance data and with the resulting display. A particularly
acute problem arises when there is a wide range of inversive distance values
and the size of the complex K is large with, say, greater than 106 vertices. The
resulting circle radii in the packing then have widely disparate values, which
can lead to long computation times and numerical instabilities due to the
high degree of numerical precision that is required. These large complexes,
including those generated from a large number of hex refinements, can be
difficult to visualize on a small computer screen. An advantage of conformal
mapping for visualization of these large data sets comes into play here. Rather
than map to a rectangle, we may map conformally to a disk, and then use
Möbius transformations to bring various parts of the complex into focus near
the disk center. This technique has proved extremely useful in developing a
neuro-imaging tool.

Some improvements in the speed of the algorithm have been described
by Collins and Stephenson in [5]. However there is room for considerable
improvement for large data sets and for other investigations for optimizing the
code. The algorithm for finding the circle packing for given inversive distance
data is an iterative procedure, beginning with a specified vertex. The quasi-
conformal results do not depend on the vertex chosen; however, it might be
that nominating an alternate vertex would result in improved algorithm speed
or faster convergence. Other computational experimental simulations may
reveal additional insights into algorithm improvements. Since the algorithm
is an iterative procedure, it seems to lend itself well to parallelization, which
is an area of current research by Stephenson.

The computational issues described here become problems only for large
complexes or data sets. For complexes such as the ones presented in this
paper the algorithm is stable, robust and fast.
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