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INTRODUCTION
Cortical surface reconstructions are increasingly being used to study the anatomy and 
functional processing of the brain and to make comparisons across individuals. Although the 
geometry of the surface of the brain varies across individuals, its topology is always equivalent 
to a two-sphere with an Euler Characteristic(χ) of 2. Many diff erent algorithms exist for 
reconstructing cortical surfaces.  One of the most common algorithms used for constructing 
a surface from volume data is the Marching Cubes algorithm[1], namely because of its speed. 
We are investigating how variations in this algorithm compare geometric and topological 
properties in the resulting cortical surface. To our knowledge, this is the fi rst comparison 
of geometric and topological cortical surface properties to be performed with the Marching 
Cubes algorithm.
Th e original Marching Cubes algorithm developed by Lorensen and Cline can lead to many 
topological problems in the reconstructed surface; as a result, many modifi cations to the 
algorithm have been proposed to correct or reduce these defects.  Th e defects we will be 
discussing include holes, non-manifold edges and vertices, and handles.  We investigate 
the use of several modifi cations to the original Marching Cubes Algorithm including the 
eff ect of lookup tables, isovalue selection, and data perturbation when reconstructing cortical 
surfaces.

METHODS
Th is study utilized 11 T-1 weighted anatomical MRI scans of subjects from a static force 
experiment[2].  Each scan set is comprised of 256 x 256 x180 voxels with dimensions .86 
mm x .86 mm x 1.0 mm.  Th e scalp, skull, cerebellum, and other non-brain tissue were 
stripped and the cerebrum was divided into left and right hemispheres.  Inhomogeneities 
were corrected using the MNI N3 algorithm[2] before the Marching Cubes algorithm was 
applied.  We implemented novel modifi cations to the Marching Cubes algorithm including 
3 newly created lookup tables and a data perturbation method for use with integer isovalues.  
We applied these modifi ed algorithms to the left hemisphere of each subject, using 5 integer 
and 5 non-integer isovalues and 4 lookup tables per isovalue, leading to 40 generated surfaces 
per subject.  
A Marching Cubes algorithm uses a set of data values with an underlying cubical structure, 
such as MRI or CT data.  Th e cubes, or voxels, used in the algorithm are rectangular prisms 
that have a data value at each corner (Fig. 1).  A surface is constructed by selecting a constant 
value, known as the isovalue, and assembling a level set corresponding to this isovalue.  Th is 
is done by visiting each voxel, using a lookup table to identify triangles in this voxel belonging 
to our surface, and constructing the surface from all of the identifi ed triangles.
Isovalue selection is a critical decision that infl uences many surface characteristics such as the 
Euler characteristic (χ=V-E+F, where V is number of vertices, E is number of edges, and F 
is number of faces) and surface area.  We use a histogram of the MRI data values to choose 
a reasonable isovalue.  Typically, an isovalue near the base of a histogram peak is selected 
in order to generate a surface.  Figure 2 shows the histograms of several subjects and the 
range of isovalues chosen to generate a surface.  Other methods can also be used to select an 
appropriate isovalue[3][4].  We chose several values to demonstrate its eff ect on the resulting 
surface.
Once an isovalue has been chosen, the Marching Cubes algorithm may be used to construct 
our surface.  We identify a given voxel according to the values it contains on its corners.  Each 
edge of the voxel that terminates in a value higher than the isovalue (large dots in fi gures 
3-4) and a value lower than the isovalue (no dots in fi gures 3-4) will have a point along 
the edge that is equal to the isovalue (small dots in fi gures 3-4).  Th ese edge points belong 
in our surface and will be referred to as surface points.  Once surface points from a given 
voxel have been identifi ed, we must determine how to connect these points with edges and 
triangular faces.  Th is is done through the use of a lookup table, and is the source of much 
of the variability in the Marching Cubes algorithm.  

Th e signifi cant variability in lookup tables is a direct result of how surface points are connected 
in voxels that have an ambiguous face.  An ambiguous face is a face of our voxel with two 
values higher than the isovalue on opposite corners and two values lower than the isovalue 
on opposite corners, yielding two valid ways that edges may connect the surface points on 
this face (Fig. 3).  Th e lookup table defi nes which connectivity scheme is used in each voxel 
case.  Th e original lookup table proposed by Lorensen and Cline was defi ned inconsistently 
for cubes sharing an ambiguous face, so that edges on ambiguous faces did not match up, 
resulting in holes in the fi nal surface.  Th us, it is important to consistently defi ne what is 
done with ambiguous faces when creating a lookup table.  
Th e 4 lookup tables that we implemented will be referred to as Low, High, Tetra, and 
Asymptotic.  Th e Low table always separates the low data values of an ambiguous face.  Th e 
High table always separates the high values of an ambiguous face.  Th e Tetra table decides 
how to connect an ambiguous face based upon a tetrahedral decomposition of the cube.  Th e 
Asymptotic table uses the asymptotic decider[5] to decide how to connect an ambiguous face.  
A sample cube and how each table would triangulate it is shown in Figure 4.  It is important 
to note that the topological variability that comes from using these diff erent connectivity 
schemes is caused by the cubes with ambiguous faces.
Another issue encountered in a Marching Cubes type algorithm is what to do when a data 
value equals the isovalue.  Th e original algorithm simply classifi es these data points as lower 
than the isovalue, and places the surface point in the same position as the data value.  Th is 
can lead to non-manifold vertices and edges in the resulting surface that prevent us from 
using our surface in other applications such as handle removal and fl attening.  Th ere are two 
ways to prevent these defects from occurring in a surface.  Choosing an isovalue that is not an 
integer prevents any data values from being equal to our isovalue, resulting in an elimination 
of any non-manifold defects.  We may also prevent non-manifold defects by perturbing the 
data values that are equal to the isovalue so that they become only one value higher or lower 
than the isovalue.
Choosing to perturb data values forces more decisions regarding the direction of perturbation.  
Surfaces resulting from always perturbing values down or always perturbing values up will 
have diff erent properties.  We created and implemented a perturbation method for our 

algorithm that decides the direction of perturbation based upon the neighboring data values.  
We take all 26 data values that are part of the 8 cubes our candidate data value belongs to 
and determine if the majority of them are higher or lower than the isovalue.  Th e candidate 
value is then perturbed in the direction of the majority of its neighbors.  
Th e surface properties examined after using the various algorithms include surface area, 
number of triangles, maximum vertex degree, and Euler characteristic.  Th e maximum 
vertex degree is the largest number of triangles that meet at a vertex in our surface.  Th e 
Euler characteristic is a measure of the number of handles in the surface with more handles 
increasing the value in the negative direction.

RESULTS
We have employed several modifi cations to the Marching Cubes algorithm, resulting in a 
variety of method combinations that could be used to generate a surface.  We wish to discern 
which algorithm can reliably give us the most desirable surface characteristics such as χ as 
close as possible to 2, small number of triangles, and low vertex degree.  A small number of 
triangles and vertex degree are desirable features since the time to run many downstream 
applications is dependent upon them. Figures 5-6 demonstrate that choosing to perturb data 
values that are equal to the isovalue results in more desirable surface properties than using 
the same table with a non-integer isovalue.  Th e Euler characteristic and triangle numbers 
are lower for the integer perturbed surfaces than for the non-integer surfaces, although the 
asymptotic table showed the least amount of diff erence when using the two diff erent methods 
of isovalue selection.  Th is is probably due to the fact that the asymptotic decider triangulates 
many of the cubes similarly, regardless of isovalue type. Th ere also appears to be a best table 

choice for the 4 tables tested with perturbed data values.  Th e tetra table is the worst table 
when comparing χ values, although the other tables have mixed results.  When using the 
perturbing method, the low table showed the best χ results for a majority of the subjects.  
Th e low table was also consistent in producing the lowest number of triangles, which can 
be seen in Figure 6.  Th e mean maximum degree for the low, asymptotic, high, and tetra 
tables were taken over all subjects and isovalue selection methods. Th is property shows a 
refl ection of table quality and is not dependent upon the isovalue selection method.  Th e mean 
maximum degree for the low, asymptotic, high, and tetra tables are 12.16, 12.10, 15.77, and 
14.12 respectively indicating that the low and asymptotic table performed best in this area.  
Th us, by looking at the χ values, triangle number, and maximum degree, we found that an 
algorithm using an integer isovalue, perturbing the data values equal to the isovalue, and 
using a lookup table which separates low data values gives the best overall performance.  
One of the most surprising results was the outcome of surface area testing.  In all cases the 
surface area ranking by table from lowest to highest was low, asymptotic, tetra, and high, as 
seen in Figure 7.  Two-tailed paired t-tests were performed across each pair of tables using 
subject surface area values obtained from all isovalues and isovalue selection methods.  Each 
table pair obtained a p-value less than 1E-10, showing that surface area diff erences are highly 
statistically signifi cant.   Th is indicates that surface area values will fall in a predictable pattern 
of low, asymptotic, tetra, and high in increasing surface area when using these four tables.  
Th e average percent increase in surface area across lookup tables from the least to greatest 
was 5.67 percent.
Surface area also appeared to increase with isovalue, as seen in Figure 8.  Two-tailed paired 
t-tests were performed across each pair of isovalue levels tested (i.e. fi rst tested value with 
third tested value) using surface area values obtained from all tables and isovalue selection 
methods.  Our results indicated that surface area means are statistically signifi cant, with p-
values below 2.7E-50.  Th is extremely low p-value can most likely be attributed to the almost 
constant rate of increase across all subjects and tables (see Figure 8).  Th e average increase in 
surface area from lowest to highest isovalue is 18.15 percent.
We also found that, in general, χ values tend to increase with an increase in isovalue, although 
this is not always the case and the level of increase is not as constant as with surface area 
values.  A subset of these values showing this trend is shown in Figure 9. Th is leads us to try 
to choose an isovalue that is as small as possible without sacrifi cing the deep penetration of 
the surface into the sulcal regions of the brain.  Figure 10 shows an overlay of three surfaces 
generated from Subject 1 using the low table with perturbing for the fi rst, third, and fi fth 
isovalue tested.

DISCUSSION
Th e modifi cations to the original Marching Cubes algorithm have enabled us to reduce many 
of the defects often associated with this method of surface reconstruction.  Using a consistent 
lookup table guarantees the absence of holes in the generated surfaces.  Th e perturbation 
of data values equal to the isovalue eliminates the possibility of any non-manifold edges 
or vertices in our surfaces.  Other methods could be used to determine the perturbation 
direction such as using only the 18 or the 6 closest neighboring data values, or an entirely 
diff erent scheme altogether.  Our method was chosen because of its simplicity to implement 
and its basis on neighboring values.  Typically, this method also resulted in lower χ values 
than using the non-integer isovalues.  Th e only remaining topological defect in our surface is 
handles, which can be removed by subsequent algorithms.  In order to speed up downstream 
applications such as handle removal and fl attening we wish to reduce the number of handles 
and triangles present in the surface by choosing an appropriate isovalue and lookup table.  
We have shown that our algorithm using our low lookup table, choosing an integer isovalue, 
and perturbing data values equal to the isovalue, performs better than with other consistent 
lookup tables or using non-integer isovalues.  We have also shown that the surface area 
and number of triangles increases in a consistent manner with an increase in isovalue.  Th e 
increase in these values may be attributed to the surface going deeper into the sulcal regions, 
although the consistency in the relative change in surface area is surprising.  Our future 
work includes developing a fast topologically based algorithm for handle removal, as well as 
improving the quality of the generated surface mesh.
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Figure 5:  Mean χ values for each table using integer isovalues with perturbing (IP) 
and non-integer isovalues (NI).  Means were taken over the fi ve isovalues tested for 

each subject and method.

Figure 7:  Mean Surface Area values for each table using integer isovalues with 
perturbing (IP) and non-integer isovalues (NI).  Means were taken over the fi ve 

isovalues tested for each subject and method.

Figure 6:  Mean Number of Triangles for each table using integer isovalues with 
perturbing (IP) and non-integer isovalues (NI).  Means were taken over the fi ve 

isovalues tested for each subject and method.

Figure 9:  Euler characteristic values for the fi ve isovalues tested in 4 diff erent subjects.
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Figure 1:  Sample voxel used in 
Marching Cubes Algorithm Figure 2:  Histogram of Data Values for 4 subjects. 

Th e range of isovalues chosen for each subject is 
shown by points in a lighter color.

Figure 3: Two ways to connect an 
ambiguous face.

Figure 4: Triangulation scheme of low 
and tetra table (left) and high table (right). 

Asymptotic choice dependent on exact values.

Figure 8:  Surface Area values for the fi ve isovalues tested in 4 diff erent subjects.
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Figure 10:  
Surfaces from 
subject 1 using 

low lookup 
table.  Isovalue 
of 41 in pink, 

43 in blue, 
45 in yellow.  
Region boxed 

in white is 
blown up to 

the right.


